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Introduction 
Ovarian cancer (OC) is the leading cause of gynecological cancer-

related death and the fifth cause of cancer mortality in women in the 
Western Countries [1,2]. Most patients present at diagnosis with an 
advanced stage III and IV, which are managed by surgical optimal 
resection and systemic platinum-based chemotherapy. Although high 
response rate and significant improvement of median survival were 
observed, the plateau of survival rates has changed little in the last 
decade [3]. Only one third of patients can be cured with this approach 
and the majority will eventually relapse with a median progression-free 
survival of 18 months [4]. At present, five-year overall survival for stage 
III and IV OC accounts for approximately 45% [5,6]. 

In the last decade a major effort has been made to elucidate 
the development of OC, not only from a cell biology viewpoint (a 
cellular origin from Fallopian tube has been proposed) [5], but also 
from a genetic and biochemical perspective. The main contribution 
came from the discovery of breast cancer associated (BRCA) genes 
BRCA1 and BRCA2. Germline mutations in BRCA1 and BRCA2 are 
responsible for 90% of hereditary OCs [6], the remaining 10% being 
due to mutations in mismatch-repair genes MSH1 and MSH2 [7]. 
Hereditary OCs collectively account for 10%-15% of all OC cases. 
Female carriers of BRCA1 mutations have 16% to 60% lifetime risk of 
developing epithelial ovarian carcinoma, whereas female carriers of 
BRCA2 mutations have a 16% to 27% risk [8,9]. BRCA-mutated tumors 
present peculiar epidemiological and clinical features, such as a higher 
incidence in specific populations (younger females, Jewish and Italian 
race), better chemosensitivity and outcome, with BRCA2-mutated 
carriers having the best prognosis [10].

Some 85%-90% of OCs is sporadic forms that very rarely harbor 
BRCA1/2 mutations [11-13]. Surprisingly, a large proportion of 
sporadic OCs with wild-type BRCA genes displays a BRCA-like 
phenotype called “BRCAness” [14-16]. The discovery of BRCAness has 
important clinical implications because it refines stratification of OCs 
and provides the rationale for extending therapeutic options for BRCA-
mutated OCs to a larger number of patients.

Investigating the genetic and clinical profile of the BRCA 
dysfunction is now crucial for understanding why BRCA1/2 mutations 
and BRCAness correlate with better chemosensitivity and outcome 
even if both conditions exhibit high-grade serous (HGS) histopathology 
and aggressive proliferation identical to the majority of sporadic, non 
BRCA-related OCs. 

The present work reviews the molecular profile of BRCA1/2-
mutated OCs and BRCAness. Furthermore, evidences and controversies 
on their clinical behavior in terms of chemosensitivity and outcome are 
presented. To conclude, we discuss how the in-depth understanding 
of the molecular signature of BRCA-mutated OCs and BRCAness is 
providing the rationale for new therapeutic strategies.

Genetic Profile of OC
BRCA1 and BRCA2 in OC

The transmission of an autosomal dominant trait predisposing 
women to the development of breast cancer and OC was first 
reported in the early 1970s [17]. Twenty years later the genetic basis 
for this predisposition was established with the cloning of the genes 
BRCA1 (located at chromosome 17q21) [18] and BRCA2 (located at 
chromosome 13q12.3) [19]. BRCA1 and BRCA2 are tumor suppressor 
genes whose most notable function is to maintain genomic stability 
during meiosis and mitosis. Mutation of either BRCA gene in the 
germline predisposes to tumorigenesis, but is still compatible with 
normal phenotype. Cancer development depends upon a second 
BRCA mutation in somatic cells and BRCA loss of function. As typical 
of autosomal dominant inheritance, one mutation segregates in each 
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Abstract
Ovarian cancer is the most lethal gynecological malignancy and the fifth cause of cancer mortality in women in 

the Western Countries. Advanced genomic analysis showed that most hereditary and a large proportion of sporadic 
ovarian cancers are associated with genetic and epigenetic aberrations either in BRCA1 and/or BRCA2 genes or 
in other genes involved in DNA repair and genomic stability. BRCA dysfunction identifies a major subset of ovarian 
cancers with peculiar epidemiological and clinical features, such as higher incidence in younger females, high-grade 
serous phenotype, better chemosensitivity and outcome. Being particularly sensitive to DNA-damaging agents, such 
as platinum compounds, these tumors are suitable for new therapeutic options that represent future challenges for 
oncologists. In this article we review the known molecular dysfunction in hereditary ovarian cancers and BRCAness 
and discuss the implications of new advances for more personalized treatments. 
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family, but rare examples of carriers with simultaneous mutation in 
BRCA1 and BRCA2 or two BRCA2 mutations have been also described 
[20].

Absence of BRCA proteins results in an inefficient cell capacity 
to repair DNA damages produced by stress and genotoxic agents. 
This condition generates the common ground for the onset of other 
mutations and genomic instability. BRCA1 and BRCA2 control different 
stages of DNA repair and have complementary functions. This explains 
why loss of either BRCA1 or BRCA2 proteins is not fully compensated 
by the other. BRCA1 senses DNA damage and repairs double-strand 
breaks (DSBs) and single strand breaks (SSBs). DSBs are repaired 
through homologous recombination (HR) and non-homologous end 
joining (NHEJ) pathways. HR repairs DNA breaks with high fidelity 
whereas NHEJ is imprecise and results in DNA deletions (exhaustively 
reviewed in 21,22). Lack of BRCA1 inhibits HR and may also impair 
NHEJ and SSB repair [23].

BRCA1 is also involved in other cell functions, such as activation 
of G1/S and G2/M checkpoints, regulation of telomere length and 
apoptosis [22] and mitotic spindle assembly [24].

In contrast to the multiple functions of BRCA1, BRCA2 mediates 
the core mechanism of HR by loading other proteins to the sites of DSBs 
and stalled DNA replication forks. BRCA2-recruited partners include 
RAD51, PALB2 and BRCA1 [25]. Abrogation of the BRCA1-RAD51-
PALB2-BRCA2 complex in vivo, though with intact BRCA1 and 
BRCA2 genes, impairs HR repair [26] and explains why mutations in 
PALB2 and RAD51 are also implicated in breast and OC predisposition 
[27,28]. 

Given that BRCA1 and BRCA2 are essential for a generic biological 
function such as DNA repair it is reasonable to wonder why mutations 
in BRCA genes preferentially induce gynecologic tumors. One theory 
is that each menstrual cycle produces an excess of free oxygen radicals 
followed by DNA damage and impaired repair in BRCA-mutated cells 
[22]. Alternatively, BRCA1 might function as a regulator of estrogen 
receptor signaling and suppress estrogen-dependent transcriptional 
pathway related to mammary and ovarian cell proliferation, thus leading 
to tumorigenesis [29]. The site of mutations in BRCA1 or BRCA2 may 
also influence tropism, as suggested by the finding that breast and OC 
risk correlates with distinct clusters of mutations [30,31]. These results 
require further validation in a larger number of patients. 

BRCAness in OC

BRCAness used to describe the BRCA-like phenotype in the absence 
of BRCA1/2 mutations is a matter of genetic, molecular and clinical 
investigation. Based on the Cancer Genome Atlas study (TCGA) 
[32], BRCAness is the result of genetic and epigenetic aberrations. 
These include mainly hypermethylation of BRCA1; mutations or 
hypermethylation of other genes involved in various DNA repair 
pathways; mutations in genes encoding for regulators of BRCA1 
and BRCA2. Hypermethylation in CpG islands of BRCA1 promoter 
inactivates the gene, as it was found in 11% cases of HGS-OCs of the 
316 fully analyzed. BRCA2 epigenetic silencing was never observed. 
Notably, epigenetic silencing of BRCA1 was mutually exclusive with 
BRCA1/2 mutations. In 3% of cases hypermethylation was found in 
RAD51C, a member of the RAD51 family. 

Mutations and deletions were found in core members of the HR 
pathway, such as RAD genes, PALB2, PTEN, ATR and ATM and the 
Fanconi anemia cluster [32,33]. 

BRCAness due to mutations in proteins that regulate BRCA1 and 

BRCA2 functions were also described. An example is amplification 
of EMSY, an inhibitor of BRCA2 that causes BRCA2 silencing and 
genomic instability. Amplified EMSY were detected in 17% OCs and 
were associate to worse outcome [34]. 

BRCAness may be more prevalent than originally assumed. New 
susceptibility genes and pathways responsible for genomic instability 
(TP53 and FOXM1), proliferation and apoptosis, (PI3K/Akt/mTOR, 
RB and NOTCH), are emerging. The potential of new sequencing 
technologies and the large cohorts of patients enrolled in clinical 
studies are likely to provide more reliable links between molecular data 
and phenotypic characterization of BRCAness. 

Synthetic lethality 

In 2005 Ashworth’s and Helleday’s laboratories first demonstrated 
that BRCA1 and BRCA2-deficient cells were hypersensitive to 
pharmacological blockade of poly(ADP-ribose) polymerases (PARPs) 
[35,36]. PARPs are a family of enzymes involved in DNA repair, gene 
transcription, chromatin architecture and apoptosis [37]. The most 
abundant and well-studied member, PARP1, polymerizes poly(ADP-
ribose) on substrate proteins to regulate repair of SSBs. PARP inhibition 
leads to accumulation of SSBs, followed by collapse of replication forks 
and subsequent formation of DSBs (reviewed in [38,39]). In normal 
cells DSBs are repaired via HR, but tumor cells lacking BRCA1 or 
BRCA2 cannot activate HR and do not tolerate inhibition of PARP. The 
synergistic cytotoxicity of PARP inhibitors and mutated BRCA genes 
was described as “synthetic lethality”, namely a cell death produced 
by two enzymatic dysfunctions, one produced genetically and the 
other achieved pharmacologically. The finding that BRCA1/2-mutated 
cells can be killed using PARP inhibitors has opened a new era for 
antitumor therapies. Several PARP inhibitors have been produced and 
are currently under application in clinical trials (www.clinicaltrials.gov) 
[37,40]. 

Preclinical studies are now providing insights for a wider utilization 
of synthetic lethality as therapeutic strategy. Not only BRCA1- and 
BRCA2-mutated OCs are eligible, but also tumor variants displaying 
BRCAness, if we consider that cells lacking other proteins involved in 
HR may become sensitive to PARP inhibitors [32,41].

Clinical Findings
Platinum-based chemotherapy: the mainstay of treatment

A major clinical point in the management of OC is whether tumor 
variants (BRCA-mutated, BRCAness, sporadic) have common or 
distinct clinicopathological features, prognostic outcome and drug 
sensitivity. Hereditary and sporadic OCs harbor HGS histopathology 
and advanced stage at diagnosis. However, hereditary BRCA–mutated 
and BRCAness OCs have an improved overall survival compared 
to sporadic carcinomas [42]. It is difficult to determine whether 
such an improved prognosis is due to biological differences, greater 
chemosensitivity or both. A potential indolent clinical behavior due 
to a lower mitotic index was hypothesized. However, the majority of 
data agree that the determinant is the higher sensitivity to DSBs or to 
adducts generated by chemotherapeutic agents. Platinum compounds 
(cisplatin and carboplatin), are the mainstay treatment in ovarian 
cancer, demonstrating an antiblastic activity as common alkylating 
agents that interact with DNA and form intra-strand adducts and 
inter-strand cross links [33,34,42].

The high sensitivity to platinum-based therapy is also maintained 
through multiple relapses of disease and is therefore essential for better 
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disease-free and overall survival in OCs. Several clinical studies, though 
mainly retrospective and based on a small number of patients, support 
this conclusion [42-46]. Cass et al. (2003) were the first who correlated 
platinum-based chemosensitivity to prolonged survival of hereditary 
vs. sporadic OCs (91 months vs. 54 months) [46]. This result has 
been confirmed in a recent study in which 22 patients with BRCA1/2 
mutations and BRCAness with high family risk were compared to 44 
sporadic epithelial OC patients treated with platinum-based therapy. 
BRCA group maintained better response rate either at first and second-
line treatment with significant long time to first relapse (5 vs. 1.6 years, 
p=.001) and improved overall survival (8.4 years vs. 2.9, p=.002) [15]. 

In the standard platinum-based first line chemotherapy, platinum 
compounds are associated with mitotic spindle poisons, such as 
paclitaxel. The role of taxanes in BRCA-mutated OCs remains unclear 
and conflicting reports are still published [47]. An initial experimental 
study has demonstrated no sensitivity of BRCA1-mutated breast 
epithelial cell line HBL100 to taxanes [48], but recent clinical studies 
on BRCA2 hormone sensitive breast [49,50] and prostate [51] cancer 
have provided prelimininary evidences that sensitivity to taxanes 
(docetaxel) may be associated to BRCA2 mutations. We also reported 
a case of complete remission in a BRCA2-mutated metastatic breast 
cancer treated with cisplatin and taxane (nab-paclitaxel) [52]. However, 

there is no conclusive evidence of a link between BRCA2 mutations and 
sensitivity to mitotic spindle poisons. 

At present, clinical oncologists are struggling with two main 
concerns: platinum sensitivity of OCs and time point of relapse. The 
longer the interval, the longer the duration of response to be achieved 
by subsequent platinum treatment. Based upon this scheme three 
patient groups have been identified: platinum-sensitive relapsed disease 
(relapse >12 months after first line platinum delivery), refractory 
disease (relapse < 6 months), partially platinum-sensitive disease 
(relapse between 6-12 months). Patients with refractory and partially 
sensitive disease may benefit from the use of DNA-damaging agents 
that prolong platinum-free interval. Under the pressure of these agents 
cell clones with higher genomic instability proliferate and re-gain 
platinum-sensitivity [53]. This property helps designing a synergistic 
pharmacologic approach to the disease (Figure 1).

Beyond platinum-based chemotherapy: towards a 
personalized therapy? 

Among alternative treatments in BRCA1 and BRCA2 OCs, PARP 
inhibitors, pegylated liposomal doxorubicin (PLD) and trabectedin 
have been considered either in preclinical and clinical settings. In 
BRCA-related OCs, PARP inhibitors represent the best example of 

Figure 1: Therapeutic options in BRCA-related Ocs.
HGS-OC: High Grade Serious-Ovarian Cancer; PB-CT: Platinum-Based Chemotherapy; CT: Chemotherapy; PPS: Partially Platinum-Sensitive; PS: Platinum-Sensitive; 
PFI: Platinum-Free Interval.
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targeted translational research to date and a successful therapeutic 
application of the synthetic lethality. Phase I-II studies with single 
agent PARP inhibitor olaparib have shown dose-related response and 
acceptable safety profile in BRCA1/2-related OCs [54,55]. A recent 
phase II multicentre open-label non randomized study of olaparib 
in HGS-OC with or without BRCA1/2 mutations, has shown better 
response in BRCA-mutated compared to non mutated patients (41% 
vs. 24%) [56]. Other PARP inhibitors, alone or in combination with 
chemotherapeutic or anti-angiogenetic agents, are under clinical trial 
in hereditary and sporadic OCs (www.clinicaltrials.gov).

A major advantage in the use of PARP inhibitors is that they 
can restore chemosensitivity in chemorefractory OCs. After relapse, 
patients treated with olaparib experienced disease progression, but 
then re-gained the potential to respond to platinum chemotherapy 
[57]. Interestingly, revertant phenotypes with restored BRCA function 
were identified in OC patients with BRCA1/2 mutations. These cases 
accounted for 28% platinum-sensitive relapses and 46% platinum-
resistant cases and were predictive for resistance to platinum and 
PARP-inhibition [58,59]. The mechanism of reversion is still unclear, 
but it can be hypothesized that under pressure of chemotherapies, 
somatic cells with high genomic instability accumulate additional 
BRCA1/2 mutations that restore wild-type phenotype. PARP inhibitors 
could restore BRCA1/2 function through genetic or epigenetic 
mechanisms [60]. Long-term PARP inhibition per se is also cause of 
tumor resistance, possibly through PARP gene mutations that alter 
interaction with inhibitors, or up-regulation of alternative DNA repair 
or cell proliferation pathways [61]. In summary, PARP inhibitors, 
the leading agents of synthetic lethality, are precious tools for killing 
tumor cells after the acquisition of resistance to previously employed 
therapies. 

Targeting recurrent OCs benefits from other DNA-damaging 
agents as pegylated liposomal doxorubicin (PLD) that is a pegylated 
(polyethylene glycol coated) liposome-encapsulated form of 
doxorubicin that delivers higher drug concentration in cancer cells, 
resulting in a more favourable efficacy with less toxicity. Doxorubicin 
interferes with topoisomerase 2 and produces DNA breaks that cannot 
be repaired in cells lacking HR, thus causing cytotoxicity [62]. The 
efficacy of PLD in OC has been reported in a phase III study (MITO2) 
designed to compare the combination of carboplatin plus paclitaxel vs. 
carboplatin plus PLD in first line treatment. This study demonstrated 
similar progression-free survival, but better toxicity profile, for 
carboplatin plus PLD [63] and similar data were provided for platinum 
sensitive OCs. In platinum-resistant relapsed OC, PLD used alone 
provide better outcome over other single chemotherapeutic agents 
[64].

A few retrospective studies have demonstrated that BRCA 
mutations are predictor of improved outcome in relapsed hereditary 
OCs treated with PLD [62,65,66]. In particular, family history or 
BRCA1/2 mutations predict better outcome as compared to sporadic 
OCs [62], both in median time to treatment failure (15.8 months vs. 
8.1 months, p.009) and overall survival (56.8 months vs. 22.6months, 
p.002) [65], providing further a compelling rationale for a more 
personalized treatment based on the BRCA status. A randomized 
phase II study, involving 97 patients with partially platinum-sensitive 
hereditary OCs, compared olaparib vs. PLD obtaining a satisfactory, 
though non-statistically significant, median progression free survival 
[67]. 

Trabectedin, an anti-tumor compound originally extracted by 
the marine organism Tunicate Ecteinascidia, and now synthetically 

produced for pharmacological purposes, is another promising option 
for OCs resistant to previous therapies [68]. Trabectedin has a unique 
mechanism of action based on interaction with the minor groove of 
the DNA double helix generating adducts that bend DNA and induce 
DSBs, it affects gene transcription and DNA repair pathways, resulting 
in G2-M cell cycle arrest and ultimately apoptosis [69]. Trabectedin 
cytotoxicity is determined by the functional nucleotide excision repair 
(NER) and a deficient homologous recombination repair (HRR) 
machinery. Consequently, trabectedin shows decreased activity (from 
2- to 8-fold) in NER-deficient cell lines, while cells deficient in HRR are 
approximately 100 times more sensitive to the drug [70,71].

Trabectedin is demonstrated to be active in breast, ovarian, non-
small cell lung cancers, melanoma and sarcoma and several reports 
showed that it could be safely combined with other agents such as 
gemcitabine and PLD [72-74]. Monk reported a phase III study on 
recurrent, partially platinum-sensitive OCs treated with trabectedin 
plus PLD. Combined agents revealed better platinum-free survival over 
PLD alone (7.3 versus 5.8 months; p=.019) with 46% vs. 21% reduced 
risk of progressive disease [75]. Taking into account these results and 
the remarkable reviewed data on survival (23 months, 41% reduction in 
the risk of death) [76], trabectedin in combination with PLD received 
approval for the treatment of recurrent partially-platinum sensitive 
OC. 

Based on this strong preclinical rationale and the previous results 
of phase III study in unselected OCs, a Phase II multicentre study 
(MITO 15) is actually ongoing to evaluate the activity of trabectidin 
in BRCA1/2 mutation carriers or BRCA-ness phenotype (clinicaltrials.
gov). 

Concluding Remarks and Future Directions
OC due to BRCA dysfunction depends upon a complex genetic 

profile, whose common determinant is the lack of efficient DNA repair, 
the disruption of genomic stability and consequent tumorigenesis. 
Genetic and epigenetic abnormalities identified three different 
genotypes, BRCA1- and BRCA2-mutated OCs and BRCAness. The 
mutation spectrum reveals that 20% of HGS-OC have germline or 
somatic mutations in BRCA1/2, 11% have lost BRCA1 expression 
through hypermethylation and that BRCA1 is inactivated by mutually 
exclusive genomic and epigenetic mechanisms. On the other hand, 
BRCAness, which should be considered separately from non BRCA-
related cases, lack a complete genotypic profile.

At present, it is difficult to classify hereditary or sporadic OCs based 
upon genetic counseling and family history, due to selection bias. Thus, 
a detailed molecular characterization of the different OC genotypes 
is needed. In addition, protein profiling of BRCA-related tumors and 
BRCAness would help understanding how gene transcription, post-
translational modifications, proteins dynamic, signaling and metabolic 
pathways, change under the pressure of gene mutations and genomic 
instability. 

Genomics
Laboratory tests to determine gene mutations and promoter 

hypermethylation are still difficult to apply on a large scale, and 
extremely expansive. However, these data should be made available 
to clinicians before treatment decision, particularly to distinguish 
BRCAness from other OC variants and to aid molecular subtype 
stratification of BRCA-related OCs. In addition, some peculiar 
genomic features, such as the methylation state of genes responsible for 
BRCAness should be monitored over time, since they seem to undergo 
changes during cell life [77]. 

http://www.clinicaltrials.gov
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Proteomics 

Protein profiling of OCs is equally important because proteins 
are the functional effectors of gene expression and because proteomic 
analysis offers the opportunity for finding new biomarkers of the disease 
and new molecular targets for more personalized therapy. A proteomic 
profile that distinguishes BRCA-related tumors and BRCAness from 
the other HGS-OC variants is still lacking. To gain insight into this 
issue, protein microarray and tissue immunohistochemistry were used 
to detect proteins involved in homologous recombination (FANCD2, 
BRCA1, PARP, H2AX, ATM, PTEN and p53) over a cohort of 186 
patients with sporadic OC. This study identified a BRCAness protein 
profile that is not associated with BRCA1 and linked triple positive 
FANCD2+/PARP+/P53+ patients with very early recurrence of the 
disease [78]. 

Over the last decade, high-throughput technologies have allowed 
identification of novel biomarkers in serum, ascites and tissue samples 
derived from OC patients and OC cell lines on a large scale [79]. Since 
OC represents a complex and heterogeneous disease, it is unlikely that 
a single biomarker provides specificity and sensitivity for all OC types. 
Thus, integrative proteomics for the identification of biomarkers of 
BRCA-related tumors and BRCAness are promising venues, but should 
be designed carefully taking into account that the bottleneck of this 
approach is clinical validation in a subpopulation affected by a rare 
tumor. 
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