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One of the foremost challenges in the management of infectious 
diseases is antimicrobial resistance. The manifestation of multidrug 
resistance in bacteria, over the past several decades has resulted in 
one of the most pressing clinical problems in modern medicine. The 
Infectious Disease Society of America has identified a number of Gram-
positive and Gram-negative human pathogens that pose a significant 
challenge in infectious disease management [1]. In recent years, there 
has been a global emergence of bacteria that are resistant to most or all 
of the currently available antibiotics, complicating treatment options 
for infected patients [2]. If the drug-discovery pipeline fails to produce 
new antibiotics to tackle this problem, clinical options for treating 
infections caused by these pathogens will be very limited, adding to 
the economic burdens caused by these infections on the health care 
system. Part of the approach to combating this daunting problem 
will require new chemical entities with antibiotic properties, to fill 
the antibiotic pipeline [3]. The genomics revolution has provided a 
wealth of sequence data for bacteria, allowing for the exploration and 
identification of potential new targets for antimicrobial development. 
With this information at hand, one can look at traditional antibacterial 
targets with new eyes or target bacterial virulence and block 
infection. The microbial glycome in particular, contains numerous 
attractive targets for antibiotic discovery [4]. Bacterial glycans and 
polysaccharides are involved in a myriad of biological processes, from 
structural (peptidoglycan) to host-pathogen interaction and virulence 
(lipopolysaccharides, teichoic acid), that could potentially serve as new 
targets for antibacterial drug development. In addition, many bacterial 
polysaccharides are assembled on polyisoprenyl-phosphates. As a 
result, inhibition of polyisoprene biosynthesis in bacteria could also be 
a promising route to antimicrobial development.

The bacterial cell wall, and in particular, peptidoglycan (PG) (Figure 
1A), has served as the target of many of our traditional antibiotics (Table 
1). To date, the most successful and currently available antibiotics 
that target PG, including the ß-lactams and vancomycin, focus on the 
highly-variable stem peptide. Use of both these classes of antibiotics 
is hampered clinically, due to a high degree of resistance. While there 
appears to be extensive chemical variation of the stem peptides [5,6], 
there is little variation in the chemical structure of the glycan chains 
in PG. It is this lack of variation in the glycan chain that makes it an 
attractive target for antimicrobial development. Both Gram-positive 
and Gram-negative bacteria produce a wide variety of enzymes that 
synthesize and degrade peptidoglycan [7]. By targeting enzymes that 
act on the highly conserved glycan backbone of PG, it may be possible 
to develop a new class of antibiotics that have a lower rate of resistance 
development. The idea of targeting enzymes that act on the glycan 
backbone is gaining favor, particularly in the creation of inhibitors 
that mimic the oxazoline intermediate of lytic transglycosylases 
(LTs) (Figure 1B), and the high molecular weight penicillin-binding 
proteins (HMW PBPs) involved in polymer extension [8-10]. The 
main challenge in this approach lies in the detailed biochemical 
characterization of these enzymes. The fact that these enzymes work on 
an insoluble heteropolymer, makes studies of protein-ligand binding 
and kinetic analysis difficult. In order to facilitate high-throughput 
screening (HTS) approaches to identifying inhibitors of LTs and 
HMW PBPs, the development of assays amenable to the constraints of 
HTS are required. Most of the literature regarding inhibition of these 
enzymes focuses on mimicking the proposed oxazoline intermediate, 
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Figure1: (A) Structure of the peptidoglycan repeat unit composed of 
N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) linked via 
a β-1,4 glycosidic linkage. Off of the C-3 lactyl moiety of MurNAc is attached 
a pentapeptide which is involved in cross-linking adjacent peptidoglycan 
strands. (B) Proposed mechanism of action of lytic transglycosylases.
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that stabilizes the oxocarbenium ion upon cleavage of the glycosidic 
bond (LTs), or transfer of the peptidoglycan repeat to a growing PG 
strand (HMW PBPs). With this approach, the main stumbling block 
to the creation of oxazoline-intermediate mimics of these enzymes lies 
with the preparation of adequate yields of muramyl-oxazoline analogs, 
for biological testing [11]. These obstacles could be overcome by the 
use of peptides to mimic the oxazoline intermediate [12,13], or by 
using the strategy of aglycone profiling to develop inhibitors that are 
specific to these proteins [14]. 

While targeting the enzymes involved in the polymerization and 
degradation of the glycan backbone is one avenue for new antimicrobial 
development, the biosynthesis of undecaprenyl phosphate (Und-P), the 
polyprenyl carrier for assembly of the PG repeat unit, is an untapped 
resource of antibiotic targets [15]. Currently, our list of antibiotics 
that target the lipid intermediate steps of peptidoglycan biosynthesis 
lies with the lantibiotics, glycopeptides and cyclic depsipeptides (Table 
1). In all cases, inhibition is through interaction with undecaprenyl 
pyrophosphate (Und-PP) or lipid II. Polyisoprenols as membrane 
constituents and polyprenyl phosphates as preferred glycan carriers 
in biosynthetic processes are poorly understood [16]. A targetted 
lipidomics approach to unraveling the biosynthetic processes of this 
essential molecule, for the synthesis of many bacterial polysaccharides 
could yield a wealth of new antimicrobial targets. Unfortunately, 
the tools currently available for studying bacterial glycolipidomics 
are weak, as many of the analytical tools at disposal for eukaryotic 
glycolipidomics studies, are not amenable to bacteria. 

Given these complications, the task to find new and effective 
antimicrobials before our current repertoire of clinically effective 
treatments is depleted, will be a challenging one. However, there is 
reason for optimism. Over the past decade, there has been a renaissance 
in bacterial cell wall biology with the identification of new targets and 
chemical entities [17]. Recent advances in the structural biology of 
many peptidoglycan biosynthetic [18] and degrading enzymes [19], 
and the development of screening assays for these enzymes [20] will 
form the foundation for new antimicrobial discovery.
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Antibiotic Class Representative Compounds Target-mode of action
β-Lactams Penicillin

Cephalosporin
Monobactams
carbapenems

Penicillin-binding proteins (PBPs)-inhibition of transpeptidation

Ribosomally made peptides Lantibiotics (ex nisin)
Defensins (ex plectasin)

Lipid II-pore formation
Lipid II

Glycopeptides Vancomycin
Teicoplanin
Telavancin
Dalbavancin
Oritavancin

Lipid II-(D-Ala-D-Ala)

Cyclic lipo(depsi-)peptides Ramoplanin
Katanosin B
Bacitracin

Lipid II

C55-PP
Amino acid analogs D-cycloserine

Fosfomycin
DdlA
MurA

Sugar substrate analogs Tunicamycin
moenomycin

MraY 
PBPs-inhibition 
of transglycosylation

Table1: Antibiotics inhibiting bacterial cell wall biosynthesis.
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