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Oncolytic Viruses
Viruses are commonly thought of as opportunistic organisms that 

hijack cellular machinery with the ultimate goal of replicating and 
causing destruction in the host. However, viruses are increasingly being 
explored as therapeutic agents for a variety of disorders and diseases, 
including cancers, due to their natural ability to spread to various cell 
types. Oncolytic viruses are replication-competent viruses that have the 
ability to selectively target cancerous growths, either naturally through 
adaptation or through genetic manipulation. The field of oncolytic virus 
development has spanned approximately twenty years, with numerous 
viruses currently in clinical trials and in various stages of development 
as anti-cancer agents. Although oncolytic viruses exhibit diversity in 
their biologics and host range, oncolytic viruses share common features 
of selective replication in tumors, effective lysis of tumor cells, either 
directly or through activation of anti-tumor immunity, and dispersion 
within tumor masses. Strategies employed by viruses to target cancer 
cells include exploiting the defective antiviral responses in cancer cells, 
the use of cancer-specific surface markers as viral entry receptors, 
as well as the use of cancer-specific promoters to activate viral gene 
products. Many viruses that are currently being developed as agents 
against prostate cancers have taken advantage of these strategies. 

Depending on the disease state, the current treatments for prostate 
cancer include radiotherapy, surgery, and hormone-deprivation 
therapy [1]. Prostate cancer is particularly well-suited for oncolytic 
therapies due to the fact that prostate removal or ablation is not life-
threatening. Furthermore, the major cause of death from prostate 
cancers results from metastatic spread. Therefore, the natural ability 
of viruses to spread to distal sites and seek out susceptible cancerous 
tissues makes them attractive therapeutic agents for this disease. The 
response to oncolytic therapies may also be monitored by serum 
prostate-specific antigen (PSA) levels. This review will focus on select 
oncolytic viruses and the advances that have been made in developing 
them as therapeutic agents for the treatment of prostate cancer.

Adenovirus
One of the most widely studied oncolytic viruses is adenovirus. This 

virus was initially isolated in the early 1950s from adenoid-infected 

cell cultures, thus leading to the name adenovirus. It is recognized 
as the etiological agent for diverse syndromes due to the presence of 
approximately 50 serotypes. Not only does adenovirus possess inherent 
oncolytic activity, it is widely being developed as a vaccine and gene 
therapy agent.

Adenoviruses are attractive therapeutic vectors due to their wide 
host range and the ease by which they may be manipulated genetically 
[2]. Furthermore, a decade worth of clinical trials have tested the safety 
and efficacy of various adenoviral vectors, thus providing a framework 
from which to engineer novel agents. As an oncolytic virus, much 
research has revealed that unmodified adenovirus is insufficient to 
effectively treat neoplastic tissue due to a variety of factors, including 
clearance from the immune system, hepatic virus sequestration and 
down regulation of the coxsackie-adenovirus receptor (CAR) in tumor 
cells [3-5], thus leading to the engineering of second- and third-
generation viruses with greater therapeutic efficacy.

The first oncolytic adenovirus used to treat human cancers is 
ONYX-15, containing a deletion of the viral EIB 55 KD gene. The lack of 
EIB 55 KD expression restricts ONYX-15 replication and killing in cells 
infected in the G1 phase of the cell cycle [6-8]. This poses a limitation 
to cancer therapies because a significant number of cells within tumors 
exist in the G1 phase. Because of this, ONYX-15 therapies have been 
more successful when combined with chemotherapy or radiation 
therapies [6,9]. Additional adenoviruses with mutations in the E1A gene 
product have been generated. E1A stimulates S phase entry and serves 
to transactivate both cellular and viral genes essential for a productive 
viral infection [10]. For targeting prostate cancers, investigators have 
taken advantage of prostate specific promoters and inserted them 
upstream of the EIA gene of adenovirus type 5 (Ad5), thus restricting 
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Abstract
Prostate cancer remains the leading cause of cancer-related morbidity and mortality for men in the Western 

world. Conventional anti-cancer therapies like chemotherapy, irradiation, and hormone ablation often slow tumor 
growth but do not engender long term benefits on patient survival. These therapies are limited by the fact that tumor 
re-growth and spread to distal sites usually occurs following the conclusion of treatment. Therefore, there is an 
increasing demand for the development of alternative therapeutic regiments. The use of oncolytic viruses for the 
treatment of prostate cancer is an attractive option due to the natural ability of viruses to target and kill cancer cells. 
Furthermore, oncolytic viruses may be genetically manipulated to transfer exogenous genes into cancer cells in 
order to provide new generations of biological controls. This brief review highlights the potential of select oncolytic 
viruses as promising modalities for prostate cancer treatments and presents the advantages and practicalities of 
such viruses as therapeutic agents.
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viral replication to prostate cancer cells. An example of such a virus is 
CN706 which was created by inserting the prostate specific enhancer 
(PSE) derived from the 5’ end of the PSA gene into Ad5 [11]. In 
treatments with CN706, virus replication correlates with the level of 
PSA expression within given prostate cancer cells. Studies show that 
this virus is effective at restricting growth of PSA-producing LNCaP 
prostate tumors in cell culture and animal model studies. Numerous 
studies have also shown efficacy by targeting prostate cell surface 
markers that are shown to be up-regulated during tumorigenesis. 
Prime candidates include prostate-specific membrane antigen (PMSA), 
whose increased expression correlates with aggressive tumors, prostate 
stem cell antigen (PSCA), the urokinase-type plasminogen activator 
receptor (uPAR), which is involved in tumor angiogenesis [12-15], and 
differential display code 3 (DD3 or DD3(PCA)) [16]. ONYX15 and 
the prostate-specific adenoviruses illustrate the two main strategies 
employed to restrict oncolytic adenovirus replication to tumor tissues: 
1) By inactivating viral genes whose functions can be compensated in 
cancer cells, and 2) By placing essential viral genes under control of 
cancer or tissue-specific promoters [17].

In addition to the success of engineered adenoviruses utilizing 
targetable prostate cancer specific receptors, prostate cancers have 
been targeted with viruses containing the promoter for human 
telomerase reverse transcriptase (hTERT), the catalytic componenent 
of the telomerase ribonucleoprotein complex found in cancer cells. An 
example of such a virus is OBP-301, which shows strong anticancer 
effects by inducing the lysis of human prostate cancer cells and 
also demonstrates antimetastatic effects by eradicating detectable 
contralateral LNCaP tumors in vivo [18]. More recently, Hu et al. [19,20] 
developed an hTERT promoter-containing adenovirus engineered to 
express sTGFβRIIFc, a protein which directly targets and inhibits the 
TGF-β pathway. TGF-β has been shown to play an important role in 
the control of bone metastases [21,22] and high levels of this factor in 
the blood circulation are poor prognostic markers of prostate cancer 
[23,24]. This virus induces significant reduction of tumor burden, 
osteoclast number and bone destruction in a bone metastasis mouse 
model [19], thus displaying its potential as a therapeutic for prostate 
cancer metastases. 

Combination approaches have also been explored as means to 
promote adenovirus replication and killing at tumor sites. Numerous 
studies have reported synergistic interaction of adenovirus with 
cytotoxic drugs such as cisplatin, gemcitabine, docetaxel and 
mitoxantrone for the treatment of prostate cancers [25-27]. While 
exact mechanisms are poorly understood, studies have implicated 
the early viral EIA gene in chemosensitization [28]. By screening a 
panel of replicating mutants with EIA deletions, Miranda et al. [27] 
showed that adenovirus-mediated sensitization to cytotoxic drugs 
is dependent on regulatory domains in the EIA conserved region 1 
domain, which may have functions favoring viral amplification . There 
is also interest in enhancing the effects of oncolytic virotherapies with 
dietary phytochemicals with known anti-cancer properties. Natural 
dietary compounds with low toxicity, such as curcumin, genistein 
and resveratrol, have shown efficacy at killing prostate cancer cells in 
combination with an oncolytic adenoviral mutant both in vitro and 
in vivo [29]. Additional therapies include the delivery of oncolytic 
adenoviruses to cancer cells or tumor tissue following sensitization 
with irradiation, which is linked to DNA damage recognition and 
repair [30,31]. The results of these studies, as well as numerous other 
studies highlight the success of combination approaches in cancer 
treatments. 

Further therapeutic regiments employed for prostate cancers 
include immune and suicide gene therapies. Adenoviruses have been 
developed to express cytokines, chemokines, tumor-associated antigens 
or other immunomodulatory factors. For example, adenoviruses armed 
with immune-therapeutic genes such as IL-12 and IL-24 have shown 
some efficacy in preclinical studies for the treatment of prostate cancers 
[16,32]. Immune cells including macrophages have also been utilized to 
deliver adenoviruses to hypoxic areas of prostate tumors [30]. In terms 
of suicide gene therapy, the two most widely used prodrug therapies 
for prostate cancers include HSV thymidine kinase (HSV-tk) together 
with ganciclovirir (GCV) or acyclovir, cytosine deaminase (CD) and 
5-fluorocytosine (5-FC) [33,34]. Each of these therapeutic regiments 
represents a targeted approach for prostate cancers that have acquired 
resistance to conventional treatments.

Herpes Simplex Virus Type I
Herpes simplex virus type I (HSV-1) is a natural human pathogen 

which has been studied as an oncolytic agent for over two decades. 
During this time, increased strides have been made in developing 
HSV for the treatment of a variety of different cancers. This progress 
is highlighted by the translation of at least six oncolytic HSV vectors 
to the clinic, some having progressed to Phase II/III clinical trials [36]. 
A benefit to oncolytic HSV-1 therapies is the availability of anti-HSV 
specific drugs (acyclovir) that may be administered upon detection of 
a life threatening infection. Early studies of oncolytic HSV focused on 
developing safe anti-cancer agents by deleting the γ34.5 gene, which 
governs neuropathogenicity [36,37]. Further vectors were developed 
by introducing mutations or deletions in specific genes to prevent 
reversions to wild-type strains. However, these changes led to limited 
success due to attenuation of replication in susceptible tissues including 
prostate carcinoma cells [38], indicating that greater potency was 
necessary to promote oncolytic efficacy. Current studies are focusing 
on synergizing the effects of oncolytic HSV with a variety of agents.

Several oncolytic HSV-1 strains have shown promise at treatment 
of prostate cancers. G207 is one of the first onoclytic HSV-1 strains 
taken into clinical trials. This virus, derived from strain F, contains 
deletions in both copies of the γ34.5 gene and has an inactivated ICP6 
gene, which encodes a viral ribonucleotide reductase function [39]. The 
double mutations permit viral replication within quiescent tumor cells 
carrying specific oncogene deletions but not in normal cells [40]. G207 
has been shown to be effective at killing human prostate cancer cells in 
vitro, as well as in vivo in both subcutaneous xenograft and transgenic 
mouse models [41-43]. Additionally, it displayed no evidence of 
clinical disease and virus spread into other organs when injected into 
the prostates of HSV-1 susceptible mice and non-human primates [44]. 
NV1020 is a multimutant HSV-1 strain that contains several genetic 
modifications including deletion of the UL24 gene and one copy of the 
γ34.5 gene [45]. This virus has also shown efficacy in reducing prostate 
tumor growth in vivo and significantly decreasing serum PSA levels 
[46]. Additional attenuated, replication competent viruses derived 
from first generation oncolytic HSV-1, such as NV1023 and G47Δ, are 
being evaluated for their ability to promote greater antitumor activity 
against prostate cancers [42,47].

In addition to testing the ability of oncolytic HSV-1 strains to 
induce tumor cell killing, they have also been used as a platform to 
deliver transgenes of interest. The integration of membrane-fusion 
activity into these viruses has been shown to promote anti-tumor 
effects in prostate cancer cells [48,49]. Furthermore, viruses have been 
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armed with agents commonly used for prostate cancer vaccinations 
such as prostatic acid phosphatase (PAP) [50] immune modulators 
such as IL-12 [51], as well as factors that enhance virus replication such 
as Ing4 (inhibitor of growth 4) [52].

Studies have focused on enhancing virus replication at prostate 
cancer tissues as well as exploring combination approaches. Lee et 
al. [53] have developed recombinant viruses whose expression is 
regulated by the presence of the prostate specific promoter (AAR(2)
PB) and the 5’UTR of rFGF-2, thus promoting tumor specificity. 
G47Δ, a multimutated, replication competent HSV-1 vector derived 
from G207, was engineered by creating an additional deletion within 
the non-essential α47gene [54]. The combination of androgen ablation 
with G47D therapy resulted in greater tumor growth suppression than 
either therapy alone in the TRAMP-C2 subcutaneous model. These are 
a few of the many examples of approaches to enhance the oncolytic 
potential of HSV-1 vectors, similar to those outlined for adenoviruses.

Vaccinia Virus
Vaccinia virus is a large, enveloped virus belonging to the poxvirus 

family. The study of vaccinia virus began with its popularity as the 
choice for smallpox vaccination and in its role in the successful global 
eradication of smallpox by 1979. Since then, there has been great 
interest in developing vaccinia virus a vector for the expression of 
foreign genes. This virus is attractive as a delivery vehicle because of its 
ability to stably accept as much as 25 kb of foreign DNA, thus enabling 
it to express large genes. Furthermore, studies have shown that it is able 
to enter and replicate efficiently within numerous cell types without 
causing natural disease in humans [55]. However, to promote safety, 
attenuated, avirulent versions of vaccinia viruses, including those 
lacking replication capacity, have been utilized as delivery vectors for 
gene therapies or as vaccine vectors for the expression of immunizing 
antigens. More recently, vaccinia virus has also gained popularity as 
an anti-cancer agent. Beginning in 2007, Zhang et al. [56] described 
the oncolytic potential of the attenuated recombinant vaccinia virus 
GLV-1h68 in breast tumors. Since then, the oncolytic effect of this 
virus has been demonstrated in numerous cancer models, including 
in the treatment of lymph node metastases originating from prostate 
carcinoma cells [57]. 

Current studies are interested in determining the mechanisms 
by which GLV-1h68 promotes anti-cancer activity. GLV-1h68 was 
engineered by inserting three expression cassettes into different loci 
of the viral genome. Further genomic analysis confirmed that these 
insertions reduced the virulence of this virus and promoted cancer 
cell tropism [58]. Recent studies have attributed the ability of GLV-
1h68 to effectively treat lymph node metastases of prostate carcinoma 
cells to the elevated vascular permeability in metastases leading to 
greater release of virus particles and spread to susceptible tissues [59]. 
Furthermore, the presence of increased number of immune cells and 
the proliferation of cancer cells at metastatic areas are thought to 
provide favourable conditions for virus infection and replication. Taken 
together, these data indicate that vaccinia virus GLV-1h68 may be used 
for the preferential destruction of metastatic prostate carcinoma cells, 
which represent a major cause of cancer-related deaths. 

In addition to GLV-1h68, a recombinant vaccinia virus expressing 
PSA (rV-PSA) was constructed by inserting the PSA gene into the 
viral genome of the Wyeth strain of vaccinia. rV-PSA has shown 
some success in Phase I clinical trials as indicated by limited toxicity 
and evidence of immunological activity in patients with rising PSA 

levels after local therapy, and in patients with metastatic androgen-
independent prostate cancer [60,61]. 

Newcastle Disease Virus
Newcastle disease virus (NDV) is a negative-sense single-stranded 

virus that causes deadly infection in various species of birds but is non-
pathogenic to humans and domestic animals. NDV has been applied 
for the treatment of human cancers since the early 1960s with studies 
on uterine carcinoma [62]. Since then, it has been reported to possess 
oncolytic activity against a range of cancer types and various strains 
have been tested in clinical trials in different human cancers including 
glioblastoma multiforme and colorectal cancer [63-65]. Studies have 
shown that NDV exhibits inherent selectivity for a diverse group of 
tumors over normal cells due to defects in antiviral responses, such 
as the type I interferon (IFN) response, in certain cancer cells [66,67]. 
However, it has also been proposed that tumor specificity may be 
dependent upon tumor cell resistance to apoptosis [68]. These tumor-
specific defects serve to enhance replication of NDV in cancer cells to 
promote virus-induced cytotoxicity.

The mechanisms underlying the antitumor activity of NDV have 
been investigated in numerous studies. Multiple studies have revealed 
the role of apoptosis in cell death by NDV, including both the intrinsic 
and extrinsic pathways. The exact mechanisms of apoptotic death are 
dependent on the strain of NDV, the cell lines and the detection assays 
[69-74]. In addition to direct killing induced by the virus, NDV also 
stimulates robust innate and adaptive immunity. Various strains of 
NDV are capable of stimulating macrophage activity as indicated by 
the detection of macrophage enzymes such as iNOS, lysozyme and 
acid phosphatase as well as the production of nitric oxide and TNF-α 
[75-77]. Natural killer (NK) cells have also been shown to mediate 
cytotoxicity against multiple tumor cell lines following infection of 
peripheral blood mononuclear cells (PBMCs) with NDV strain 73-T, 
one of the most well-characterized oncolytic strain of NDV [78].

NDV as an oncolytic agent for the treatment of prostate cancer 
is currently in the early stages of development. Studies with NDV 
73-T have demonstrated antitumor effects in prostate carcinoma 
(PC3) xenografts upon systemic administration [79]. Furthermore, 
significant inhibition of tumor growth (77-96%) was also observed 
in epidermoid, colon, large cell lung, breast and low passage colon 
carcinoma xenograft models. Although phase I clinical trials using 
naturally attenuated NDV strains such as PV701 have been conducted, 
they have not included patients with prostate cancers. Nevertheless, 
clinical trials have revealed that PV701 was well tolerated by patients 
when administered intravenously [34]. Side effects, including flu-like 
symptoms, localized adverse effects at the tumor site and infusion 
reactions, were observed. However, there was no toxicity from the 
oncolytic virus treatment. 

Infection with NDV is dependent on two viral glycoproteins; 
hemagglutininneuraminidase (HN) and fusion (F). A major 
determinant of virulence is the cleavage site in the F protein, which 
becomes fusogenic only upon proteolytic cleavage into two disulfide-
linked polypeptides by host cellular proteases [80]. In an attempt to 
improve antitumor efficacy, Shobana et al. [81] have engineered the 
F protein cleavage site to target the serine protease, PSA, such that F 
protein is cleavable exclusively by PSA in prostate cancer cells. This 
strategy enhanced pathogenicity of oncolytic NDV in prostate cancer 
cells as a result of restricted viral replication and fusogenicity [81].
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Vesicular Stomatitis Virus
Vesicular stomatitis virus (VSV), a negative-strand RNA virus 

of the Rhabdovirus family, has been studied as an anti-cancer agent 
for several years. VSV exhibits numerous properties of an effective 
oncolytic agent including its well-defined biology, ability to induce 
apoptosis in a wide array of cancer cells and the lack of preexisting 
immunity in humans [67,82-85]. Similar to Newcastle disease virus, 
it has been proposed that the susceptibility of tumors to VSV is due 
to development of defects in antiviral responses during tumorigenesis 
[67,82,85-87]. While normal cells may be infected by VSV, they 
respond to the virus by enhancing the type I IFN response, leading 
to the attenuation of virus replication. However, wt strains of VSV 
have the ability to suppress the antiviral response, induce systemic 
immunity and replicate in the central nervous system [86,88,89], thus 
leading to safety concerns. Over the last decade, increasing strides have 
been made in the understanding of the interaction between the virus, 
cancers, and the immune response. This has led to the development of 
a number of recombinant attenuated VSVs with the goal of enhancing 
the oncolytic potential of the virus, either directly or indirectly through 
stimulation of the immune response, while maintaining safety. VSV 
has been tested as a candidate oncolytic virus for prostate cancer by 
several groups. Early studies with prostate cancers tested the ability of a 
matrix (M) protein mutant of VSV (rM51R-M virus) to kill LNCaP and 
PC3 prostate cancer cells in cell culture and xenograft model systems 
[86]. The M51R M protein mutation disrupts the ability of VSV to shut-
off the host antiviral response in infected cells [85,86,90]. Xenograft 
studies showed that rM51R-M virus exhibits enhanced selectivity for 
tumor over normal cells as compared to wt VSV strains, as indicated 
by the ability of the virus to effectively kill tumor cells with limited 
signs of disease [86]. However, the efficacy of the virus depends on the 
cell type. LNCaP cells are extremely sensitive to the effects of the virus 
while PC3 cells remain resistant to infection and killing by rM51R-M 

virus perhaps due to the constitutive expression of numerous antiviral 
gene products in this cell line [91] (Figure 1). Several M51 protein 
mutants of VSV have been used to explore combination approaches for 
the treatment of a variety of cancers, including prostate cancers. In an 
attempt to augment the ability of VSV-Δ51-GFP to kill VSV-resistant 
PC3 cells, Nguyen et al. [92] pretreated prostate cancer cells with 
histone deacetylase inhibitors (HDIs) known to suppress the type I 
IFN response . Using the HDIs, HDI-MS-275 and SAHA (Vorinostat), 
which have shown promising anti-cancer results in preclinical or 
clinical trials, they were able to augment the oncolytic activity of VSV-
Δ51-GFP both in vitro and in vivo xenograft models. Another approach 
involved engineering the recombinant (VSV)-MΔ51 virus to express 
the cytosine deaminase/uracil phosphoribosyltransferase (CD::UPRT) 
suicide gene and 5-fluorocytosine (5FC) prodrug [93]. This virus had 
an enhanced ability to kill PC3 cells as compared to viruses lacking 
the suicide gene. Furthermore, it was effective at killing additional 
tumor cell lines derived from the breast. These, and similar studies 
with other oncolytic viruses demonstrate the concept that in order 
to promote oncolysis, synergistic combination approaches must be 
investigated. Immunocompetent transgenic mice have served as useful 
model systems for measuring the safety and efficacy of VSV treatment 
of prostate tumors. Moussavi et al. [94] demonstrated that an IFN-
sensitive VSV (AV3 strain) expressing luciferase effectively spreads in 
tumor-bearing prostate-specific PTEN(-/-) mice to selectively infect 
and kill prostate tumor cells while sparing normal cells in control mice 
[95]. In these studies the virus was injected at the prostate site, thus 
demonstrating the utility of this administration route. More recently, 
this same group showed that AV3 effectively targets metastatic lesions 
arising in the transgenic adenocarcinoma of the mouse prostate 
(TRAMP) model . The TRAMP C2 cell line derived from TRAMP mice 
was also utilized to demonstrate the enhanced oncolytic properties of a 
recombinant VSV encoding SV5-F able to induce syncytial formation 
[96]. The SV5-F recombinant virus was constructed by replacing VSV 

Figure 1: Selective killing of cancer cells by oncolytic M protein mutant strains of VSV. Oncolytic M protein mutant VSVs act as selective anti-cancer agents due to 
their inability to inhibit host gene expression in infected cells. As a result, infected cells produce type I IFN and other antiviral cytokines in response to virus infection. 
A. Normal cells contain intact antiviral response pathways that are induced by M protein mutant VSV leading to the attenuation of viral replication and prevention of 
spread to surrounding tissue. B. Some cancer cells acquire genetic defects in antiviral pathways that render them susceptible to the oncolytic activity of M protein 
mutant viruses. C. Other cancers retain intact antiviral pathways that protect them from the oncolytic activity of VSV. The resistance of these cancer cells to VSV may 
be due to the constitutive expression of antiviral factors or their ability to mount an antiviral response upon infection with VSV, similar to that observed in normal cells.
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glycoprotein (G) with that of the SV5-F to generate rVSV-DeltaG-
SV5-F. rVSV-DeltaG-SV5-F virus replication was restricted to 
TRAMP-C2 tumors where it showed enhanced apoptotic and cytotoxic 
effects relative to a control virus lacking SV5-F.

In order to direct VSV to prostate cancer cells, investigators 
have pseudotyped replication defective VSV lacking its glycoprotein 
(VSVΔG) with MV-F and MV-H displaying single-chain antibodies 
(scFv) specific for or prostate membrane-specific antigen (PSMA) 
[97]. Results indicated that VSV replication was restricted to prostate 
cancer cells expressing the PSMA surface marker. In addition, upon 
engineering VSV to express antibodies for the epidermal growth factor 
receptor (EGFR) and folate receptor (FR), this group confirmed that 
retargeted VSV only replicated in cells expressing the target receptor 
[98]. Therefore, taking advantage of the presence of cancer-specific 
surface markers represents and effective strategy to restrict the ability 
of the virus to kill cancer cells over normal cells. 

Conclusions 
Oncolytic viruses represent promising modalities for the treatment 

of prostate cancers due their ability to seek out and infect tumors, 
replicate in target cells and spread to surrounding cancerous or 
metastatic tissues. Numerous strategies have been employed to enable 
oncolytic viruses to selectively target, replicate and kill cancer cells. 
Promising approaches include the targeting of viruses to prostate 
tumor-specific surface markers or the use of tumor-specific promoters 
to restrict viral gene expression to prostate tumors. In order to enhance 
killing of cancer cells, suicide gene therapies such as the use of HSV 
thymidine kinase and gancyclovir have been explored. In addition, 
the delivery of tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL) to tumors has been shown to enhance the release of 
progeny virions from infected cells in order to promote spread of virus 
to surrounding susceptible tissue. Because the efficacy of oncolytic 
therapies is greatly dependent on the enhancement of anti-tumor 
immunity, various methods to modify the immune response have been 
tested, including the viral delivery of immunostimulatory molecules 
and the co-administration of reagents to enhance immune function. 
Additionally, the multifaceted tumor environment has been shown 
to impact viral infection, replication and spread within the tumor. 
Therefore, studies are also exploring means to overcome environmental 
restrictions imposed on oncolytic therapies. Each of these approaches 
offers great promise, either alone, or in combination with established 
antitumor therapies such as radiation or chemotherapy. Therefore, 
together with results obtained from numerous clinical trials, the future 
of oncolytic therapies for prostate cancers remains promising.
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