
Volume 5 • Issue 3 • 1000e125J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Mancas, J Inform Tech Softw Eng 2015, 5:3
DOI: 10.4172/2165-7866.1000e125

Editorial Open Access

On the Paramount Importance of Database Constraints
Christian Mancas*
Department of Computer Science, Bucharest Polytechnic University, Romania

*Corresponding author: Christian Mancas, Department of Computer Science,
Bucharest Polytechnic University, Romania, Tel: +40722357078; E-mail:
christian.mancas@gmail.com

Received November 08, 2015; Accepted November 13, 2015; Published
December 02, 2015

Citation: Mancas C (2015) On the Paramount Importance of Database Constraints.
J Inform Tech Softw Eng 5: e125. doi:10.4172/2165-7866.1000e125

Copyright: © 2015 Mancas C. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Introduction
Plausible and implausible data and constraints.

Databases (dbs) store data of interest in schemas made out
generally of three components: for relational ones, a set of fundamental
tables (corresponding to actual object sets - e.g., people, organizations,
countries, cities, products, etc.), their columns (corresponding to
object set properties - e.g., first name, last name, SSN, birth place,
birth date, organization name, type, country name, code, etc.), and a
set of constraints (e.g., first and last names are compulsory, birth date
should be between Jan. 1st 1900 and today, country names and codes
are unique, etc.). The two above components make up the structure
of a scheme, while the third does not allow storing any data into this
structure, but only desirable one. For graph dbs, the structure is made
out of nodes and edges between them.

Some constraints are embedded in the scheme; for example, the fact
that a table COUNTRIES has one column Capital restricts countries
from having more than one capital. However, these embedded ones
are not enough and the constraint sets should contain explicit ones
corresponding to all of the actual business rules that are governing the
corresponding subuniverse. For example, there may not be either two
countries having same names, or two states of a same country having
same names, or two people having same SSN, or countries or states
without names, etc.

Not adding to a db scheme one constraint corresponding to a
business rule of that subuniverse allow storing implausible data. For
example, if Capital is not declared as unique (one-to-one) then a same
city may be stored for several countries, although, actually, no city may
simultaneously be the capital of more than one country.

Dually, adding to a db scheme a constraint which is implausible
(or dictatorial, aberrant, i.e., not corresponding to an existing business
rule governing that subuniverse) prevents storing plausible data. For
example, if you declare StateName as unique (one-to-one) in a STATES
table, from the two existing states called “La Rioja” (from Spain and
Argentina) only one can be stored at any given moment in time.

To conclude with, all existing business rules should always be
enforced by corresponding constraints (for banning implausible data)
and no implausible constraint should ever be enforced (for not banning
plausible data).

Constraints exist independently of whether we know and/or ignore
them: only adding all existing ones in all db schemes may guarantee
data plausibility. “Garbage in, garbage out” applies in this context too if
there is at least one missing constraint from a db scheme.

Note that, generally, there is no such thing as correct data: for
example, almost nobody knows exactly what is the population of a
country in any particular moment. However, it is implausible that a
country may have less than 800 (Vatican, the smallest one from this
point of view, had 839 according to its latest census of July 1, 2012)
or more than 2,000,000,000 (China, the most populated one, had
1,372,780,000 at October 23, 2015, for 2030 the UN projection is that
India will come first with more than 1,500,000,000, and you should leave
room for another 50 years of db service, for example). Consequently,
plausibledata range for a Population column of COUNTRIES is (8*102,
2*109).

When enforced, constraints are always satisfied by (or hold in) any
corresponding db instance, as any attempt to violate them is rejected.
When not enforced, some instances may violate (or do not satisfy) them.

A db instance is said to be consistent (valid) if it satisfies all (table/
db) constraints; otherwise, it is called inconsistent (invalid). Obviously,
db owners and users would always like to store only consistent (valid)
instances.

Coherent and Incoherent Constraints and Constraint Sets
Given any db and its associated set of constraints C, C is

coherent(with respect to the db scheme) if for any table of the db there
is at least a non-void instance that satisfies C and incoherentotherwise.

For example, if a db scheme contains a MOUNTAIN_PEAKS
table and constraints C1: Altitude≥ 1000 and C2: Altitude< 1000 (or,
equivalently, constraint C: Altitude≥ 1000 andAltitude< 1000), then
the only possible instance for MOUNTAIN_PEAKS is obviously the
empty set, which means that the corresponding set of constraints C is
incoherent.

Constraint C is obviously incoherent and so is any constraint set
containingboth C1 and C2 above.

Trivially, all constraint sets should be coherent and from any
incoherent set a coherent one may be obtained by removing all
incoherent constraints and one of any pair of contradicting constraints
(C2 in the above example, as it is implausible).

Fundamental, Redundant, and Trivial Constraints.
Minimal Sets of Constraints

Constraints are first order logic formulas1; as such, a constraint
or a set of constraints may imply other constraints as well: a set of
constraints C implies a constraint c if c holds in all instances in which
C holds (dually, C does not imply a constraint c if there is an instance
for which c does not hold, but C holds).

The standard logical notation for formulas implication is C|c; c
is called an implied constraint. For example, constraint set {Altitude>
1000, Altitude< 2550} implies constraint Altitude ∈ (1000, 2550);
trivially, the vice-versa is also true. Constraints that are not implied
are called fundamental, while those implied are called redundant2.
1In particular, closed ones, that is formulas whose variable occurrences are bound
to at least one logic quantifier (be it “for any” or “there is”). Dually, open formulas
have at least one occurrence of a variable free (that is not bound to any logic
quantifier), which, in dbs, are formalizing queries.
2In fact, redundant constraints are more precisely defined through the concepts of
constraint set closures and equivalences (see, for example, [1]).

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering

Volume 5 • Issue 3 • 1000e125J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C (2015) On the Paramount Importance of Database Constraints. J Inform Tech Softw Eng 5: e125. doi:10.4172/2165-7866.1000e125

Page 2 of 4

The ANSI report [3] distinguishes between 14 types of nulls; most of
us consider, however, that there are only three basic types (the rest being
either particular cases of these three or only due to implementation
considerations): non-existent (inapplicable), (temporarily) unknown,
and no-information (the logical or between the first two: it is not
known whether such a value exists or, if it were existing, nothing is
known on its nature). For example, in a column Manager Bonus of a
SALARIES table, only managers will have not null data stored, while
for all other employees there will be non-existent (inapplicable) nulls.

Consequently, in dbs we have to accommodate with null values
too. However, constraints should also be placed on their usage: what
would be the meaning of a table row having only nulls? Obviously,
at least one column per each table should not accept nulls: not-null
(mandatory, compulsory, required, totality) constraints are used to
specify such columns.

Please note that there is great misunderstanding on null values:
some DBMSes (e.g., MS SQL Server) wrongly assume that there is only
one null value, so columns accepting nulls are not allowed in unique
constraints; others (IBM DB2, Oracle, and even MS Access) assume
correctly that there is a countable infinite number of nulls (so they
accept non not null columns into keys).

Key (Uniqueness) constraints

In any subuniverse, there may be both objects whose uniqueness
is interesting and objects that we do not need to uniquely identify. For
example, in the first category there are people (with their unique e-mail
addresses, phone numbers, SSNs, etc.), while in the second are the
chairs of a room/apartment/building. In dbs we should always care for
uniqueness: for example, if the db should store detailed information on
each chair, then they have to be uniquely labeled, e.g., with an inventory
number, and these numbers stored for each chair in a CHAIRS table;
if not, then we would probably abstract a CHAIR_TYPES table and for
each of its rows we would store a unique type name (plus description,
total number of chairs per type or, in other tables, per type and room/
apartment/building, if needed).

A key constraintis a statement of the type “C1• … •Cn key”,
where n>0 is a natural, Ci are columns of a table T, “•” denotes
concatenation4 (which is, generally, omitted) of these columns and
key means minimally unique5 that is it is unique and it does not
include any other key. When n = 1, the key is calledsimple; when n>
1 it is calledconcatenated; if a unique column concatenation properly
contains a key (that is the included key has smaller than n arity), then
it is not a key (as it is not minimal), but a superkey; note that superkeys
are of no actual, but only theoretical interest. For example, Capital is a
simple key of COUNTRIES, Capital • Population is a superkey, while
State Name • Country is a concatenated key of STATES.

Only keys need to be declared, not superkeys6: for example, if
instead of SSN you declare SSN • Birth Year as a key, then implausible
data might be stored (e.g., any number of persons having same SSN,
but different birth dates); if both Capitaland Capital • Population
are declared as keys, then no implausible data might be stored, but
updates to COUNTRIESwould be slower (and the db would need
additional disk and memory space to store and process the superkey
Capital•Population), as the system would enforce the superkey too.

Constraint sets that do not contain any redundant constraint are called
minimal.

A particular case of redundant constraints are the trivial ones:
constraints that hold in any db instance (i.e., are implied by an empty
constraint set). For example,C’: Altitude ≥ 1000 or Altitude < 1000 is
obviously trivial.

We should never declare implied constraints (be them redundant
or trivial) in db schemas: it would only be superfluously time
consuming to enforce them too, although this is never actually needed.
Consequently, all db constraint sets should be minimal. Testing for
constraint sets equivalence and/or constraints’ redundancy can be
reduced to the well-known implication problem: given any constraint
set C and constraint c, does C imply c? (for example, does C= {S⊆T,
T⊆U}imply S⊆U? does it imply T⊆S too?).

Note that, depending on the constraint classes, this problem may be
solved very quickly (that is linearly), very slowly (that is exponentially),
or be impossible to solve (even undecidable3).

The Five Basic Relational Constraint Types
Any relational database management system (RDBMS) [2]

providesthe following five relational constraint types: (co-) domain
(range), not-null (mandatory, compulsory, required, totality), key
(minimal uniqueness), foreign key (referential integrity, typed
inclusion), and check (tuple). Unfortunately, RDBMSes do not
impose to their users declaring any constraint in the dbs they manage.
Consequently, you are free to not declare any. In practice, fortunately,
almost all db schemas also include some constraints. Unfortunately,
very rarely do they include at least all needed relational constraints.

Domain (Range) constraints

Domain (range) constraintsspecify plausible data ranges for
column values.

Programmers are acquainted with assigning data types to their
variables. DBMSes also provide data types for table columns. Declaring
such a type for a column is sometimes enough, for example: BOOLEAN,
NUMBER(n), VARCHAR2(n). For most of the time it is not: even if,
by definition, all computer data types are finite, they are generally huge
and most of their values are implausible for actual db instances.

For example, if you let column BirthDate of a table EMPLOYEES
to store DATE values, depending on the DBMS version, users might
store birth dates either from year -100 or 10,000, both of them being
trivially implausible.

This is why, generally, column values should be restricted to
plausible subsets of type [minValue, maxValue] ⊂ data Type. For
example, Birth Date above could be restricted to [1/1/1930, SysDate()
– 365 * 18] ⊂ DATE (as it is implausible to have, for example in 2015,
employees older than 85 and younger than 18).

NOT NULL constraints

Very often, it is the case that some values are not applicable or,
at least temporarily, are unknown. For example, although we might
not know temporarily the altitude of some mountain peaks, we would
however want to store at least their names and the mountains to which
they belong. Conventionally, the empty values that are stored, for example,
in the column Altitude of such rows are called nulls (or null values).

3A problem is said to be undecidable if it is neither provable, nor refutable or for
which it is impossible to design an algorithm that always (that is, in any context)
correctly answers to its questions (see, for example, [1]).

4Mathematically, this means mapping (Cartesian) product
5That is minimally one-to-one (see, for example, [1]).
6Unfortunately, most RDBMSes (including, for example, Oracle, MS SQL Server
and Access, etc.) allow for enforcement of both keys and superkeys!

Volume 5 • Issue 3 • 1000e125J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C (2015) On the Paramount Importance of Database Constraints. J Inform Tech Softw Eng 5: e125. doi:10.4172/2165-7866.1000e125

Page 3 of 4

For any table, you can declare one of its keys as being primary.
One of the most important best practice rules in this field is to add to
any fundamental table a key integer column (generally having values
automatically generated by the DBMS and called ID) with no other
meaning than uniquely identifying its rows (called, as such, a surrogate
key) and declare it as the primary key.

Please note that uniqueness is not an absolute, but a relative
property: in some contexts a column or concatenation of columns are
unique, while in others (even in a same subuniverse) they are not. For
example, zip codes are unique within a country, but internationally
they are not: you need to concatenate them with the country to which
they belong in order to be uniquely identifiable.

Keys, just like any other type of fundamental (that is not derived)
constraints may only be discovered and declared by humans: there
may not ever be any tools, be them hardware, software, conceptual,
etc., able to do such a job. Moreover, especially keys are not at all
easy to discover: besides their relativeness, as the number of columns
increases, the number of their products (theoretically very many of
them being possible keys) increases exponentially. This is why [4-6]
present algorithms for assisting their discovery.

Referential integrity (Foreign key) constraints

Links between tables, as well as those between a table and itself
are done by foreign keys: pointer-type columns whose values should
always be among the values of the corresponding referenced columns.
For example, in the above COUNTRIES table, Capitalshould be a
foreign key referencing some CityID key from table CITIES. Associated
constraints are called referential integrities7 (or (typed) inclusion
dependencies).

Foreign keys should have associated domain constraints too exactly
matching those of the referenced columns. For example, if CityID is a
NUMBER (6) then Capital should also be a NUMBER(6). However,
note that, unfortunately, RDBMSes do not automatically derive
corresponding domain constraints; even worse, you are sometimes free
to oversize and even undersize foreign keys domain constraints.

The referential integrity constraint between foreign key f and
corresponding referenced column g it’s generally denoted by f ⊆ g8.
Obviously, this is a notational abuse9: in fact, its meaning is Im(f) ⊆
Im(g), where Im is the image operator, which computes the set of
values taken by its operand (that is the set of all of the values taken by
the corresponding mapping). Failing to enforce such constraints may
result in storing the so-called dangling pointers: values that point to
non-existing values in the set of values of the referenced columns.

Referential integrity constraints might be violated from both sides
of the inclusion mathematical relation: as just seen above, from the left
one by storing in a foreign key column a value which does not belong to
the referenced column, but, dually, from the right one too, by deleting
from a table a row which is referenced by at least one row.

The Relational Data Model (RDM) [7-9], allows for concatenated
foreign keys and, moreover, for foreign keys referencing any columns,
not necessarily being keys. Best practice, however, is to only use single

foreign keys, always referencing primary keys, which should always be
surrogate-type appropriately range restricted numeric ones.

Note that “foreign” in the “foreign key” syntagm is a false friend:
foreign keys may reference a key from the same table (not from a
“foreign” one). For example, the “foreign” key Reports To of table
EMPLOYEES references its ID column. Moreover, “foreign key” is a
double false friend: “key” is a false friend too, as, generally, foreign keys
are not also (unique) keys.

For example, in a table COUNTRIES also containing a foreign
key Currency (referencing the ID column of a table CURRENCIES),
Capital is both a key and a foreign key, Country name is a key but not
a foreign key, Currency is a foreign key but not a key (as there are, for
example, lot of countries having Euro as currency), whereas Population
is neither a key nor a foreign key.

The following Table 1 is summarizing these findings, which prove
that the concepts of unique and foreign keys are orthogonal to each
other.

Tuple (Check) constraints

For check (tuple) constraints there is no generally agreed
definition; from most of the RDBMS implementations, they are first
order logic formulas that have to be satisfied by all rows of a table
and have (by notational abuse) a simplified, propositional logic type
form: they are using parenthesis, the logical not, and, and or operators
connecting terms having the form CθD, where all such C and D (from
all terms) are columns of a same table, and θ is a standard operator10.
For example, for a table COMPOSERS, check constraint BirthYear
+ 3 <PassedAwayYear states that, for each row, corresponding life
duration should have been at least 3 years (assuming that no one could
ever compose before he/she is at least 3 years old).

In fact, check/tuple constraints are first order logic formulas with
only one variable universally quantified, which, by notational abuse,
is omitted. For example, the above apparently propositional calculus
formula stands for (∀x∈COMPOSERS) (PassedAwayYear(x) — Birth
Year(x) between 3 and 120).

The limitation to only one table is essential: no RDBMS
is recognizing (and, consequently, enforcing), for example,
constraints like Pop Cnstr: (∀x∈COUNTRIES) (∀y∈STATES)
(STATES. Country(y)=x⇒COUNTRIES. Population(x) ≥ STATES.
Population(y)).

Note that you should not get confused because of theory and
RDBMS terminologies: for example, domain (range) and not-null
constraints are also considered by Oracleas being check ones.

Non-Relational Constraint Types
As just seen above, the five relational constraint types are not

7Note that some RDBMSes use confusing terminology in this respect too: for
example, MS Access table “design” mode considers referential integrity as being
only half of this constraint type, the other half being enforceable through the “limit
to list” property of foreign keys.
8This being the reason why RDM theory also refers to these constraints as being
(typed) inclusion dependencies.
9Columns being mappings, it is senseless to talk about mapping inclusions.

10The set of db standard operators always include the corresponding math ones,
plus some additional ones, either derived from them, like between ... and, or
generally coming from regular expressions manipulation, as like (which uses, just
like in OSes, meta-characters too: ‚%’ or ‚*’ for any character string, including empty
ones, etc.).

Column Key? Foreign key?
Population

Currency 

Country Name 

Capital  

Table 1: Summarizes about key and Foreign Key.

Volume 5 • Issue 3 • 1000e125J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C (2015) On the Paramount Importance of Database Constraints. J Inform Tech Softw Eng 5: e125. doi:10.4172/2165-7866.1000e125

Page 4 of 4

subuniverse of discourse, as well as algorithms for guaranteeing the
coherence and minimality of constraint sets, which are implemented
in MatBase.

References

1. Mancas C (2015) Conceptual Data Modeling and DB Design. A Fully Algorithmic
Approach. I: The Shortest Available Path, Apple Academic Press, NJ.

2. Garcia-Molina H, Ullman JD, Widom J (2014) Database Systems. The
Complete Book, 2nd eds. Pearson Education Ltd.: Harlow, U.K.

3.	 Gorman MM ANSI/X3/SPARC Study Group on Database Management
Systems (1975) Interim Report 75: 02-08. FDT-Bulletin ACM SIGMOD 7.

4.	 Mancas C, Crasovschi L (2003) An Optimal Algorithm for Computer-Aided
Design of Key Type Constraints. Proc 1st Balkan Inf Techn BIT Conf Aristotle
University Press, Thessaloniki, Greece.

5.	 Mancas C, Mancas S (2005) MatBase E-R Diagrams Subsystem Metacatalog
Conceptual Design. Proc IASTED DBA Conf on DB and App., Innsbruck, Acta
Press, Canada.

6.	 Mancas C (2016) Conceptual Data Modeling and DB Design. A Fully Algorithmic
Approach: Refinements for an Expert Path, Apple Academic Press, NJ.

7.	 Codd EF (1970) A relational model for large shared data banks. CACM 13:
377-387.

8.	 Abiteboul S, Hull R, Vianu V (1995) Foundations of Databases. Addison-
Wesley: Reading, MA.

9.	 Ullman JD, Widom J (2007) A First Course in Database Systems, 3rd ed.
Prentice Hall: Upper Saddle River, NJ.

10.	Mancas C (1985) A first introduction in data model based on the elementary
theory of sets, relations and functions. Proc. INFO-IAȘI 1: 314-320 AI Cuza
University, Iasi, Romania.

11.	Mancas C (2002) On Modeling Closed Entity-Relationship Diagrams in an
Elementary Mathematical Data Model. Proc. ADBIS, Slovakia 2: 165-174,
Slovak Polytechnic Univ., Bratislava, Slovakia.

12.	Mancas C (2002) On Knowledge Representation Using an Elementary
Mathematical Data Model. Proc. IASTED IKS, Acta Press, Canada.

13.	Mancas C, Dragomir S (2004) MatBaseDatalog¬ Subsystem Meta-catalog
Conceptual Design. Proc. IASTED Intl. Conf. Softw. Eng. And App., MIT,
Cambridge, MA, USA, 34 - 41, Acta Press, Calgary, Canada.

14.	Chen PP (1976) The entity-relationship model: Toward a unified view of data.
ACM TODS 1: 9-36.

15.	Thalheim B (2000) Fundamentals of Entity-Relationship Modeling. Springer-
Verlag, Berlin.

16.	Date CJ (2013) Relational Theory for Computer Professionals: What Relational
Databases are Really All About. Theories in Practice; O’Reilly Media, Inc.:
Sebastopol, CA.

17.	Mancas C, Dragomir S, Crasovschi, L (2003) On Modeling First Order Predicate
Calculus Using the Elementary Mathematical Data Model in MatBase DBMS.
Proc. IASTED DBA, 1:1197-1202, Acta Press, Calgary, Canada.

enough: constraints like PopCnstrabove should also be enforced in
order to reject storing implausible data. For example, the Elementary
Mathematical Data Model (EMDM) [6,10-12] is providing more
than 30 types of constraints without which data modeling may not
be accurate and, consequently, the corresponding dbs are prone to
storing implausible data. For example, it allows declaring that the auto-
mapping (column) composition Country°Capital should be reflexive
(i.e., (∀x∈COUNTRIES)(Country(Capital(x))=x)), which formalizes
the constraint “the capital of any country should be a city of that
country”. Obviously, if such a constraint is not enforced, users may
store in a table COUNTRIES, for example, that Toronto is the U.S.
capital, Bucharest is the U.K. one, a.s.o.

Only MatBase [5, 6 ,13], a prototype DBMS implementing both the
EMDM, the RDM, and the Entity-Relationship Data Model (E-RDM)
[14,15], is currently providing such constraints to its users. However,
all such constraints should also be discovered, aggregated in a non-
relational constraint set associated to the corresponding db schema,
and implemented even for relational dbs(rdbs) [16] too, either as
RDBMS triggers (using their extended SQL) or as trigger-type methods
written in high level programming languages embedding SQL of the
software applications that manage corresponding rdbs.

Discovering all such constraints is even harder than discovering
key ones. However, EMDM is providing dedicated assistance
algorithms too that are guiding its users in this task [6,11]. Moreover,
EMDM is also providing algorithms for guaranteeing the coherence
and minimality of constraint sets [6,17].

Conclusion
Constraints are of paramount importance in dbs, as they are the

only ones that prevent storing implausible data in the corresponding
db instances. Besides the constraints embedded in the db scheme
structure, a set of explicit constraints corresponding to all and only to
the business rules governing the corresponding subuniverse should
always be added to a db schema. Such sets should always be coherent
and minimal.

RDBMSes provides five relational constraint types: (co-) domain
(range), not-null (mandatory, compulsory, required, totality), key
(minimal uniqueness), foreign key (referential integrity, typed
inclusion), and check (tuple). However, they do not impose to their
users declaring any constraint in the dbs they manage. Best practice
rules were provided on when and how to use them intelligently.

Unfortunately, these five types of constraints are not enough for
accurate data modeling and db design. EMDM provides more than
30 types of constraints badly needed even for very simple db schemes
and MatBase, a prototype DBMS implements all of them. When using
RDBMSes to manage dbs, the non-relational constraints should also be
declared and enforced, either as RDBMS triggers (using their extended
SQL) or as trigger-type methods written in high level programming
languages embedding SQL of the software applications that manage
corresponding rdbs.

EMDM is also providing assistance algorithms that are guiding
its users in the process of discovering all existing constraints in any

http://www.crcnetbase.com/isbn/9781498728447
http://www.crcnetbase.com/isbn/9781498728447
http://people.inf.elte.hu/nikovits/DB2/Ullman_The_Complete_Book.pdf
http://people.inf.elte.hu/nikovits/DB2/Ullman_The_Complete_Book.pdf
https://books.google.co.in/books?id=EOZdBgAAQBAJ&pg=PA30&lpg=PA30&dq=ANSI/X3/SPARC+Study+Group+on+Database+Management+Systems+(1975).+Interim+Report+75-02-08.+FDT-Bulletin+ACM+SIGMOD,+7(2).&source=bl&ots=qv6GR1_TF4&sig=UsWN2VMlYcIwksuS3sVv1J61clk&hl=en&sa=X&ved=0CCIQ6AEwAWoVChMI5u_s38-ZyQIViguOCh2Aswo_ - v=onepage&q=ANSI%2FX3%2FSPARC Study Group on Database Management Systems (1975). Interim Report 75-02-08. FDT-Bulletin ACM SIGMOD%2C 7(2).&f=false
https://books.google.co.in/books?id=EOZdBgAAQBAJ&pg=PA30&lpg=PA30&dq=ANSI/X3/SPARC+Study+Group+on+Database+Management+Systems+(1975).+Interim+Report+75-02-08.+FDT-Bulletin+ACM+SIGMOD,+7(2).&source=bl&ots=qv6GR1_TF4&sig=UsWN2VMlYcIwksuS3sVv1J61clk&hl=en&sa=X&ved=0CCIQ6AEwAWoVChMI5u_s38-ZyQIViguOCh2Aswo_ - v=onepage&q=ANSI%2FX3%2FSPARC Study Group on Database Management Systems (1975). Interim Report 75-02-08. FDT-Bulletin ACM SIGMOD%2C 7(2).&f=false
https://books.google.co.in/books?id=EOZdBgAAQBAJ&pg=PA30&lpg=PA30&dq=ANSI/X3/SPARC+Study+Group+on+Database+Management+Systems+(1975).+Interim+Report+75-02-08.+FDT-Bulletin+ACM+SIGMOD,+7(2).&source=bl&ots=qv6GR1_TF4&sig=UsWN2VMlYcIwksuS3sVv1J61clk&hl=en&sa=X&ved=0CCIQ6AEwAWoVChMI5u_s38-ZyQIViguOCh2Aswo_ - v=onepage&q=ANSI%2FX3%2FSPARC Study Group on Database Management Systems (1975). Interim Report 75-02-08. FDT-Bulletin ACM SIGMOD%2C 7(2).&f=false
http://delab.csd.auth.gr/bci1/Balkan/574mancas.pdf
http://delab.csd.auth.gr/bci1/Balkan/574mancas.pdf
http://delab.csd.auth.gr/bci1/Balkan/574mancas.pdf
http://delab.csd.auth.gr/bci1/Balkan/574mancas.pdf
https://www.actapress.com/Abstract.aspx?paperId=19050
https://www.actapress.com/Abstract.aspx?paperId=19050
https://www.actapress.com/Abstract.aspx?paperId=19050
https://www.actapress.com/Abstract.aspx?paperId=19050
http://dl.acm.org/citation.cfm?id=362685
http://dl.acm.org/citation.cfm?id=362685
http://wiki.epfl.ch/provenance2011/documents/foundations of databases-abiteboul-1995.pdf
http://wiki.epfl.ch/provenance2011/documents/foundations of databases-abiteboul-1995.pdf
http://wiki.epfl.ch/provenance2011/documents/foundations of databases-abiteboul-1995.pdf
http://wiki.epfl.ch/provenance2011/documents/foundations of databases-abiteboul-1995.pdf
http://www.pearsonhighered.com/pearsonhigheredus/educator/product/products_detail.page?isbn=013600637X
http://www.pearsonhighered.com/pearsonhigheredus/educator/product/products_detail.page?isbn=013600637X
http://www.pearsonhighered.com/pearsonhigheredus/educator/product/products_detail.page?isbn=013600637X
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.6759
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.6759
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.6759
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.6759
https://www.actapress.com/Abstract.aspx?paperId=25736
https://www.actapress.com/Abstract.aspx?paperId=25736
https://www.actapress.com/Abstract.aspx?paperId=25736
http://dl.acm.org/citation.cfm?id=320440
http://dl.acm.org/citation.cfm?id=320440
http://tinman.cs.gsu.edu/~raj/4710/sp03/ch3.pdf
http://tinman.cs.gsu.edu/~raj/4710/sp03/ch3.pdf
http://tinman.cs.gsu.edu/~raj/4710/sp03/ch3.pdf
http://cdn.oreillystatic.com/oreilly/booksamplers/9781449369439_sampler.pdf
http://cdn.oreillystatic.com/oreilly/booksamplers/9781449369439_sampler.pdf
http://cdn.oreillystatic.com/oreilly/booksamplers/9781449369439_sampler.pdf
http://cdn.oreillystatic.com/oreilly/booksamplers/9781449369439_sampler.pdf
https://www.actapress.com/
https://www.actapress.com/
https://www.actapress.com/
https://www.actapress.com/
https://www.actapress.com/

	Title
	Corresponding author
	Introduction
	Coherent and Incoherent Constraints and Constraint Sets
	Fundamental, Redundant, and Trivial Constraints. Minimal Sets of Constraints
	The Five Basic Relational Constraint Types
	Domain (Range) constraints
	NOT NULL constraints
	Key (Uniqueness) constraints
	Referential integrity (Foreign key) constraints
	Tuple (Check) constraints

	Non-Relational Constraint Types
	Conclusion
	Table 1
	References

