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Abstract

Over the past decade, research investigating the development of the lymphatic vascular system has become a
key focus within the fields of developmental biology and cancer biology. Critical discoveries relating to the
specification of lymphatic endothelial cells and lymphatic morphogenesis during embryonic development have
helped to identify novel molecular drivers of pathological lymphangiogenesis; that is, the sprouting of a new
lymphatic vessel from, or the enlargement of, pre-existing lymphatic vessels. These pathways may also constitute
potentially useful therapeutic targets, which may be exploited to restrict tumor spread via the lymphatic system.
Here, we discuss the current knowledge of both developmental and tumor-induced lymphangiogenesis, and draw
parallels between the two processes to describe the molecular pathways that are re-capitulated during the growth of
tumor lymphatics, and which promote metastasis.
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Introduction
The lymphatic vasculature forms a complex network that parallels

the blood vascular system to drain fluid from, and thus regulate the
homeostasis of, the interstitial tissues. The lymphatic vascular tree is a
key feature of vertebrate physiology and plays a central role in lipid
and hormone transport as well as immune cell trafficking. For over a
century, the cellular origin of lymphatic endothelial cells (LECs) has
been debated [1,2]. More recently, molecular advances in
developmental genetics and imaging have shed light onto the processes
that instruct lymphangiogenesis; both in development and as part of
several key human diseases. In adult vertebrates, lymphangiogenesis
plays an important role in cancer metastasis, a process that determines
patient mortality [3-5]. Discoveries of the molecular pathways that
underpin lymphangiogenesis are therefore pivotal to developing novel
therapeutic avenues to restrict cancer spread [6]. In this review we
highlight parallels between the fundamental molecular processes
underlying lymphatic vascular development, and the same processes
that become dysregulated during tumor-induced lymphangiogenesis.

Molecular Pathways Driving Embryonic
Lymphangiogenesis

In both fish and mammals, the lymphatic vasculature has been
shown to arise from venous endothelial cell precursors [7,8]. Major
sources of LEC-precursors that contribute to establishing the primitive
lymphatic plexus (9.5 day post-coïtum (dpc)-14.5dpc in the mouse)
have a venous origin and were identified by lineage tracing
experiments and advanced imaging methods [9-12]. Vascular beds that

establish a pool of LEC-precursors include the cardinal and inter-
somitic veins and the superficial venous plexus (Figure 1A).

In order to shift from a venous endothelial cell identity to a LEC
fate, a subset of the venous endothelial cells begins to express a finely-
tuned combination of transcription factors and growth factors/
receptors that subsequently induce the development and
morphogenesis of the lymphatic vascular plexus [13].

Transcriptional control of LEC specification
Gain- and loss-of-function experiments using transgenic mouse

models have demonstrated that only a handful of transcription factors
have been shown to guide lymphangiogenesis. Following the onset of
arterio-venous specification (around 7.75-9dpc in the mouse), a sub-
population of the endothelium that expresses SOX18 (Sry-related
HMG box containing-18) and COUP-TFII (chicken ovalbumin
upstream promoter or NR2F2) becomes restricted to the dorso-lateral
part of the anterior cardinal vein to form pre-lymphatic clusters, which
in turn form a reservoir of LEC- precursors (up to 14.5dpc) [9]. At this
time point, the primary lymphatic structure has been established and is
composed of lymphatic sacs, also described as pre-thoracic ducts [10]
that later form the deeper collecting lymphatic vessels. In contrast, the
superficial lymphatic vascular network is still expanding and completes
the colonization of organs such as the skin or heart at significantly later
embryonic stages (e.g. 17-18dpc).

A critical transcription factor is SOX18, which - along with the
endothelium-specific SOX7 and SOX17 - belongs to the SOX-F group.
One function of SOX18 is to directly transactivate a downstream
transcription factor, Prox1 [14], which act as the gatekeeper of LEC
identity [7,15]. Recent work has shown that gain-of-function of the
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RAF1/MEK/ERK pathway is able to constitutively modulate SOX18
activity and trigger excessive lymphangiogenesis [16].

Similarly, COUP-TFII, which is essential for maintenance of venous
identity, has also been shown to directly induce Prox1 transcription
[17,18]. Later during development, COUP-TFII additionally causes
direct transactivation of neuropilin-2 (NRP2), a co- receptor of VEGF-
R3 that is essential in driving LEC migration within mesenchymal
tissues [19].

Once LEC cell fate has been induced by SOX18 and COUP-TFII,
the expression of Prox1 is also required for maintenance of LEC
identity and for acquiring additional lymphatic-specific markers [20].
Conditional deletion of the Prox1 gene in adult LECs led to a reversal
from a LEC identity into a blood endothelial cell phenotype [21];
whereas SOX18 signaling ceases after 14.5dpc and is not essential to
the maintenance of a LEC phenotype.

External cues that influence lymphangiogenesis
Despite the lymphatic potential of the venous endothelium, not all

venous cells commit to a LEC fate. Rather, some segments of the vein
must remain intact and spared from undergoing lymphangiogenesis in
order to preserve the functional integrity of the blood circulatory
system. To this end, negative regulation of lymphangiogenesis has been
shown to be mediated by at least three independent pathways:
Cyp26b1 (a retinoic acid (RA) degradation enzyme), Notch and TGF-
B/BMP signaling. Supporting this negative regulatory role, loss of
Cyp26b1 function in vivo was shown to lead to an increased local
concentration of RA, which in turn stimulated LEC proliferation,
aberrant lymphatic vessel formation and enlarged lymph sacs [22,23].

More recently, Notch signaling was also established as an essential
factor in confining lymphatic differentiation to the dorso-lateral side of
the anterior cardinal veins [24-26]. Targeted gene disruption of Notch1
in LEC precursors gave rise to a localized expansion of lymphatic
specific markers in non-lymphangiogenic segments of the veins.
Another growth factor, TGF-Β was recently reported to perform a dual
role during dermal lymphangiogenesis; whilst able to promote
lymphatic vessels sprouting and branching complexity, TGF- Β also
inhibited LEC proliferation [27]. Finally, bone morphogenic proteins
BMP2 and BMP9 were also reported as negative modulators of
lymphatic vessel growth and differentiation. In vitro, BMP9-induced
ALK1 was found to directly inhibit PROX1 activity; while loss-of-
function of either Bmp9 or Alk1 lead to dysmorphic lymphatic vessels
[28]. Further, BMP2 was reported to inhibit Prox1 via the induction of
micro RNAs (miR-31 and miR181a) [29] to negatively regulate LEC
identity.

Growth factors and lymphatic vascular remodelling
Embryonic animal models have shown that once the venous

endothelium became committed to a LEC fate, the acquisition of
lymphatic-specific markers such as podoplanin, LYVE1, VEGF-R3 and
NRP2 enabled LECs to become responsive to growth factor
stimulation (predominantly VEGF-C), in order to assemble a vascular
plexus within the mesenchyme (from 10.5dpc until 14.5dpc)[30].
Later, this plexus was remodeled (14.5dpc until 18.5dpc) and finally
matured to establish a functional lymphatic network. The major
signaling axis controlling LEC migration and remodeling was
controlled by the VEGF-C/Collagen and Calcium-Binding Epidermal
growth factor domains 1 (CCBE1)/VEGF-R3 pathway - a signaling
axis that promoted LEC migration, proliferation and survival, and was

thus indispensible for both embryonic and adult lymphangiogenesis
[31]. Vegf-c loss-of- function experiments revealed that, despite LEC
specification still occurring in the absence of this key growth factor, the
embryos lacked a complete lymphatic vasculature, due to defective
lymphangiogenic sprouting. Further, a positive feedback loop between
VEGF-R3 and PROX1 has been proposed to maintain the identity and
the number of LEC progenitor in the cardinal vein [32].

Studying the maturation process of VEGF-C protein, Jeltsch et al.
and Leguen et al. demonstrated a regulatory pathway of VEGF-C
activation that varies depending on the activity of CCBE1 [33,34]. It
was shown that CCBE1 could promote cleavage from a minimally-
active form of VEGF-C to a mature and active form, via the A
disintegrin and metalloprotease with thrombospondin motifs-3
(ADAMTS-3) protease [33]. This discovery not only suggested that
CCBE1/ADAMTS-3-inhibition may represent an exciting novel
therapeutic avenue to limit tumor lymphangiogenesis; but also further
re-enforced the concept that tumor location (e.g. next to a source of
CCBE1) may be a key determinant of the ability of normal lymphatics
to sprout - even in the presence of established pro-lymphangiogenic
cues - during both embryonic and pathological lymphangiogenesis
[35].

Bridging the Gap between Embryonic and Tumor-
Induced Lymphangiogenesis

Re-activation of embryonic pathways during tumor-induced
lymphangiogenesis

As tumor lymphatics mimic normal initial lymphatic capillaries in
their role as the entry point for fluid absorption and cellular escape
into the lymphatic system, it is reasonable to draw parallels between
major embryonic pathways that instruct lymphatic formation and
morphogenesis and the pathways that become dysregulated and/or
reactivated under tumor conditions (Figure 1B).

A key mechanism found to contribute to tumor lymphangiogenesis
was outgrowth from pre-existing initial lymphatic vessels in and
around the primary tumor mass in response to multiple stimuli,
including VEGF-C, VEGF-D, PDGF-B, FGF2 and angiopoietin [35].
Similar to their functions during embryonic development, these
growth factors were seen to trigger peri-tumoral lymphangiogenesis
and increase metastasis in mice [36]. Each of these signaling molecules
was reported to play key functions during embryonic angiogenesis and
lymphangiogenesis, in both mouse and fish model systems [31].

Within the tumor microenvironment, multiple cellular sources of
VEGF-C have been identified. Moussai et al. and Schoppmann et al.
showed that tumor-infiltrating macrophages secrete this growth factor
[37,38], while in cancer cells such as MCF7 human breast cancer cell
line, SIX1 was also shown to promote VEGF-C gene expression, which
stimulated cancer metastasis [39]. Further, LECs were demonstrated to
act in an autocrine fashion in response to VEGF-C signaling, by up-
regulating chemokines such as CCL21, which enhanced tumor chemo-
invasion [40].

Other developmental lymphangiogenic pathways ‘re-awakened’ in
cancer-related lymphangiogenesis include NRP2, a receptor for class
III semaphorins and VEGF-C co-receptor [19] that can stimulate both
VEGFR-2 and VEGFR-3 signaling [41]. Yuan et al. demonstrated that
genetic disruption of Nrp2 results in reduced LEC proliferation and
tissue lymphatic density during development [41]. In contrast to the
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situation found in developing lymphatics, Nrp2 is not expressed in
quiescent lymphatics; however, Caunt et al. demonstrated not only that
Nrp2 became expressed during active lymphangiogenesis in and
around a primary tumor - but that blockade of NRP2 signaling
restricted tumoral lymphangiogenesis [42].

Figure 1: “Ordered chaos”: Key developmental pathways activated
during embryonic development face re-activation under tumor
conditions to drive aberrant lymphangiogenesis and metastatic
spread. (A) Schematic representation of embryonic
lymphangiogenesis and the major genetic pathways that instruct
lymphatic endothelial cell fate (SOX18, COUP-TFII, PROX1),
maintain venous identity (Notch, RA) and govern morphogenesis
of the lymphatic vascular plexus (VEGF-C, VEGF- R3, CCBE1,
TGF-B, BMP9 and BMP2) from 9dpc-14.5dpc in mice. During
development venous endothelial cells provide LEC precursor cells
and macrophages control lymphatic vessel calibre. (B) Under
tumor-induced conditions, embryonic pathways are re-activated or
dysregulated to cause expansion of the pre-existing lymphatic
vasculature in and around tumor tissues. Neo-lymphatics form an
‘on- ramp’ for tumor cells and fluid draining to the lymph node
basin. Reactivation of the developmental program is influenced by
the inflammatory response, components like tumor-infiltrated
macrophages produce VEGF-C and change their molecular profile
to acquire a LEC-like molecular signature. These factors contribute
to produce a pseudo-functional lymphatic vasculature. LEC,
Lymphatic Endothelial Cells; VEGF, Vascular Endothelial Growth
Factor; TGF, Transforming Growth Factor; BMP, Bone
Morphogenetic Protein; COUP-TFII, Chicken-Ovalbumin
Upstream Transcription factor II; PROX1, Prospero-Related
homeobox-1; SOX18, SRY-related HMG box containing domain 18;
CCBE1, Collagen and Calcium Binding EGF domain, RA, Retinoic
Acid; CCL21, Chemokine (C-C motif) Ligand 21; VEGF-R3,
VEGF- Receptor-3. ISV, Inter-Somitic Vessels; PGD, Prostaglandin-
D.

Fewer functional tumor lymphatics were generated in this tumor
model, thereby contributing to reduced metastasis to lymph nodes and
distant organs [42]. Similarly critical for lymphatic development, the
ligand for endothelial Tie2 receptor tyrosine kinase angiopoietin 2
(Ang2; also known as Angpt2 or Agpt2) was shown to be specifically
required for developmental lymphatic patterning [43]. It was
subsequently demonstrated that angiopoietin expression induced in
animal models additionally promoted peri-tumoral
lymphangiogenesis, and that an ANG2-inhibitory antibody reduced
tumor lymphangiogenesis and metastasis to both regional lymph

nodes and the lungs [44,45]. Cao et al. used a mouse corneal model to
investigate a developmental role for FGF2 in lymphangiogenesis [46].
They found that FGF2 activity was mediated by FGFR-1 expressed on
LECS; however, that this lymphangiogenic pathway required
synergistic VEGFR-3 activation by VEGF-C - particularly for tip cell
initiation of lymphatic sprouting [46]. In the analagous process of
lymphangiogenesis induced in a tumor model, the authors found that
VEGFR-3-mediated lymphangiogenesis incorporated synergistic
VEGF-C/FGF2-driven tumoral lymphatic formation, which was
associated with tumor metastasis. Neutralising antibody against the
common VEGFR-3 pathway was able to restrict lymphatic ingrowth
and tumor spread [46].

Finally, numerous other genes have been linked with abnormal
developmental remodeling or maturation, and altered resulting
phenotypeslymphatics, without yet being implicated in tumor
lymphangiogenesis. Examples include genes such as angiopoietin-like
4 (Angptl4)] [47] apoptosis stimulating protein of p53 (Aspp1;
Ppp1r13b) [48] and T-synthase (C1galt1) [49]. Other abnormalities
such as dysfunctional pericyte recruitment, impaired valve formation
[50], atypical patterning or hypoplastic/hyperplasia have been linked
to chylothorax and lymphoedematous phenotypes, some of which have
been linked to analogous human syndromes (such as lymphoedema
distichiasis [51-53]. Collectively, these pathways and are now
considered potential targets for molecular therapeutics to restrict
tumor-induced lymphangiogenesis [36]; while restricting the negative
regulators of these pathways may facilitate therapeutic
lymphangiogenesis in patients suffering from secondary lymphedema
following lymph node surgery [54].

The cellular origin of LECs in tumor lymphatics
The utilisation of fate mapping experiments during embryonic

development has established, at least in the early steps of
lymphangiogenesis that LEC precursors arise from multiple venous
vascular beds [55]. Wilting et al. showed in an a vein limb bud grafting
experiment that homotopically grafted distal wing buds of chick into
quail embryos formed lymphatics composed of both chick and quail
endothelial cells; suggesting that the lymphatics of the wing bud do not
exclusively develop from sprouts from nearby lymph sacs, but also
involve recruitment of local so-called ‘lymphangioblasts’ [55].

In the tumor micro-environment several additional factors such as
inflammation may alter the manifestation of these developmental
processes. Tumor-induced neo- lymphangiogenesis is thought to
originate predominantly from outgrowths from pre- existing lymphatic
vessels. However, it still remains to be established whether cell-
autonomous contributions to neo-lymphatic formation in the tumor
setting are complemented by trans-differentiation from other cell types
[56].

A potential non-endothelial LEC-progenitor proposed in the
literature are macrophages or circulating endothelial progenitor
[57,58]. The role of tumor- associated macrophages (TAMs) in
promoting angiogenesis and acquiring an angiogenic phenotype has
been well established [59]; but it was not until recently that TAM were
suggested as a potential source of LECs. This hypothesis derived from
observations that TAMs - which expressed integrin family member
cluster of differentiation molecule 11b (Cd11b) - acquire lymphatic
specific markers including Prox1, Lyve1, Podoplanin and Vegf-r3;
meanwhile undergoing an observable down-regulation of myeloid
markers within the same cells [60]. These TAMs were able to integrate
into growing lymphatic vessels in an experimental mouse tumor model
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[60]. This partial, transient reprogramming of the myeloid identity into
a LEC profile suggested that TAMs may contribute to the lymphatic
vasculature [61]. Conversely, studies in developing mouse embryos
suggested that macrophages solely contributed to modulation of
lymphatic vessel caliber by regulating LEC proliferation, but that they
did not trans-differentiate to integrate into forming vessels or act as a
cellular reservoir for LEC-precursors [62]. More detailed fate mapping
experiments in the tumor setting and advanced in vivo live imaging
will enable researchers to answer definitely whether or not TAM trans-
differentiate into LECs, or if they merely act as intermediate cell
clusters to bridge newly-formed intra- and peri-tumoral lymphatics.

A key feature of lymphangiogenesis during embryonic development
is the trans- differentiation of venous endothelial cells into LECs [14].
Despite advances our in understanding of the genetic pathways that
govern LEC differentiation, studies have yet to explore the hypothesis
that a subset of neo-lymphatics could also arise from pre-existing veins
or other blood vascular structures in the adult. Several studies support
this concept: COUP-TFII and SOX18 were each shown to be
individually required for tumor-induced lymphangiogenesis [63,64].
Further, VEGF-R3 expression has been shown to become reactivated
in a subset of the blood vessels [65-67]. Future studies based on fate
mapping experiments are required to identify the cellular origin of
LEC progenitors in a tumor setting.

Remodeling of Pre-Existing Adult Lymphatic Vessels in
Solid Tumors

Peripheral and central tumoral lymphatic sprouting/
remodelling

Whilst originally considered a passive conduit, the lymphatic system
has been more recently acknowledged as an active, dynamic

participant in cancer metastasis [68]. Further, the ways in which the
individual vessel subtypes within the hierarchical lymphatic network
respond to, and interact with, external cues have also become
recognized as critical to cancer spread [35]. Neo-lymphatics formed
within the primary tumor have been the focus of much animal and
human research, and have been shown to be associated with enhanced
rates of metastasis [69]. The location within the tumor (whether
central or peripheral) in which the lymphatics form, has also aroused
interest; both in terms of what role vessels in each location might play
in metastasis and what the different lymphangiogenic mechanisms
favoring neo- lymphatics in each location might be [35].

In normal physiology, interstitial fluid bathing the extravascular
(interstitial) tissues cycles via the lymphatics back into the blood
vascular circulation. Absorbed by thin- walled ‘initial’ or capillary
lymphatics, lymph is transported via progressively enlarging vessels
that also adopt a more developed mural structure, consisting of
muscular and adventitial layers surrounding LEC-lined lumens. They
exhibit both valves and a contraction system that aid lymph movement
against gravity [69-71]. For the most part, tumor-induced lymphatics
have been shown to resemble a disorganized version of initial
lymphatics [72] both mimicking the absorptive function as an entry
point to the lymphatic network and sharing structural similarities with
their parent vessel of origin [35]. Tumor lymphatics derived from
nearby normal initial lymphatics sprout then undergo directional in-
growth toward tumor-derived lymphangiogenic cues reminiscent of
those seen during development. Further, normal lymphatics
surrounding the tumor undergo remodeling in the form of dilatation
and increased caliber in response to VEGF-D [72,73] and VEGF-C
[74], potentially augmenting the flow into the collecting lymphatic
vessels and onward to the draining lymph nodes (Figure 2); a feature
associated with enhanced metastasis [68,75].
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Figure 2: The remodeling of lymphatic vessels influences tumor metastasis. The proximity of the primary tumor to small, plastic and hyper-
dense initial or capillary vessels is a key parameter that modulates metastatic events. In small vessels the lymphatic endothelium is only
anchored to the matrix by filaments and zipper-like cell-cell junctions that favor the entry of tumor cells. Conversely larger lymphatic vessels
surrounded by a layer of smooth-muscle cells and adventitia are less prone to sprouting, however they remodel via alternative prostaglandin
mediated mechanisms. The combination of various components from the tumor micro-environment, such as fluid pressure, chemokines and
growth factor signaling stimulate neo-lymphangiogenesis and remotely prepare a lymphovascular niche in the tumor draining lymph nodes.

Remodeling of collecting lymphatics
The small caliber initial lymphatics and larger collecting vessels that

make up the lymphatic vasculature differ in their morphology,
structure and anatomical locations; and perform distinct specialized
functions that contribute toward their respective normal physiological
roles [76,77]. Most research investigating mechanisms behind
lymphogenous metastasis of cancer cells has focused on elucidating the
influences of lymphangiogenic growth factors on the initial lymphatic
vessel subtypes within or around a primary tumor, whilst the collecting
lymphatics that drain tumor tissues towards regional lymph nodes,
have remained largely ignored [78]. Whereas ambient smaller
lymphatics largely respond to lymphangiogenic factors by proliferation

and/or sprouting to generate tumor-associated lymphangiogenesis
(Figure 2), the larger collecting lymphatics respond to the same
lymphangiogenic stimuli in a unique and quite distinct manner
[35,75,79,80]. Far from passive conduits of metastatic cells, more
recent findings suggest that collecting vessels undergo a significant
remodeling of their own, which contributes critically to the process of
tumor spread [68,75] (Figure 2). Observations of murine models of
VEGF-C-over-expressing metastatic tumors demonstrated that
drainage from the primary tumor via the collecting lymphatics
performs an active role in enhancing tumor dissemination, through
increasing fluid flow by dilating-an increase in collecting lymphatic
diameter attributed to LEC proliferation [75,79,80]. Similarly, it was
shown that VEGF-D secreted by a flank xenograft tumor model also
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induced dilatation of the collecting lymphatics draining from the
primary tumor to the axilla that was critical for cancer spread to the
sentinel lymph node [68]. In contrast to the VEGF-C model and to the
effect that VEGF-D had on initial lymphatics [72]; however, the
mechanism by which circumferential dilation occurs is not by
endothelial proliferation but through specific prostaglandin-mediated
responses to VEGF-D [68]. Importantly, treatment with non- steroidal
anti-inflammatory drugs not only reversed the VEGF-D-driven
morphological remodeling of collection lymphatics, but also reduced
the rate of tumor metastasis to draining lymph nodes and distant
organs [68].

The influence of tissue forces on lymphatic remodelling
In addition to growth factors, pro-lymphangiogenic cues may also

include mechano- biological stimuli such as hydrostatic pressure and
tissue flow, which then become translated into lymphangiogenic
molecular pathways [71,81]. Whilst the importance of these forces in
generating tumor lymphatics is less well understood, emerging work
indicates that mechano-induction may also be an important additional
determinant of the density and nature of lymphatics generated within
different regions of the tumor [71,81]. Both mechano-induction and
lymphangiogenic signaling pathways are process ‘borrowed’ from
embryogenesis. During development, mechanosensory complexes
formed by Integrin β1 and VEGFR-3 can translate increased
interstitial/ECM stiffness into lymphangiogenic signals [70,71].
Increased interstitial fluid pressure leads to activation of Integrin β1,
which in turn induces VEGFR-3 tyrosine phosphorylation [82]. This
VEGFR-3 activation is thought to be mediated by Src family kinases
(SFKs) in a VEGF-C-independent pathway [83], thus resulting in
VEGF-C-independent LEC proliferation [82]. Further, fibrillin
anchoring-filaments were shown to be capable of binding
transmembrane integrin glycoproteins to activate intracellular
signaling pathways [77,84]. These signals translate ECM stiffening into
cytoskeletal alterations that increase cell permeability in order to
facilitate improved fluid uptake and flow [77,84]. In a tumor, higher
fluid pressure within the centre or increased lymph flow toward the
periphery may also determine the nature of lymphatics generated in
different regions. High intra-tumoral pressure due to leaky nascent
lymphatics and blood vessels may both induce intra-tumoral vessels to
grow and lead to their collapse (due to poorly developed supporting
structures) and dysfunction, contributing to further fluid
accumulation [85]. This accumulation of non-absorbed fluid in turn
produces a pressure gradient favoring flow towards the lower pressure
tumor periphery, where the vessels remain functional due to lower
ambient pressure and VEGF-C/D-mediated dilatation [73] (Figure 2).
Whilst a specific role for hydrostatic pressure in driving tumor
lymphangiogenesis remains to be defined in cancer, fluid flow
gradients have been shown to drive tumor lymphangiogenesis [86].

Regardless of the underlying stimulus, however, tumors that
recreate developmental lymphangiogenesis can enhance metastasis.
The respective contributions of newly- formed vessels and the pre-
formed mature lymphatics to the metastatic process has been debated
[69]. The role/functionality of the nascent lymphatics within the
substance of the tumor, and the degree of vessel dilation/collapse
compared with those induced in peripheral areas of the tumor (or
immediately adjacent tissues), remains controversial [87,88].
Intratumoral lymphatics were shown to be present in a murine model,
yet predominanly collapsed - in contrast to the apparently dilated peri-
tumoral lymphatics [87]. Analysis of human tumors showed that peri-
tumoral lymphatics were the most important for metastasis; while

intra-tumoral lymphatics exhibit proliferative markers [88], these
vessels were collapsed and unable to transport tumor cells, despite a
higher vessels density [42, 75, 89]. Whether peri-tumoral lymphatics
represented pre-existing vessels compressed by an expanding tumor, or
‘neo-lymphatics’ generated through lymphangiogenesis remains
unclear [89,90]. Authors postulate that there is both a greater
concentration of stromal and inflammatory cells secreting VEGF-
family members, and a greater density of pre-existing vessels to
provide a ‘source’ from which tumor neo-lymphatics can sprout, in the
periperal tumor microenvironment [91-93]. Studies of human
melanomas found that peri-tumoral vessel density and caliber were
significantly increased in metastatic lesions and were associated with
regional metastasis, poor disease-free and overall patient survival
[91,94,95]. A more recent study matching melanoma samples for all
other prognostic indicators found that a high ratio of peri-tumoral-to-
intra-tumoral lymphatic vessel density was associated with a higher
rate of metastasis to the draining lymph node basin [35]. Human
breast cancer specimens also exhibited collapsed intra-tumoral vessels
(poorly-staining with proliferation markers) and increased densities of
peri- tumoral lymphatics, that contained tumor emboli [88,96].

Lymphangiogenesis in the sentinel lymph node
Comparatively little is known about the development of lymph

nodes or other lymphoid tissue. During development, these structures
are situated along collecting lymphatics within a lymph node ‘anlagen’
or precursor tissue, at the site of future lymph nodes. Lymph nodes
originate from connective tissues protruding into primative lymph
sacs, and integrate lymphatics and blood vessels with haemopoetic
cells and stromal supportive cells [97,98]. This process incorporates
mesenchymal cells differentiation into aggregates of
CD45+CD4+CD3+ lymphoid ‘tissue inducer cells’ and stromal
organiser cells [98]. These distinct cell types interact within the anlagen
to stimulate adhesion molecule expression on stromal organiser cells,
and release chemokines such as CCL19, CCL21 and CXCL13; signals
which, in turn, attract additional lymphoid ‘tissue-inducer cells’ and
other haemopoietic cells [98,99]. Importantly, mouse models showed
that lymph node development is genetically independent from
lymphatic vascular embryogenesis [100].

A lymph node and distant organ metastatic niche
Lymph nodes represent a key ‘staging-post’ in tumor dissemination

from the primary cancer toward distant organs. The pro-metastatic
effects of tumor-derived lymphangiogenic growth factors are not
limited only to the primary tumor microenvironment and may also
induce lymphangiogenesis and modulate existing lymphatics and
blood vessels within draining lymph nodes ‘downstream’ of the tumor;
often prior to the arrival of metastatic cells [101,102]. Harrell et al.
observed that lymphangiogenesis and enhanced lymph flow preceded
melanoma metastasis, and was associated with increased levels of B-
lymphocytes within the nodes [103]. These observations are consistent
with the ‘seed’ and ‘soil’ theory of metastasis articulated by Paget in
1889. He suggested that primary cancer cells can spread preferentially
to specific distant areas. Thus, increase lymphatic vessel density in a
sentinel lymph node prior to any detectable metastasis could promote
enhanced tumor transport to the lymph nodes and could serve an
accurate predictor of lymphogenous spread [104] (Figure 2). The
enhancement of the lymphatic network within these draining nodes is
referred as the ‘lymphvascular niche’, which is akin to the ‘vascular
niche’ seen in the formation and maintenance of hemopoietic stem
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cells within lymph nodes and bone marrow [104,105]. The
lymphvascular niche may be able to tailor the microenvironment and,
therefore, immune responses against cancer cells transiting toward the
lymph node. Additionally, this niche may influence the conditions that
preempt then support the survival and growth of metastatic deposits
[106].

Future Approaches to Manipulating Cancer Lymphatics
Most of the novel anti-lymphangiogenic strategies to restrict tumor

metastasis revolve around the VEGF-C/VEGF-R3 signaling axis, with
the view to complementing anti- angiogenic therapies. Data from pre-
clinical models suggest a clear benefit in targeting tumor-induced
lymphangiogenesis to reduce solid tumor metastasis [107]. The next
step is now to assess the clinical outcome of targeting the lymphatic
vasculature in human cancer. Some anti-angiogenic molecules that
target pathways involving the VEGF-family of growth factors also
restrict lymphangiogenesis via the inhibition of the VEGFR-3 pathway;
however, specific benefit of anti-lymphangiogenic therapies in this
setting needs to be assessed more thoroughly, aside from evaluating
tumor burden in the draining lymph nodes. In rare lymphatic vascular
disorders, it is possible to manipulate LEC proliferation; as
demonstrated by using Sildenafil (Viagra) treatment to restrict the
growth of pediatric orbital lymphangioma [108]. So far, only two active
phase I clinical trials targeting the VEGF-C/VEGF-R3 pathway have
been initiated. The first combined Bevacizumab (avastin, anti-VEGF-
A) with VGX-100 (anti-VEGF-C blocking antibody, NCT01514123)
and another targeted VEGF-R3 (NCT01288989) in advanced solid
adult malignancy, however, the outcomes are still pending.

Most of the novel anti-lymphangiogenic strategies to restrict tumor
metastasis revolve around the VEGF-C/VEGF-R3 signaling axis, with
the view to complementing anti- angiogenic therapies. Data from pre-
clinical models suggest a clear benefit in targeting tumor-induced
lymphangiogenesis to reduce solid tumor metastasis [107]. The next
step is now to assess the clinical outcome of targeting the lymphatic
vasculature in human cancer. Some anti-angiogenic molecules that
target pathways involving the VEGF-family of growth factors also
restrict lymphangiogenesis via the inhibition of the VEGFR-3 pathway;
however, specific benefit of anti-lymphangiogenic therapies in this
setting needs to be assessed more thoroughly, aside from evaluating
tumor burden in the draining lymph nodes. In rare lymphatic vascular
disorders, it is possible to manipulate LEC proliferation; as
demonstrated by using Sildenafil (Viagra) treatment to restrict the
growth of pediatric orbital lymphangioma [108]. So far, only two active
phase I clinical trials targeting the VEGF-C/VEGF-R3 pathway have
been initiated. The first combined Bevacizumab (avastin, anti-VEGF-
A) with VGX-100 (anti-VEGF-C blocking antibody, NCT01514123)
and another targeted VEGF-R3 (NCT01288989) in advanced solid
adult malignancy, however, the outcomes are still pending. Despite
major advances in our understanding of the molecular pathways
involved in VEGF biology, the development of anti-VEGF drugs in
human cancer has already started to show some limitations. Long-term
clinical benefit of VEGF-based therapies has remained marginal due to
resistance mechanisms mediated by a combination of both VEGF-axis-
dependent alterations and non-VEGF-dependent pathways [109]. In
some cases, anti-angio/lymphangiogenic approaches even led to the
opposite effect and enhanced tumor metastasis [110]. To complement
anti-VEGF-A strategies, other monoclonal antibody inhibitors have
been developed against targets such as angiopoeitin signaling
antagonists [111,112]. In order to avoid developing resistance

phenomena similar to limitations as ‘Avastin-escape’ seen in anti-
VEGF-A therapies, it will be essential to further explore the potential
of VEGF-C- and VEGF- D-independent strategies. Additionally,
immuno-modulatory regulating effects of the VEGF protein growth
factor family is an aspect of their biology that remains relatively
neglected in designing anti-angiogenic therapeutic strategies; for
example VEGF-A was shown to promote priming of natural killer cells
in mouse tumor models [113,114], while VEGF-C was reported to
enhance immunity in a B16 melanoma model [115]. Further,
manipulating the remodeling of the lymphatic network may also affect
immune cell trafficking and therefore influence the inflammatory
micro- environment of the tumor. These findings have led to the
reassessment of the approaches used to target the VEGF family of
proteins in the tumor setting.

Lastly, the heterogeneity of the both the blood and lymphatic tumor
vasculature may also contribute to limiting the success of the anti-
VEGF therapies, as only a subset of the remodeling vasculature is
affected by the blockade of VEGF signaling [116]. Further, the
broadening of the therapeutic focus from simply targeting newly-
sprouting tumor lymphatics and nearby initial lymphatics under the
influence of the tumor microenvironment, to also encompass the
collecting lymphatics may provide further avenues for therapeutic
intervention. A more detailed understanding of the biological
characteristics of the different lymphatic subtypes and their role in
metastasis is thus, fundamental. An example of detailed mechanistic
understanding leading to novel therapeutic approaches is the
elucidation of the role of PGE2 in metastasis resulting from VEGF-D-
mediated down-regulation of the enzyme prostaglandin
dehydrogenase by Karnezis et al.; and the inhibition of metastasis by
using non-steroidal anti-inflammatory drugs [68]. Several subsequent
clinical studies have corroborated an anti-metastatic benefit to breast
cancer patients treated with Aspirin [117,118].

Overall, therefore, it is critical to further explore the developmental
pathways that govern lymphangiogenesis in order to facilitate the
identification, characterisation and optimisation of molecular targets
in tumor lymphangiogenesis, and to provide new directions in
treatments to restrict the spread of cancer.
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