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Introduction
The proteome of an organism reflects cell function and metabolism. 

The same cell type can have different proteomes in response to drugs, 
pathogenic infections, pollution and various kinds of stress. Proteomics 
permits the study of the structure, function and control of biological 
systems by the analysis of the properties of proteins, such as identity, 
abundance, structure and activity, as well as modifications, interactions 
and translocations [1]. Like genomics, proteomics may contribute to the 
discovery of potential indicators of physiological state and changes that 
occur during cancer development and progression [2]. The expression 
of these biomarkers may reflect various events ongoing in tumor 
cells, such as hyperproliferation, altered patterns of gene expression, 
hyperplasia, genotoxicity, inflammation and enzymatic alterations 
related to tumor development, among others [3]. The study of the 
ovarian proteomic profiles represents a new frontier in ovarian cancer 
research, since this approach is able to identify thousands of proteins 
which could be coordinately altered and to simultaneously characterize 
a wide variety of post-translational events such as glycosylation, 
phosphorylation, proteolytic cleavages, etc. Taken together, all of these 
considerations indicate that comparative proteomics is an important 
approach to the elucidation of potential biomarkers for ovarian cancer 
detection, monitoring and treatment [4].

Blood is by far the most extensively studied body fluid in the 
search for biomarkers because proteins secreted by tumor cells are 
transported to the circulation by drainage via lymphatic or capillary 
systems, depending on their molecular weight [5,6]. Proteins related 
to cancer can be present in plasma at very low levels, about 1-10 pg/ml 
or less [7], and in the presence of very abundant physiological proteins 
it is difficult to identify their association with the disease using current 
methods. Most proteomic studies have used plasma, serum, tumor 
tissue and cultured cells as starting points [8-15]. Other proximal 
fluids such as ascites (accumulation of fluid in the peritoneal cavity) 

represent an interesting alternative source for candidate discovery 
since they bathe non-adherent cancer cells and adjacent mesothelial 
cells and contain abundant information including growth, survival and 
metastasis signaling factors [16]. Additionally, tissue interstitial fluid 
(TIF) represents a rich sample source in terms of proteins because it 
hypothetically contains secreted, shed and/or effluxed proteins from 
the tumor and neighboring stroma [17]. Given that the concentration 
of disease biomarkers in the local tumor microenvironment is 
estimated to be 1000-1500 times higher than in blood [18], tumor fluid 
samples could be a rich source for the identification of ovarian cancer 
biomarkers.

In the present study we applied an in-depth proteomic profiling 
approach to characterize the intra-cystic tumor fluids (liquid 
accumulated inside the tumor cavity) of high grade serous ovarian 
cancer. The fluid is a potential resource for elucidating tumor-specific 
proteins and, therefore, a potential source of candidate biomarkers for 
ovarian cancer. 

Methods 
Patients and samples

Samples of tumor fluid were obtained from 10 women who had 
a diagnosis of high-grade ovarian serous carcinoma (mean age 51.2, 
range 36-72), who had not been treated with antineoplastic drugs or 
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radiotherapy, and from 10 women who showed diagnosis of benign 
serous cystadenoma (mean age 49.7, range 37-71). All diagnosis were 
confirmed by histopathological analysis. The patients were recruited 
at the University Hospital (Ribeirão Preto, São Paulo, Brazil). The 
investigation was approved by the National Ethics Committee 
(CONEP: 1778/2010) and all patients gave written informed consent 
to participate.

Tumor fluid was collected from each tumor immediately after 
surgical removal and centrifuged at 20,000×g for 20 minutes. The 
resulting supernatant solution was stored at -80°C. 

Protein quantification and analysis of sample protein profile 
by SDS-PAGE electrophoresis

Total protein quantification in each sample of tumor fluid was 
performed by the Bradford method using the Protein Assay Dye 
Reagent Concentrate (Bio-Rad. Cat N° 500-0006 Lot. L9700067) 
according to manufacturer’s instructions, and BSA as the standard. 
In order to obtain the electrophoretic profile of individual samples of 
tumor fluids, 2.5 µL of each sample was resuspended in electrophoresis 
buffer XT 4X (Bio-Rad, cat. 161-0791, Lot 1610791 Rev B) containing 
5 mg/ml of dithiothreitol (DTT, GE, cat. 17-1318-02, Lot K42179653 
133) and incubated at 100°C for 5 minutes. Electrophoresis was
carried out with 8-16% Polyacrylamide Precise Protein Gels (Thermo
Scientific, cat. #25243. LA2454983 Lot) at 70 V/gel for 1 hour and 40
minutes in a Mini-PROTEAN II Electrophoresis System (Bio-Rad,
USA). All gels received 5 μL of a pre-stained protein standard (Thermo 
Scientific, Page Ruler Plus Prestained Protein Ladder, cat. #26619.
Lot 00072585). Subsequently, the gels were stained with Coomassie
Colloidal Concentrate (Sigma, Brilliant Blue G-Colloidal Concentrate,
cat. #B2025-1EA, Lot 087K4364) according to the manufacturer’s
recommendations.

Sample pooling and albumin and IgG depletion

The high-grade ovarian serous carcinoma fluid pool (malignant 
pool) and benign serous cystadenoma fluid pool (benign pool) 
were obtained by combining a volume of each sample containing 
approximately 110 µg of total protein. Fluid from malignant and 
benign tumors, containing 1.2 mg and 1.1 mg of total protein, 
respectively, was submitted to albumin and IgG depletion using 
the Proteoprep Immunoaffinity Albumin and IgG Depletion Kit 
(Sigma, Code #PROTIA Lot 029K6025, Saint Louis, MO, USA). After 
immunodepletion, 160 µg and 130 µg of total protein were recovered 
from the malignant and benign pools, respectively. The recovery of 
proteins with this immunoaffinity chromatographic step was measured 
by the Bradford assay as described above. 

Sample preparation for proteomic profiling

The proteins recovered from each pool in the immunodepletion 
step were denatured with urea to a final concentration of 8 M in 100 
µM Tris-HCl buffer, pH 8.5. Samples were reduced with DTT at a 1:1 
protein:DDT mass ratio for 2 hours at room temperature. Cysteine 
alkylation was carried out by adding a 1:7 protein:acrylamide mass ratio 
with incubation for 1 hour at room temperature. In order to remove urea 
and the reagents used for protein reduction and alkylation, malignant 
and benign fluid pools were subjected to dialysis and concentration in 
AMICON ULTRA 0.5 ml 10 K filter devices (Millipore #UFC501024 
Lot Code R9EN02784). The fluid pools were centrifuged for 15 minutes 
at 14000×g, 20°C, and concentrated to a final volume of 20 µl each. 
The concentrated fractions were mixed with 40 µl of gel loading buffer 
diluted 2X (XT Sample Buffer 4X, Bio-Rad, 161-0791 Code #1610791 

Lot B-Rev) and subjected to polyacrylamide gel electrophoresis (SDS-
PAGE). SDS-PAGE was used as the primary analytical tool for the 
characterization of proteins present in the sample. Precast Precise 
Protein Gels 8-16% (Thermo Scientific, Code # 25243 Lot LA2454983) 
were run in a Mini-PROTEAN II Electrophoresis System (Bio-Rad, 
USA). Electrophoresis was initially performed at 20 V for 40 minutes 
as a sample loading step and then at 70 V for 1 hour and 50 minutes 
until the end of the run by a marker dye. Five microliters of pre-stained 
protein standards (Thermo Scientific, Page Ruler Plus Prestained 
Protein Ladder, Code #26619 Lot 00072585) were also applied to 
one lane. To visualize the proteins, gels were stained with Coomassie 
Colloidal Concentrate (Brilliant Blue G-Colloidal Concentrate, Sigma, 
Code #B2025-1EA Lot 087K4364) according to manufacturer’s 
recommendations. The gel was destained in water overnight and each 
lane of the gel was divided into 6 fractions.

For in situ tryptic digestion, each lane (malignant pool, benign 
pool) of the gel was cut into six fractions. The 12 resulting gel pieces 
were destained and SDS was removed by washing three times with 
50 mM ammonium bicarbonate containing 50% acetonitrile and 40 
µl trypsin (10 ng/µl, Promega, Code V511A Lot #30551310) diluted 
in 50 mM ammonium bicarbonate, pH>8.0. In-gel protein digestion 
was carried out at 37°C overnight. Peptides present in the gel bands 
were extracted twice with 150 µl of a 50% acetonitrile/2% formic acid 
solution for 2 hours. An additional extraction was carried out with a 
200 µl solution of 100% acetonitrile/2% formic acid for 1 hour. The 
liquids collected from the extracts of the same sample were combined 
in a low-protein binding 0.5 ml tube. The 12 samples were dried in a 
Speed Vac (Thermo Scientific, Marietta, OH) and subjected to LC-MS/
MS.

Protein identification and relative quantification by LC-MS/
MS

Each of the 12 peptide extracts was dissolved in 5% acetonitrile 
and 0.1% formic acid and analyzed individually by LC-MS/MS in a 
nanoflow reversed-phase HPLC system connected to an LTQ Orbitrap 
mass spectrometer (Thermo Scientific). Chromatography was carried 
out with an in-house packed 75 mm inner diameter (New Objectives) 
25 cm long column packed with Magic C18 resin and eluted at 250 nl/
min with 90 min linear gradients from 5% to 40% acetonitrile in 0.1% 
formic acid. MS/MS scans of the five most abundant doubly or triply 
charged peaks in the MS scan were recorded in data-dependent mode 
in the linear ion trap. Peptides and proteins were identified with the 
Labkey-Computational Proteomics Analysis System [18] using the 
X!Tandem search engine [19] and Peptide Prophet [20] and Protein 
Prophet [21] algorithms for the statistical validation of peptide data 
and protein grouping. MS data were searched against the human 
International Protein Index (IPI version 3.75). Search parameters for 
tryptic peptides included up to two missed cleavages, mass allowances 
of 0.5 Da for fragment ions, fixed cysteine modification with 
acrylamide (+71.0371) and variable methionine oxidation (+15.9949). 
Only peptides with a Peptide Prophet score above 0.90 and precursor 
ions with a delta mass less than 20 ppm were considered for protein 
identification. The list of proteins was generated with a Protein Prophet 
cut-off value of 0.9, representing an overall protein false discovery rate 
of 2% based on the Protein Prophet estimate and including proteins 
identified based on single peptide hits.

Data analysis and correlation

We used the Plasma Proteome Database [22] to determine 
the presence or absence of proteins in human plasma. Similarly, a 
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comparison of the proteins identified in the fluid with a comprehensive 
previous study of ovarian cancer cells [23] was carried out. The networks 
and functional analysis were generated by the use of Ingenuity Pathway 
Analysis (IPA, Ingenuity® Systems) and the gene ontology analysis was 
performed using Fatigo (http://babelomics.bioinfo.cipf.es). In addition, 
the Cluster 3.0 software (Stanford University) was used to compare the 
present results with those of a previous study [23] and to build a cluster.

TIMP1 ELISA immunoassay

TIMP1 (Metalloproteinase inhibitor 1) was determined using 
the HUMAN TIMP-1 ELISA KIT from GenWay Biothec, Inc. (San 
Diego, CA, USA) according to the manufactures`s recommendations. 
Individual samples of malignant and benign tumor fluid (1 μL diluted 
to 50 μL with kit’s sample buffer) were analysed in duplicate. Data were 
analysed statistically by ANOVA and the Tukey Test.

Results
Protein quantification, sample protein profile and albumin 
and IgG depletion

First, in order to characterize individual cystic fluid samples, 
we measured the protein by the Bradford method. There was some 
variability among individual tumor fluid samples from each group 
(benign or malignant). Malignant fluid samples presented protein 
concentrations ranging from 33.9 to 109.3 mg/mL (average 59.03 
mg/mL). Great heterogeneity was observed in the benign set of 
samples, which ranged from 1.3 to 104.5 µg/µL (average 41.61 mg/
mL). Individual measurements are presented in Table 1. Similarly, 
the SDS-PAGE protein profile of individual samples indicated greater 
heterogeneity among samples of benign cystic fluid (Figure 1A). In 
addition, SDS-PAGE profiles showed a predominant concentration 
of proteins above 35 kDa and an intense diffuse band around 60-70 
kDa, probably indicating the presence of large amounts of albumin. 
In fact, the SDS-PAGE profile of these cystic fluids resembled the 
profile of plasma/serum samples. Overall, all those profiles of benign 
and malignant samples for which protein concentrations were near 
the average (~50 mg/ml) were indistinguishable, indicating that major 
differences would represent low abundance proteins, thus supporting 
the need for in-depth proteomic profiling. For this reason, we chose 
to pool each set of malignant and benign samples based on their total 
protein concentration and to remove highly abundant proteins before 
proceeding with the proteomic analysis.

After immunoaffinity removal of albumin and immunoglobulins 
the recovery was 13% (0.80 mg/mL) and 12% (0.67 mg/mL) of the 

initial amount of total proteins in the malignant and benign pools, 
respectively. As observed in Figure 1B, the SDS-PAGE profiles of 
immunodepleted pools were well distributed over the full range of 
molecular weights and the distribution of proteins indicated subtle 
differences between benign and malignant pools. 

GEL-LC-MS/MS

We used SDS-PAGE to separate each cystic fluid pool into 
6 fractions and GEL-LC-MS/MS to obtain a detailed proteomic 
profile. After approximately 200,000 peptide spectra were collected, 
1135 proteins with individual IPI access numbers were identified in 
benign and malignant cystic fluid samples (the proteins are listed in 
Supplementary Table 1). These proteins correspond to 593 known 
genes. When comparing the profiles from benign and malignant cystic 
fluids, 358 common proteins were detected in both pools, 505 proteins 
were detected only in the malignant pool, and 272 proteins were detected 
only in the benign pool. Although some of these differences were due to 
highthroughput proteomic sampling considerations, we noted that the 
profile of malignant fluid was richer in terms of intracellular proteins. 
Interestingly, of the 593 known gene products detected, 425 (72%) 
are present in the human plasma proteome according to the Plasma 
Proteome Database [22], supporting our previous observation based 
only in the SDS-PAGE profile. 

Data analysis and correlations

Using Ingenuity Pathways Analysis (IPA), we correlated the 
identified proteins with networks that indicate cellular functions, 
pathways or specific diseases. The proteins from the malignant fluid 
pool were associated with 15 networks, especially protein synthesis, 
protein trafficking and post-translational modifications, while the 
benign pool proteins were associated with 9 networks, mainly related 
to cellular movement and infectious diseases. The common proteins 
were associated with 14 networks, highlighting cell-to-cell signaling 
and interaction and cellular function and maintenance. Table 2 shows 
3 sets of the most statistically significant networks (p-values<0.01): 4 
for common proteins, 4 for proteins detected only in the benign pool 
and 5 for proteins detected only in the malignant pool. 

Similarly, when we classified the proteins on the basis of molecular 
functions and biological processes, using the webtool FATIGO [24], 
we observed that proteins detected only in the malignant fluid pool 
are involved mainly in nucleotide/nucleic acid/nucleoside binding, 
metabolic processes and organelle organization, whereas proteins 
detected only in the benign fluid pool are involved in signal transducer/
enzyme inhibitor/molecular adaptor activity, cell communication, 
development and growth (Figure 2A and 2B). 

In order to extend the characterizations of malignant and benign 
cystic fluid proteins, we correlated our data with a previously published 
in-depth proteomic analysis of ovarian cancer cell lines and ovarian 
cancer tumor cells obtained from patient ascites [23]. We performed 
a cluster analysis in which protein abundance was estimated based 
on spectral counts, and observed that a total of 417 of the known 
genes identified in our study were also detected in the subset of 
secreted proteins from ovarian cancer cells. Most of these proteins 
(248) were enriched, especially in ovarian cancer cells from ascites.
Furthermore, this analysis demonstrated that the pattern of proteins
from the malignant pool was more similar to that of ovarian cancer
cells from ascites than to the benign pool pattern or OVCAR3 and
CaOV3 serous ovarian cancer-derived cell line patterns. The protein
profile of the ES2 ovarian cancer cell line is significantly different from

Malignant individual tumor fluid Benign individual tumor fluid 
Sample mg/mL Sample mg/mL

M1 59.9 B1 21.1
M2 62.6 B2 53.9
M3 33.9 B3 66.4
M4 56.8 B4 73.9
M5 64.3 B5 1.3*
M6 40 B6 35.4
M7 74.7 B7 1.3*
M8 109.3 B8 104.5
M9 44 B9 51.3
M10 44.8 B10 7*

Average=59.03 Average=41.61

Table 1: Protein quantification. Total protein quantification of malignant and 
benign individual tumor fluid samples was performed by the Bradford method (*): 
indicates samples with smaller amounts of protein.

http://babelomics.bioinfo.cipf.es/
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the other secretome profiles because ES2 cells are derived from clear 
ovarian cancer cell subtypes. Despite the similarities, we identified 
some proteins that were detected only in the malignant fluid pool or 

only in the benign fluid pool, also indicating some differences between 
tumor fluids and ovarian cancer cell secretome (Figure 3) (count values 
are shown in Supplementary Table 2). Among the proteins detected 
only in the malignant fluid pool, proteins involved especially in blood 
coagulation and homeostasis (GP1BA, F13B, F10, C4BPB and PROC), 
response to wounding (GP1BA, F13B, F10, CRP, CFD, C4BPB, SAA2, 
PROC and MBL2), and acute inflammatory response (CRP, CFD, 
C4BPB, SAA2 and MBL2) were observed. Furthermore, proteins 
associated with ovarian cancer such as GPX3, CLIC1, SPAG9, SAA2 
and MCAM were also detected only in the malignant fluid pool.

Determination of TIMP1 levels by ELISA Immunoassay

We further selected TIMP1, which was detected in malignant tumor 
fluid proteomic profile, for determination by ELISA immunoassay 
(Figure 4). TIMP1 concentrations in individual malignant tumor fluid 
samples (mean: 182.23 ± 92.99 ng/mL; range: 77.62 to 369.29 ng/mL) 
were significantly higher than in most of benign tumor fluid samples 
(mean: 78.69 ± 70.70 ng/mL; range: 0 to 194.78 ng/mL) (p<0.05). 

Discussion
Some investigators have described weakness in proteomic analysis 

based on mass spectrometry to identify biomarkers in ovarian cancer, 
such as a low number of proteins identified, the lack of identification 
of low weight proteins, the low reproducibility of the results, and low 
sensitivity and specificity of discovered biomarkers in comparison with 
CA 125 [25]. With the improvement of mass spectrometry in terms of 
sensitivity, software used in searching and identification, and methods 
for peptide quantitation, these problems are expected to have been 
reduced. On the other hand, many publications have explored the 
potential use of individual proteins or collections of proteins as cancer 
biomarkers and have produced promising results. These proteins 
were selected for investigation as biomarkers because of their history 
as biomarkers for other diseases or because of their known function. 
Predictions from genomic analysis and gene-expression data have 
also been used to guide research. For most of these proteins, however, 
their role as a cancer biomarker has not been validated in the context 
of a defined clinical application. The advent of proteomic technologies 
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Associated Network Functions Score Focus 
Molecules

Molecules in Network

Proteins common to 
both pools

Cell-To-Cell Signaling and Interaction, 
Hematological System Development 
and Function

47 29
26sProteasome,A2M,APOB,APOE,APOH,C3,C5,CFB,F2,F10,F11,HABP
2,ITLN1,LCN2,LTF,MIF,MPO,MUC5AC/MUC5B,PLG,PON1,PRDX1,PRO
C,PROS1,RBP4,SERPINA1,SERPINC1,SERPING1,SMPD2,TF

Cellular Assembly and Organization, 
Cellular Function and Maintenance, 
Cellular Movement

40 28
ACTB,Actin,ACTN1,APOD,C2,C9,CAP1,CD55,CD59,CLU,EN01,Factin,
FBLN1,FLNA,FN1,GAPDH,GSN,HBG1,HSP90AB1,Iti,ITIH1,ITIH2,LCP1, 
MDK,MUC4,NPC2,PGK1, VTN,YWHAZ

Cancer 23 18 AHSG,ALB,APOA2,C1R,C1S,C4BPA,CD163,CFHR1, Fibrinogen,FOLR1, 
HPX,ITIH4,KLKB1,KNG1, MUC4,ORM1,SERPINA1,SERPINA3

Cell-To-Cell Signaling and Interaction, 
Hematological System Development 
and Function

18 15 AMBP,C1QA,C8A,CD163,CP,HRG,IGHA1,IGHA2,IGHG2,PGD,PGLYRP
2,PIGR,PRDX2,TAP2,TUBB4B

Proteins detected only 
in the benign pool

Cellular Movement, Cell-To-Cell 
Signaling and Interaction, Tissue 
Development

43 25
ANXA1,C5,CD55,CD59,CDH13,CLU,DMBT1,DUOX2,EPS8L2,EZR,FBL
N1,GNAI3,GNB2,GSN,MSN,MUC1,MUC4,RAC1,RAP1A,RAP1B,RDX,S
DCBP,SPARC,SPP1,THY1

Cell Death and Survival 15 12 ACE,ANXA4,BAIAP2,C7,CHI3L1,FBLN2,GNA13,IFITM2, 
PDCD6IP,PROM1,SPARCL1,UBA52

Carbohydrate Metabolism, Lipid 
Metabolism, Small Molecule 
Biochemistry

14 12 APOA2, C4B (includes others), CFB,COL1A2, CST3, GNAQ, 
HPX,LDL,MUC16,PIGR,QSOX1,TM4SF1

Cellular Movement 14 11 ADAM9,ANXA2,CTSB,FN1, KRT19, OLFM4, S100A6, 
SLC9A3R1,SMPDL3B,SNX18,TTR

Proteins detected only 
in the malignant pool

Protein Synthesis, Molecular 
Transport, Protein Trafficking 43 30

ACTB,Actin,ACTR3,CAP1,ENO1,ERCC6,FASN,FGG,FLNA,GAP
DH,GNB2L1,HNRNPA1,HNRNPK,HNRNPU,ILF3,KPNB1,MAP4,N
CL,NPM1,NUMA1,NUTF2,OTUB1,PKM,PLEC,RPS8,RPS14,SSB, 
TAGLN2,XPO1,YBX1

Cell-To-Cell Signaling and Interaction, 
Tissue Development, Cellular 
Movement

41 29
ACTN4,ARHGDIA,C5,CALR,CAT,CDH5,CORO1A,EEF1A1,F10,Fibrinog
en,FLNB,FN1,GP1BA,GPI,KNG1,LBP,LTF,MBL2,MCAM,MMP9,MPO,NA
MPT,PROC,PSMB9,RHOA,RPS3A,SPTAN1,VCL,VCP

Post-Translational Modification, 
Protein Folding 26 21

ANXA5,CAPZA1,CD44,CRP,CTTN,CYCS, FActin,HNRNPD,Hsp27,Hsp7
0,Hsp90,HSP90AB1,HSPA5,HSPA8,HSPB1,Igm, LCP1,LDL, NONO,PPI
A,RPL6,SOD1,TIMP1,TLN1,TUBA1A,YWHAQ

Cell-To-Cell Signaling and Interaction, 
Hematological System Development 
and Function, Immune Cell Trafficking

16 16
APOA4,APOM,ARPC2, DEFA1 (includes 
others),EEF1A2,GPLD1,HNRNPAB, Iti,ITIH1,ITIH2,LAP3, PSMB8,PSMB
9,PSME2,PTGDS,SERPINA3

Cell Morphology 14 14 APOE,ARHGEF2,C4BPB,CSE1L,EIF3A,FKBP4,HIST1H2BB,LDHB,PAR
K7,PLTP,RALY,TMSB10/TMSB4X,UCHL1,USP5

Score: the score is derived from a p-value and indicates the likelihood of the Focus Genes in a network being found together due to random chance. A score of 2 indicates 
that there is a 1 in 100 chance that the Focus Genes are together in a network due to random chance. Therefore, scores of 2 or higher have at least a 99% confidence of 
not being generated by random chance alone. 
Number of molecules: number of proteins detected in our study present in the network. 
Table 2: Networks list. Principal networks of common proteins detected in both pools and proteins observed only in the benign fluid pool and only in the malignant fluid 
pool using Ingenuity Pathways Analysis (IPA).
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Figure 4: TIMP1 concentrations in tumor fluids. TIMP1 concentrations observed in individual malignant tumor fluid samples (M1- M10) and in individual 
benign tumor fluid samples (B1-B10) using ELISA immunoassay. Mean TIMP1 concentration was significantly higher in malignant tumor fluid samples 
(182.23 ± 92.99 ng/mL) than in benign tumor fluid samples (78.69 ± 70.70 ng/mL) (p<0.05). 90% of malignant tumor fluid samples have values   above the 
average concentration of benign samples.
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has allowed the systematic evaluation of complex proteins and the 
identification of differentially expressed proteins in cells, tissues and 
body fluids [26].

In an attempt to improve the results of proteomic studies, different 
body fluids have been used to characterize ovarian cancer, each one 
with their advantages and disadvantages. Most proteomic studies have 
used blood specimens as starting material. The reason is clear since a 
simple blood test would be ideal for a biomarker search. Furthermore, 
the sample may contain proteins or peptides reflecting organ -confined 
or small volume disease. Problematic, though, is the presence of a 
number of highly abundant proteins such as albumin, proteins from 
the complement and immunoglobulins, masking the less abundant and 
probably more interesting proteins or peptides [25].

The ovarian tumor fluid probably represents the local 
microenvironment that contains proteins secreted by tumor cells. 
Initial pathologic changes within that organ can therefore be reflected 
in proteomic patterns found in the ovarian tumor fluid before secretion 
into the bloodstream [27]. Studies using ovarian tumor fluid to identify 
diagnostic and prognostic markers have been reported [28-31]. Fluids 
from ovarian tumors, especially malignant ones, may exhibit higher 
concentrations of proteins also present in serum and urine but in a 
more diluted form.

In the present study, the total protein content of individual fluid 
samples showed a wide variation among tumors. On the other hand, 
many of these samples showed total protein concentrations similar to 
human plasma. The complexity of the tumor fluid samples, confirmed 
by protein quantification and pattern of proteins on SDS-PAGE gel, 
indicated the need for depletion of albumin and IgG. Without the 
overwhelming amounts of albumin, the probability of detecting 
relevant proteins increases. 

The identification of the complete cell proteome is a complex 
challenge. Therefore, the combination of protein separation by SDS-
PAGE followed by gel fractionation into various sections, combined 
with in situ enzyme digestion and MS/MS analysis may result in the 
identification of thousands (1000-4000) of different proteins that are 
present in micrograms amounts [32]. Here we considered the number 
of over 1000 identifiers (IPI) detected, corresponding to 593 genes, 
to be very representative due mainly to the complexity of the sample 
analyzed, but also due to the small amount of samples required for the 
experiment.

In a study published by Kristjansdottir et al. [27], mass spectrometry 
of ovarian cyst fluids, without depletion of high abundance proteins, 
was used to study 192 women (benign n=129, malignant n=63) with 
different histological types and grades of ovarian cancer tumors. 
The authors detected 1180 peaks (MALDI-TOF ions), 221 of which 
differed in abundance between benign and malignant ovarian tumors. 
However, they emphasized the importance of using careful and selective 
depletion of high abundance proteins from the ovarian cyst fluid which 
might increase access to other specific biomarkers. Other studies were 
performed using tumor fluid [28-31], but these investigations were 
directed at specific protein targets such as E-cadherin and calgranulin, 
also detected in our study. 

More recently, a study [33] was conducted with ovarian cancer 
tissues (n=8, including three serous, three mucinous, and two 
endometrioid tumors) and normal ovarian epithelial tissues (n=8). 
Using the highthroughput proteomic technology of isobaric tags 
for relative and absolute quantitation (iTRAQ) coupled with two-
dimensional-liquid chromatography-tandem mass spectrometry, 1259 

proteins were identified. Of those, 205 were potentially differentially 
expressed between ovarian cancer and normal ovarian tissues, and 
up-regulation of KRT8, PPA1, IDH2, and S100A11 was validated in 
ovarian tissue microarrays by immunohistochemistry [33]. In the 
present study, we also detected the PPA1 and S100A11 proteins. 

Ontology analysis indicated that a significant portion of the 
malignant pool proteins participate in nuclear activity and metabolic 
processes. We observed a large number of proteins associated with 
nucleotide/nucleic acid/nucleoside binding. This is consistent with the 
fact that cancer cells have the ability to sustain chronic proliferation 
and therefore maintain a high rate of gene expression [34]. Our 
findings suggest that high-grade ovarian serous carcinomas exhibit 
heterogeneous metabolic alterations that extend beyond the Warburg 
effect [35]. At least some of the metabolic heterogeneity observed in 
our malignant sample is influenced by the tumor microenvironment 
[36]. 

Cancer cells must rewire cellular metabolism to support the demands 
of growth and proliferation, and these altered pathways represent 
attractive therapeutic targets [37,38]. Some target metabolic enzymes 
for cancer therapy described in the literature were also detected in our 
study, like FASN (fatty acid synthase) [39], PGAM (phosphoglycerate 
mutase) [40], PKM2 (Pyruvate kinase isozyme M2) [41], LDHA 
(Lactate dehydrogenase A) [42] and IDH1 (Isocitrate dehydrogenase 1) 
[43]. Recent advances in metabolite profiling methodologies associated 
with tumor fluid analysis have also contributed to the understanding of 
the metabolic processes of cancer cells. Furthermore, in the future, the 
tumor fluid can be used as an accessory method in tumor diagnosis and 
treatment, combined with a tissue biopsy and pathological methods, 
such as fine needle aspiration, which should have an impact on patient 
management.

Peptide counting provides abundance estimates that correlate 
reasonably well with those determined by other methods [44]. In our 
cluster analysis, we observed a good correlation between the malignant 
pool and ascites, followed by OVCAR3 and CaOV3, and then 
malignant pool/ascites and the benign pool. The similarity in protein 
profile observed between the malignant pool and ascites was expected, 
since cells from ascites were derived from a patient with serous ovarian 
adenocarcinoma. OVCAR3 and CaOV3 are derived from human serous 
ovarian adenocarcinoma [45,46] and ES2 is derived from clear cell 
carcinoma [47]. Differences in histology are paralleled by differences in 
protein profiles, as reflected in our cluster analysis [23]. This is evident 
from observations that the proteins of ES2 are significantly different 
from those of the cell lines analyzed [23] and are significantly different 
between malignant and benign pools.

Some differences were also observed between tumor fluids and 
cell lines, especially because some proteins were detected only in the 
malignant pool. These included GPX3 (glutathione peroxidase 3), 
CLIC1 (chloride intracellular channel 1), SPAG9 (sperm-associated 
antigen 9), SAA2 (acute phase serum amyloid A) and MCAM 
(melanoma cell adhesion molecule). Serum levels of GPX3, described 
as being reduced in various cancers including prostate, thyroid, 
colorectal, breast and gastric cancers, are decreased in women with 
papillary serous ovarian cancer [48]. Another case is CLIC1, detectable 
in  ovarian cancer  patient serum [49]. SPAG9 mRNA and protein 
expression was detected in 90% of epithelial ovarian cancer tissues and 
in three human ovarian cancer cell lines (A-10, SKOV-6 and CaOv-2). 
Specific SPAG9 antibodies were detected in 67% of epithelial ovarian 
cancer patients and not in serum from healthy individuals [50]. SAA2 
has been shown to be extremely elevated in many cancer samples [51], 
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is relevant to ovarian cancer molecular pathogenesis and, at the same 
time, had the highest degree of up-regulation in disease conditions in 
the study described by Moshkovskii et al. [52]. MCAM is abnormally 
expressed in a variety of tumors and is closely associated with tumor 
metastasis, probably participating in the regulation of the Rho signaling 
pathway to protect ovarian cancer cells from apoptosis and to promote 
their malignant invasion and metastasis [53]. 

Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) 
act together to control the operation of the extracellular matrix. 
TIMP expression is altered in benign and malignant tumors during 
invasion and metastasis, requiring the breakdown and removal of the 
extracellular matrix [54]. Studies have shown that TIMP1 is useful as 
a diagnostic biomarker for pancreatic adenocarcinoma when testing 
serum from patients compared with serum of healthy volunteers 
[55]. Moreover, TIMP1 in association with LCN2 (lipocalin) showed 
potential as a biomarker in serum for early detection of familial 
pancreatic cancer [56]. Likewise, TIMP1 levels were elevated more than 
400-fold and 250-fold in ovarian tumor fluid and peritoneal ascites
compared to murine plasma, respectively [57]. Furthermore, TIMP1
was detected in the secretome of OVCAR3, CaOV3, ES2 and ascites
[23]. Here, we selected TIMP1 for further evaluation in individual
tumor fluid samples since our proteomic profiling detected TIMP1 only 
in the malignant tumor fluid pool. ELISA immunoassay demonstrated
that individual malignant tumor fluid samples showed significantly
higher TIMP1 concentrations than most of the benign tumor fluid
samples. This verification data agree with the aforementioned studies
and support the results from our proteomic profiling of ovarian cancer 
tumor fluid.

The heterogeneity of samples commonly observed in other studies 
[27-31,58] may confound the interpretation of the results. Ovarian 
tumors can arise from different cell types, i.e., epithelial, germ, and sex 
cord stromal cells, with epithelial cells accounting for approximately 
90% of all ovarian cancers [59]. Epithelial tumors are further grouped 
into different tumor types. Type I tumors include low-grade serous 
carcinoma, low-grade endometrioid carcinoma, mucinous carcinoma, 
and a subset of clear cell carcinomas, in most cases, borderline tumors 
[60-62]. Type I tumors are slow to develop, are generally confined to the 
ovary [63] and are also genetically stable, with each histologic subtype 
corresponding to a distinct genetic profile [61-63]. Differently, Type 
II tumors encompass high-grade serous carcinoma, undifferentiated 
carcinoma, malignant mixed mesodermal tumors (carcinosarcoma), 
and some clear cell carcinomas [60]. High-grade serous carcinomas are 
the most common Type II tumors and these tumors progress rapidly, 
harbor TP53 mutations, and exhibit widespread changes in DNA copy 
number [60-64]. Because of these characteristics of ovarian tumors, 
analyzing separately each histologic type of tumor may represent 
the most significant advance in understanding the disease. Here, our 
analysis relied exclusively on high-grade ovarian serous carcinoma. 
We believe that a rigorous selection of the samples, using a single 
tumor type, can significantly contribute to the identification of relevant 
proteins in the study of cancer. 

Conclusion
The proteomic analysis of tumor fluid permits the identification 

of a large number of proteins expressed in malignant tumors. This 
strategy is essential for understanding the mechanisms that regulate 
cell differentiation, leading to the development of different tumor 
behaviors in the same organ. On the basis of the results presented 
here, we suggest the use of tumor fluid in studies for therapeutic target 

discovery and also as a possible material to assist with diagnosis and 
patient management. 
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