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Editorial
The ability to define specific, and often dynamic protein-

protein associations within interactomes is critical to advancing 
an understanding of cell signal transduction pathways, drug design 
and the actions of therapeutic agents [1].  Standard approaches to 
assessing protein-protein interactions commonly have involved 
the retrieval of target proteins (“bait”) plus partner protein co-
immunoprecipitates; the isolation of partner proteins from 1D or 
2D gels; and the identification of retrieved partners via LC-MS/MS 
[2].  The use of in vivo biotinylation [3,4] or HALO tagging of target 
/ bait proteins [5,6] can further extend the detection of protein 
partnerships [7].  Limitations, however, can include the need for 
multi-step workflows, relatively large-scale preparations, and/or 
the construction of labeled baits.  Shotgun approaches including 
MudPIT (multidimensional protein identification technologies) [8] 
also continue to be advanced that can bypass SDS-PAGE, and in 
certain formats avoid the need for elution of immune complexes 
from adsorbent gels.  In RIME (Rapid Immunoprecipitation Mass 
Spectrometry) co-IP LC/MS, for example, immune complexes are 
proteolyzed from Ig or Ig- protein A/G/L beads and are analyzed 
directly by LC/MS [9,10].  Beyond this, in silico procedures also 
have recently been developed to guide cell lysis and/or subcellular 
fraction extraction methods, and co-IP workflows [11,12]. For LC-
MS/MS data analysis, advanced algorithms and reference databases 
also continue to be developed (e.g., DIA/SWATH) [13]. During 
the earlier fundamental steps of cell lysate preparation and target/
bait plus partner protein immunoprecipitation, the choice of 
detergents also becomes a point of central importance. This relates 
to the need to solubilize, but not disrupt protein complexes, while 
avoiding detergent incompatibilities with LC/MS.  In a context 
of cell signal transduction, membrane proteins additionally can 
be key components (including transmembrane receptors), and 
this brings further attention to detergent considerations [14].  In 
particular, this includes a requirement to retain the solubility of 
hydrophobic proteins, while also maintaining protein-protein 
partnerships [15,16].  One non-ionic detergent frequently suggested 
as a potentially advantageous choice for this challenge is octyl 
beta-D-glucoside (OBG).  This is based on OBG’s effectiveness in 
solubilizing and retrieving membrane proteins [17,18], and OBG’s 
exceptional property of rapid micelle disassembly upon dilution 
or dialysis [17,19].  In published studies, however, comparably few 
examples exist for OBG’s use in cell lysis and co-IP (compared, for 
example, with Triton-X-100, Igepal, DOC, CHAPS). This includes 
systems that use FLAG-epitope tagged target/bait proteins.  In a 
workflow context, a challenge also exists during immune complex 
isolation for replacing OBG (an LC-MS incompatible detergent) 
with an LC-MS compatible detergent that continues to preserve 
solubilized co-IP complexes. For LC-MS compatible detergents, 
new options are emerging [11,16,20].  Most continue to be ionic 
and/or strong detergents, several of which are proving to be useful 
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in improving protein yields in urea and/or DOC extracts [11].  
Certain, however, are zwitterionic (including “Silent PPS”) [11] 
and therefore are attractive to consider as candidate detergents 
for processing membrane protein co-IP complexes prior to 
elution (e.g., in RapiGest), and LC/MS,.  Here, we suggest that 
for co-IP LC/MS experiments involving membrane or membrane 
associated proteins, cell lysates and IP complexes might effectively 
be prepared by initially using OBG (CMC ~25 mM).  Removal 
of OBG can then be via exchange, upon IP complex washing, in 
PPS (CMC ~0.1%) followed by the elution of partnered proteins 
in RapiGest (or a similar LC-MS compatible ionic detergent).  
Subsequent steps of denaturation in urea, peptide hydrolysis, and 
LC-MS can then advance. To provide initial proof-of-principle for 
this concept, we have tested this approach using FLAG-epitope 
tagged protein tyrosine phosphatase PTPN18 [21] stably expressed 
in hematopoietic progenitor UT7epo cells [22].  These studies (see 
Figure 1A for workflow) demonstrate: 1/ effective lysis of cells using 
25 mM OBG (100 mM NaCl, 50 mM NaPi, pH 7.9) together with 
the efficient IP of FLAG-PTPN18 in OBG (as compared directly 
to Triton-X-100 at 0.5%) (Figure 1B); and 2/ excellent retention of 
FLAG-PTPN18 binding to anti-FLAG beads during washes with 
PPS (0.1%) with the efficient elution and recovery of FLAG-PTPN18 
in RapiGest (0.25%) (Figure 1C).  Alternatively, certain approaches 
are available for removing LC-MS incompatible detergents [23-25].  
These, however, can lead to substantial loss of protein (and LC-MS 
signals), and residual detergent contamination.  One aim of the 
present editorial therefore is to suggest that the sequential use of 
OBG and PPS in LC-MS experiments should improve membrane 
protein extraction, better preserve co-IP complexes, lessen sample 
processing, improve LC-MS signals, and further extend insight 
into protein-protein partnerships.  Direct testing of this suggested 
workflow is ongoing, including those involving EPO receptor 
associated interactions [26,27].
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Figure 1: Sequential use of octyl beta-D-glucoside, PPS and Rapigest detergents to generate LC/MS compatible cell lysates and co-immunoprecipitated protein 
complexes. 1A) Outlined workflow for: (i) the use of octyl beta-D-glucoside (“OBG”) for cell lysate preparations (as assessed in parallel vs Triton X-100, “TX100”); 
(ii) retrieval of FLAG-protein immune complexes in OBG (vs. TX100); (iii) replacement of OBG, and preservation of IP complexes, using zwitterionic PPS 
Silent Surfactant (“PPS”); (iv) use of “Rapigest SF” (RG) to elute IP complexes with subsequent sample acidification to hydrolyze PPS and RG (v). Using these 
conditions, analysis and identification of target proteins and binding partners can then advance directly via LC/MS. 1B) OBG provides for effective cell lysis, and 
efficient immunoprecipitation of FLAG epitope tagged bait proteins. In initial experiments, protein lysates were extracted using OBG or TX100 from UT7epo cells 
stably expressing FLAG epitope tagged Protein Tyrosine Phosphatase PTPN18, and from control UT7epo cells transduced with a corresponding empty vector 
(UT7epo-EVEC cells). Specifically, UT7epo-PTPN18-FLAG and UT7epo-EVEC cells were lysed in 30 mM OBG or 0.5% TX-100 in 150 mM NaCl, 20 mM HEPES, 
pH 7.8 for 10 minutes at 4oC (with protease and phosphatase inhibitors). An aliquot of lysate from each extraction was denatured and analyzed by western blotting 
for PTPN18-FLAG (lanes 1 & 2). (As a control for western blotting, BAP-FLAG protein also was added to analyzed cell lysates, lanes 3 & 4). Lysates were then 
pre-cleared with isotype-control IgG-agarose beads (1 hour, 4°C). Cleared supernatants were then incubated with anti-FLAG-agarose beads (4 hours, 4°C). 
Samples were centrifuged and supernatants were analyzed as unbound fractions (lanes 5 & 6). Antigen bound anti-FLAG beads were next washed four times in 
the surfactant used in cell lysis (i.e., either 30 mM OBG or 0.5% TX-100). Wash volumes were pooled, and analyzed by western blotting (lanes 7 & 8). Washed 
immune complexes were then eluted from anti-FLAG beads in 2% SDS, 20 mM Tris pH 6.8 (80°C for 10 minutes), and levels of eluted PTPN18-FLAG protein were 
determined (lanes 11 & 12). A second round of elution was also performed to test for possible residually bound PTPN18-FLAG (lanes 9 & 10). 1C) Use of PPS 
to wash bait protein immune complexes and replace octyl beta-glucoside without disrupting anti-FLAG antibody binding. For cell lysates prepared from UT7epo-
EVEC and UT7epo-PTPN18-FLAG using OBG (lanes 1 & 7), and processed through immunoprecipitations as in “B” above, but by comparison with PPS Silent 
Surfactant to replace OBG during immune complex wash steps (0.04% and 0.08% PPS concentrations tested). Post- IP bead wash samples (bead supernatants) 
are lanes 2-4, and 8-10. Subsequently, PTPN18-FLAG complexes were eluted from beads using 0.25% Rapigest (lanes 5-6, and 11-12).
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