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Introduction 
For insects that inhabit cold environments, resistance to subzero 

temperatures is a crucial feature because it allows them to occupy 
temperate and extremely cold biotopes [1,2]. By now, a large literature 
list has been developed regarding two basic cold adaptation strategies: 
freeze-avoidance and freeze-tolerance [3-8]. The freeze avoiding species, 
which die if frozen, depend on super cooling of their body fluids. This 
strategy involves removal or inactivation of all components which may 
trigger freezing. It also includes accumulation of a huge amount of 
polyols. Alternatively, a second strategy is evolved by the freeze tolerant 
species that are able to tolerate freezing of their extracellular body 
fluids [4,9,10]. In many insects which tolerate freezing this is achieved 
by means of potent ice nucleating agents which are present in the 
hemolymph during the cold seasons and initiate controllable damage-
free freezing of extracellular body fluid [11]. 

The measure of insect cold hardiness is a supercoooling point 
(SCP) that is the temperature at which freezing takes place [12]. The 
SCP seems to be the best documented parameter for describing insect 
cold hardiness [13]. For most freeze tolerant insects the SCP lies 
in the range from -7 to -12°C, while for freeze avoiding ones: below 
-20°C. High SCP’s of freeze tolerant insects are linked with adoptive
extracellular ice nucleators that are polypeptide’s aggregates with a
specific structure [11,14]. The most potential ice nucleator seems to be
produced by insects inhabiting extreme cold regions such as Yakutia
[11]. By producing of ice nucleators with high SCP’s, freeze tolerant
insects establish a protective extracellular freezing before the nucleation 
temperature in the cells is reached. Thus, the higher the SCP is, the
higher is probability of freeze tolerant insects to be resistant to freezing. 

The SCP is influenced by such factors as polyols and ice nucleating 
agents, the concentrations of which undergo to seasonal changes 
[11,12]. Therefore, there are certain fluctuations within the SCP’s values 
during a year. According to my earlier study on warm acclimation of 
Aporia crateagi caterpillars, decrease of glycerol and protein content 
in the hemolymph during acclimation is associated with an increase 
in SCP [11]. Although warm acclimation of A. crataegi induced an 
increase in the SCP, it was not correlated with resistance to freezing. 
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Abstract
The super cooling point (SCP) is the best documented parameter for describing the ability of insects to survive 

freezing but its value as a predictor of overwintering survival or for estimation of the cold hardiness potential, is limited. 
According to this study, the SCP is influenced by such factors as polyol and protein concentration in the hemolymph; 
therefore it can be lower in winter than it is in spring. Nevertheless the quality of ice nucleating process is higher in 
winter insects due to which insects survive the lowest winter temperatures. The depletion of polyols in spring causes 
increase of SCP. Unlike in the autumn, when an increase in SCP is associated with development of freeze tolerance, 
spring changes in SCP of the insects occur simultaneously with loss of cold tolerance. The present study on the freeze-
tolerant Upis ceramboides inhabiting central Yakutia (Eastern Siberia, Russia) shows that SCP itself is not a sufficiently 
appropriate parameter for evaluation of insect cold hardiness. For these purposes it should be used together with other 
criteria, such as specific ice nucleating activity and profile of ice nucleating activity. 

Obviously, ice nucleation at this temperature was non-specific and 
therefore likely had no adaptive importance. The data testifies that the 
SCP does not reflect the real process associated with cold hardiness in 
the overwintering insects. Moreover, developing researches associated 
with different aspects of insect`s cold hardiness leads to understanding 
that “SCP is no longer deemed an adequate predictor of overwintering 
survival for many species” [15]. It is also limited in estimating of the 
cold hardiness potential [11]. 

In this study, freeze tolerant beetles Upis ceramboides inhabiting 
central Yakutia (Eastern Siberia) were used to investigate how seasonal 
changes in the physical and chemical situation in the insect hemolymph 
influence their SCP to better understand the role of SCP in estimating 
of insect cold hardiness.

Materials and Methods 
Insects

A large (up to 340 mg) tenebrionid beetles, U. ceramboides 
(Coleoptera: Tenebrionidae) were collected under loose bark of dead 
standing birch in the vicinity forest of Yakutsk city. Beetles to be used 
in the experiments were collected in 20th December, 2nd March, 4th April 
and 10th July. In its habitat of overwintering that is situated above snow 
line, the beetles can be exposed to winter temperatures as low as -55°C. 
The beetles collected in winter and early spring were kept at +4°C until 
they started to move. Summer specimens were placed at +4°C for 4 
hours before experiments get started. This procedure was necessary for 
evacuating of ice nucleating agents from the gut. 
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Supercooling point 

The supercooling point of the beetles was measured by using a thin 
copper constantan thermocouple placed in close contact with the dry 
body surface. A layer of thin adhesive tape was wrapped around the 
thermocouple probe to prevent it from scratching the surface of the 
beetles and thus affecting the SCP. The thermocouple was connected to 
a computer, and the temperature was recorded every 10 s. Specimens 
with the thermocouple attached were cooled inside a Binder climatic 
chamber (TC-G-180, Tuttlingen, Germany) at a rate of about 1°C/min. 
Initiation of freezing was detected as a sudden temperature increase 
due to the release of heat of fusion from body water being transformed 
to ice, and the lowest temperature recorded prior to the temperature 
increase was taken as the SCP.

Ice nucleating activity

Samples of hemolymph (0.5 μL) collected from beetles were added 
to 4.5 μL of 0.9% NaCl solution in thin glass capillaries and cooled 
concomitantly in contact with the thermocouple until all samples 
were frozen. SCPs of the hemolymph were recorded and profile of the 
specific ice nucleating activity of the hemolymph was determined by 
isovolumetric technique of sample dilution at which each sample was 
diluted by the same factor from the same stock solution. This method 
was first described in details by Zachariassen et al. [16].

Hemolymph osmolality

The hemolymph osmolality of the beetles was measured by 
determining the melting point on a Clifton Nanolitre Osmometer. 
Tiny samples of hemolymph were sucked into thin glass capillaries 
by means of the capillary forces, where after the capillaries were 
closed by melting one end and centrifuged to remove hemocytes. The 
hemolymph osmolality could be read directly by placing 50 ml samples 
of hemolymph into the sample holder filled with paraffin oil, freezing 
the sample and gradually increasing the temperature. The temperature 
at which the last tiny ice crystal disappeared was taken as a melting 
point [17]. 

Protein concentration 

The concentration of protein in the hemolymph collected from 
beetles was estimated by the method of Lowry using bovine serum 
albumin (BSA) as a protein standard [18]. 

Determination of cold hardiness potential of U. ceramboides 

In January, beetles were taken from their hibernation sites outside 
and put into freezer for incubation for 1 hour at -85°С. After that the 
beetles were stored in a Sanyo freezer (MDF-136, Japan) at -28°С 
overnight followed by +4°C for 3 hours. For the next step they were 
brought up to a room temperature and checked for their ability for 
active movement at +22°С during 30 min. This research was carried out 
only with non-acclimated caterpillars situated in the leaf nests. 

Beetles with certain degree of acclimatization were tested by placing 
them into freezer at -22°С for 30 min (cooling rate was approximately 
1°С/min). After that they were also tested for their ability for active 
movement at room temperature.

Statistical methods

Comparison of means between samples was made with ANOVA/ 
Tukey’s test using the statistical package Statistica v6.0. Mean ± SD is 
presented throughout.

Results and Discussion
Figures 1 and 2 illustrate the seasonal pattern of SCP changes. 

Supercooling points declined from a summer average of -7,2ºC to a 
winter value of about - 9,4ºC, indicating that this species is freezing 
tolerant (Figure 1). Physiological mechanism of adaptation of U. 
ceramboides to extreme cold includes production of extracellular 
ice nucleators [19]. In this study, Figure 2 firmly demonstrates the 
distribution of nucleation temperatures of ice nucleators from the 
0.5 μL samples of haemolymph in 4, 5 μL of 0.9% NaCl according to 
which most of ice nucleators with -8.5ºC activity were presented in the 
spring samples while a notable amount of ice nucleators with -10.5ºC 
activity were found in the “winter” beetles’ hemolymph. Such changes 
in ice nucleating activity are associated with seasonal variations in the 
chemical and physical situation in the hemolymph of insects. Analysis 
of hemolymph osmolality has shown that sizeable changes in its value 
occurred from summer to winter (Table 1). In this study, increasing 

0  1  2  3  4  5  6  7  8  9  

-5

-7

-9

-11

-13

S
up

er
co

ol
in

g 
po

in
t, 

 0 C

months

Figure 1: Supercooling point of Upis ceramboides during the year.
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Figure  2: Seasonal changes in ice nucleating activity (expressed as 
supercooling point) in Upis ceramboides hemolymph, changes between 
highest supercooling points are statistically significant, p < 0.001).

Season SCP, °C Osmolality
mOsmol

Protein 
concentration, 

mg/ml

Specific ice 
nucleating 
activity, °C/

mg

Survival 
at  -85°C, 

%

Survival at 
-22°C, %

Winter -10,5 ± 1,2 550 ± 25 117 ± 19 -0,089 ± 0,02 50 98
Spring -8,5 ± 0,8 310 ± 18 106 ± 11 -0,08 ± 0,015 0 93

Autumn -7,7 ± 0,2 150 ± 14 45 ±  26 -0,17 ± 0,085 0 77
Summer -7,8 ± 0,15 432 ± 10 56,8 ± 15 -0,14 ± 0,066 0 0

Table 1: Seasonal variations in the SCP, osmolality, protein concentration, specific ice 
nucleating activity in the hemolymph of  Upis ceramboides and survival of beetles at 
different freezing temperatures.
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solute concentrations in winter depressed the temperature at which 
biological INAs induce freezing (Figure 3). This is why the hemolymph 
of U. ceramboides was characterized by a moderate nucleating activity 
in winter (Figure 2). During winter the beetles are resistant to as low 
temperatures as -85°C (Table 1). 50% of the tested beetles tolerated 
this temperature for at least 1 hour. In this period the hemolymph 
of U. ceramboides can be diluted by a factor of up to 103 without any 
significant reduction in ice nucleating activity (Figure 6a). Thus, within 
this concentration’s range the nucleating activity forms a plateau where 
it is not significantly affected by variations in the nucleator’s level. 
Zachariassen has demonstrated in early studies that various freeze 
tolerant organisms differ by range of plateau. Thus, the plateau appears 
to be specific for the various types of ice nucleators [14]. 

In this study seasonal changes in the profile of hemolymph ice 
nucleating activity were observed. Measurements were made in different 
periods of acclimatization (December, March, July and October). As 
seen on the graphs, seasonal acclimatization induces dropping of ice 
nucleating activity since early spring and leads to qualitative changes 
in the profile of ice nucleating activity that is apparently related to a 
decline in the amount of active nucleators (Figure 6). In particular, 
(Figure 6a) shows that are volumetric dilution of the hemolymph 
(early spring samples) leads to a rapid drop of ice nucleating activity. 
Within this period 93% of the beetles endured 30 min at -22°С. With 
progressive acclimatization of the insects that is accompanied by 
polyols and proteins declines (Table 1) the active plateau in the profile 
of ice nucleating activity has disappeared. By summer, the changes in 
the profile became dramatic and were perhaps caused by structural 
modifications of ice nucleators (Figure 6b). These changes in quality of 
ice nucleation in the hemolymph were associated with a loss of survival 
of U. ceramboides at freezing temperatures (-22°C is according to Table 
1). Increase of protein concentration and osmolality of the hemolymph 
in autumn seems to lead to qualitative changes in structure of ice 
nucleators (Figure 6b). Although there was no plateau in the profile of 
ice nucleating activity, ice nucleation was an adoptive process and 77% 
of tested beetles have survived at -22°C. 

Thus, although warm acclimatization of U. ceramboides induces an 
increase of the SCP, ice nucleation at this temperature is non-specific 
(summer type of insects) and is therefore not likely to have adaptive 
importance. Hence, warm acclimatization is accompanied by a loss of 
adaptive ice nucleators (although incidental ones remain), associated 
with a drop in the cold hardiness potential of the insects. The nucleation 
temperature itself does not reflect the character of ice nucleating process 

in the insects. It merely indicates body liquid freezing temperature, 
while the profile of ice nucleating activity seems to determine the ice 
nucleation in the hemolymph as a feature of cold adaptation process.

Ice nucleating activity is a function of the content of ice nucleating 
agents (INAs) that are proteins [14,19]. In this context, the relationships 
between ice nucleating activity and protein`s concentration was studied 
to see how the SCP is associated with protein’s fraction. As seen on 
(Figure 4a), there is a positive correlation between the SCP and protein’s 
concentration in the hemolymph during winter (R2=0,317) and spring 
(R2=0,415). Relationship between SCP and protein concentration is 
more evident for spring samples of the hemolymph than winter ones 
that is apparently linked with certain physical and chemical situation 
in the hemolymph. There is no positive correlation between SCP and 
protein’s concentration in the hemolymph during summer (Figure 
4b) indicating that SCP’s were not associated with protein’s fraction. 
Because of the relationship between SCP and protein concentration, the 
nucleating activity represented by the ratio of nucleation temperature 
to protein concentration can be termed the specific ice nucleating 
activity (Table 1). Figure 5 shows that specific ice nucleating activity 
proportionally related to total protein’s concentration. 

Hence, two parameters should be used additionally to SCP for 
describing cold hardiness in freeze tolerant insects. First one is the 
specific ice nucleating activity that performs activity of ice nucleators in 
insect’s hemolymph more realistically. Second parameter is the profile 
of ice nucleating activity reflecting the degree in which ice nucleation is 
a feature of cold adaptation process of insects.
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Figure  3: Relationship between supercooling point and osmolality of the 
hemolymph of Upis ceramboides (each point is an average of 5 parallel 
measurements).
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Figure  4: Relationship between supercooling point and protein concentration 
in Upis ceramboides hemolymph: a – winter and spring; b – summer and 
autumn.
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Figure  5: Relationship between supercooling point and specific ice nucleating 
activity of the winter hemolymph from Upis ceramboides.
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Figure  6: The profile of ice nucleating activity of 0,5 ml samples of the 
hemolymph, diluted additionally by factor 10 in 4,5 ml of 0,9%  NaCl solution, 
and expressed as dilution factor function: a – winter and spring; b – summer 
and autumn.
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