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ABSTRACT
An operator-splitting scheme for the Kuramoto-Sivashinsky equation, ut + uux + uxx + uxxxx = 0, is proposed. The

method is based on splitting the convective and the diffusive differential terms thereby permitting an efficient scheme

choice for each of them, and when combined give a reliable solution for the entire equation. We demonstrate the

accuracy and capability of the proposed split scheme via several numerical experiments. Computations of the bound,

lim sup ∥u(x; t)∥2 for the equation is also t!1 Presented.

Keywords: Kuramoto-Sivashinsky equation; fractional step-splitting; numerical solution; energy bounds; PACS:

65M06; 65M08; 97N40

INTRODUCTION

Where the subscripts denote derivatives with respect to the
indicated variable, and; > 0 are constant coefficients accounting
for the long wave instability (gain) and short wave dissipation,
respectively. Equation (1.1) is a well-known model of one
dimensional turbulence which was derived in various physical
contexts including chemical-reaction waves, propagation of
combustion fronts in gas, surface waves in a film of a viscous
liquid flowing along an inclined plane, patterns in thermal
convection, rapid solidification, and many others  [1-6].

Several results are presented in the literature on the properties of
the solution of the Kuramoto-Sivashinsky (K-S) equation, with
special attention on the energy

which has been derived theoretically in the form of the bound

For   example   [7]. Determined p to be 5=2 with the  assumption
that initial data is L-periodic, antisymmetric about the origin
and of zero mean. In [8], the authors removed the antisymmetry
requirement   and   observed   that p is 8=5. In [9]. a 1-dimension
version of the equation was considered without the requirement
of odd solutions and arrived at the same value of p following a
generalization of Lyapunov function argument from [7].
Following a  div curl  argument. [10] obtained p = 3=2. A weaker
bound which was proved to be necessary in the presence of a
linear destabilizing term was later introduced in [11]. Recently,
[12]. Followed  a  Lyapunov  argument to obtain bounds that are
independent of the system size.

The numerical solutions of the KS equation have been widely
investigated in the literature. In particular, we highlight the
Galerkin method [13]. the Chebyshev spectral methods [14]. the
B-splines [15].The mesh-less method of lines [16], etc. The aim of
these investigations has been on the accuracy [13], and/or how
these solutions compare with the well documented benchmark
solutions [17] [13]. An  explicit  Runge  Kutta  method  was used
to avoid the restrictive stability limit of the fourth order
derivative. Further advan-tage of the method is that the
approach can easily be tweaked to obtain any required order of
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accuracy. Other approaches are based on simplifying the partial
differential equation so that it can be handled easily by a
computer.  For  example,  the B-spline approach by [15].Reduced
the   problem   to   a set of algebraic equations, while in [14]. The
equation was reduced to a system of ODEs that were solved by
implicit-explicit BDF methods.

In this paper we use the fractional splitting/step method which
originated  from  the work of [18, 19]. On Alternating Direction
Implicit (ADI) method and local-one-dimensional (LOD)
method proposed later in [20]. This method allows a complex
differential equation to be split into different subproblems
based on different sub operators/physical models present in the
original equation. Each of these sub equations are solved by best
available method. The Kuramoto-Sivashinsky equation (1.1)
consists of two different spatial operators: the linear and the
nonlinear operators. Interestingly, the nonlinear operator is
hyperbolic, i.e., it is known to introduce discontinuity in finite
term while the linear term has a stabilizing effect. Consequently,
the equation is split into two physical processes evident in the
equation: the convection (inviscid Burgers) equation and the
linear fourth order equation.

From an abstract point of view, the space discretized problem is
a system of ordinary differential equations and can be written as

With initial condition u (0) = u0, where N is the discretization
of the nonlinear (convection) operator and L is the
discretization of the linear operator. Assuming the solution vn u
(tn), has been computed, then the next approximation is found
from the fractional steps

And set vn+1 = u (tn+1). For the time integration, the nonlinear
convection equation makes use of implicit and total variation
diminishing (TVD) schemes, while scheme designed for stiff
problems are used for the linear term.

This work aims to present a reliable solution approach and
numerically validate some of the theoretical results of the K-S
equation documented in the literature. We verify the results
stated above on the bound of the solution and the preservation
of the periodicity and zero average as observed in [10]. The plan
of this article is as follows: In Section 2, we give comprehensive
outline on the numerical schemes employed, while in Section 3
the convergence of the schemes, the stability of the traveling
wave solution and the chaotic nature of the solution are
validated. We end the section by discussing the properties of the
solution including a computation of the bounds introduced in
earlier literature.

NUMERICAL SCHEMES
The notation adopted here is consistent with those known in
the finite volume discretization literature; see for example [21]. A
uniform mesh, xi+1=2 with fixed width ∆x, where xi = ih, i = 0;
1; 2; m is considered. The uniform time mesh is also employed,
i.e., tn = n∆t, n = 0; 1; 2; with fixed time step size ∆t > 0. To
take into account the discontinuity which may arise due to the
convection equation in finite time, we employ the finite volume
approach so that vin is considered as the approximation to the
cell average of the true solution, thus,

Remark 1  [10]. Discussed the effect of the nonlinear convection
term and the linear term on the solution of the K-S equation.
Their theoretical arguments were established via the operator
splitting method. Our choice of shock capturing schemes for our
numerical approximation is to remove every doubt of nonphys-
ical oscillation that may arise during the simulation. We will be
able to verify our simulation with their theoretical results.

Remark 2 Most of the convection term solvers compared here
are first order schemes (for comparison).

Being first order will reduce the total order of the scheme to one
after the splitting procedure.

The convection term

The convection term is the hyperbolic (inviscid Burgers)
equation. In conservative form, it can be written as

Where f (u) = u2=2; which is a widely studied partial differential
equation and occurs in various areas of applied mathematics. It
has the main property of developing shocks (discontinuities) in
finite time. We employ second order, TVD schemes and some
implicit schemes with a general conservative representation

and is fully implicit (FUIM) scheme when = 1 or Crank-
Nicolson scheme (CNS) when = 0:5. The Godunov scheme
assumes a numerical flux
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Where in is a slope limiter

The non-staggered central difference (NSTG) scheme is a second
order extension of the non-staggered version of the central
difference scheme by Lax-Friedrich (see for example [22], [23])
with a numerical flux

Where a (vi) is the derivative of the flux function with respect to
the argument vi which should be interpreted as the Jacobian
when dealing with systems of conservation laws.

The second order semi-discrete central (SemiD) difference
scheme (see [24], [23], [25]) in the conserva-tive form employs a
numerical flux

Remark 3 throughout, we choose the CFL number to be less
than 1, which is within the stability require-ment of all the
schemes considered.

Here we present a test example to support the choice of schemes
for the convection subproblem. In particular, it is know that the
solution of the advection problem preserves the average energy
density until the formation of the shock [10].

The profiles of E (u (t)) in Fig. 1 show the conservation of
E(u(t)) before the development of shock. This is a generic
behaviour of the solution of hyperbolic equations. The work [10]
claimed that the convection term preserves the mean energy
density before the onset of shock. This is confirmed by all the
schemes through Fig. 1. These profiles also show that the shock
develops at about time T = 1 except for the Godunov scheme.
The semi-discrete central and the implicit schemes agreed with
the approximation of time of shock development while the non-
staggered central scheme depict shock as setting in a little earlier
before T = 1. These all agree with the assertion by [24]. The

down-hill sawtooth behaviour of the mean energy after the
shock in the implicit schemes (which is more pronounced in the
Crank-Nicolson scheme) may be due to oscillation about the
shock region as observed in the earlier work of [26]. Moreover, it
is noteworthy that out of all the schemes, the mean energy
climbs uphill after the shock only in the Godunov scheme. Thus
from here forthwith, we will drop the simulations based on the
Godunov scheme because of its poor performance.

Figure1: Mean energy density profiles for problem (2.7).

The linear terms

In this section, we consider three different schemes to be
compared for the numerical solution of the linear subproblem
(1.5) with = = 1. Via the -scheme, we consider the implicit
schemes in the following form

and = ∆∆xt4 and r = ∆∆xt2 . The scheme is fully implicit if = 1
and Crank-Nicolson (C-N) if = 0:5. We have chosen to ignore
the explicit scheme = 0 because of its restrictive stability
condition which requires a time step of O((∆x)4). This scheme
obviously requires some ghost points which are eliminated
through the boundary conditions. Next, the backward
differentiation formula (BDF2) is considered in the form

Where for n = 1 we apply the backward Euler scheme

With fin as given above. To serve as a benchmark for other
schemes, we also consider the spectral method.

Here, the MATLAB in-built fast Fourier transform is employed
to solve the equation.

For finite domains, the boundary conditions are either periodic
or non-periodic in which for the non-periodic case we have
nonhomogeneous Dirichlet and Neumann
boundary conditions as follows

As a test problem, we present simulations for the growth of
energy   density.   It is claimed,  see  for   example  [10].  that the
energy density for the diffusion problem grows exponentially
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Example 2 we consider

The growth of the mean energy of the diffusion equation as
shown in Fig. 2 agrees with the earlier observa-tions (see [10]. And
the literatures therein). In Table 1 we also present L1 error
calculations when the initial condition is changed to u(x; 0) =
sin(x) – which is also the exact solution to the linear equation.

Figure2: Mean energy density profile for the diffusion term.

From here forthwith, the convection term is solved by any of the
above mentioned schemes while the diffusion term is solved by
the spectral method when dealing with periodic boundary
conditions and BDF2 when dealing with non-periodic boundary
conditions. The C-N scheme was dropped because of computa-
tional cost. Hence, we will refer to the method of solution of the
K-S equation by the scheme used to handle the convection term.
In all the schemes we will choose 320 grid points.

Table1: Error due to each scheme for the numerical
approximation of the linear equation.

Grid points L1 error 104 at T = 1

 CNS Spectral BDF2

20 74:4087 1516:61 74:4253

40 1.55972 773:780 1.56111

80 5:02760 390:024 5:02761

160 1:28539 195:709 1:28539

    

NUMERICAL EXPERIMENTS
In this section we consider the computational domain to be
[ 30; 30] with a focus to compute the solution of the entire K-S

equation using the fractional time step method described in
Section 2. We test the convergence of the proposed scheme via a
test problem where the exact solution is known, [13].

Example 3 Consider

where g(x; t) is
the exact
solution given
by

The profiles of the solution generated by the different schemes
in comparison with the exact solution including the close peaks
are shown in Fig. 3. The deviation of all the numerical schemes
from the exact solution is shown in Fig. 3(a) while Fig. 3(b)
reveals the deviation of each of the schemes at the highest peak.
Of particular interest, the NSTG scheme gives the largest
deviation from the exact solution at the peak.

Figure3: Comparison of the exact solution with the numerical
solutions.

Other schemes From Table 2, when the initial data that
corresponds to the exact solution of the K-S equation was
employed, the explicit schemes behave far better than the
implicit ones. The semi-discrete is consistent in producing the
least possible error out of the explicit schemes. It is also evident
that the non-staggered central scheme is better than any of the.

Table2: Convergence rate of the fractional step for the K-S
equation with initial data that corresponds to the exact solution.

Grid
points

L1 error (convergence rate, p) at
T = 1

Godunov Semi-
Discrete

Non-
staggered

CNS Fully
Implicit

40 1:040 1:373 1:883 1:588 1:608
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80 1:512
(-0.54)

0:535
(1.36)

1:258
(0.58)

0:709
(1.16)

0:688
(1.22)

160 0:950
(0.67)

0:137
(1.97)

0:6011
(1.07)

0:206
(1.78)

0:222
(1.63)

320 0:268
(1.82)

0:178
(2.94)

0:2197
(1.45)

0:056
(1.88)

0:068
(1.71)

640 0:099
(1.43)

0:007
(1.41)

0:0698
(1.65)

0:021
(1.45)

0:028
(1.26)

The traveling wave solution

The traveling wave solution of every time-dependent partial
differential equation gives the solution at all times. Therefore to
test the accuracy of the numerical schemes, it makes sense to
initialize the solution with the traveling wave solution and check
the deviation of the schemes from the traveling wave solution as
time advances, [26]. This is advantageous over any other
solution since the chaotic behavior of (3.4) is restricted to it
being integrated over a finite x domain with periodic boundary
conditions.   Therefore,  following   the   work   of  [26, 28]. (and
references therein), we use the transformation u(x; t) = u(z)
where z = x st, s is

Where the prime denotes the derivative with respect to z. The
wave speed s and the constant of integration c are determined by
the far field solutions as

The wave speed is found via the Rankine-Hugoniot condition to
be

The spatiotemporal behavior of the solution of (3.3) had been
recorded by many authors (see [10, 28, 29, 30] among many). In
[29], they gave the steady solution of (3.4) and studied the
solution as a function of the square of a parameter c. With this,
he classified the behavior of the solution as conical (for large
value of c2), periodic or quasi-periodic (for small values of c2).
Later,     [28].   Classified    the    solution   based  on  the shock
development as either regular shocks, solitary waves or
oscillatory shocks. This they did by observing the far field
behavior of the solution. They also noted that experiments may
show chaotic behavior with respect to traveling waves. Recently,
[30] employed the conditions for solitary and periodic waves to
derive an exact solution to the traveling wave. Here we

implement the oscillatory shock behavior as given in [28]. Thus,
we solve the non-homogeneous ordinary differential equation

In addition, we ensure the first derivatives vanish at both ends.
The nonlinear boundary value problem (3.3) was discretized and
the system of equations derived was solved by the Newton’s
method. We highlight here that our numerical approach was
able to reproduce most of the different families of solutions
predicted in [28]. For the oscillatory shock considered here, we
impose the far field boundary values, ul = 1 = ur, consistent with
the work of [28].

Figure4: Traveling wave solution as standard compared to other
schemes at T = 10.

The results in Fig. 4 were all generated as outlined above. We
highlight that all the schemes produced the same quantitative
behavior. Nevertheless, NSTG and the fully implicit scheme
solution are the closest to the traveling wave solution with the
NSTG giving the least deviation from the traveling wave
solution. The Godunov and the semi-discrete scheme solutions
(overlap) gave the largest deviation of all the schemes.

The chaotic property

In this section we show the capability of the designed scheme to
produce chaotic solutions associated with the K-S equation.

We can see that the numerical simulations in Fig. 5 are
consistent with the work [13]. We highlight the convergence of
the presented scheme from the computations of Fig. 5(a) and
Fig. 5(c). In particular, the grid refinement from 160 to 320 grid
points assert this.
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Figure5: The chaotic solution of the K-S equation with Gaussian
initial conditions up to T = 40.

The mean energy bound

We begin this section by validating the bound for the mean
energy    density    of   the   full K-S  equation. In particular, [10].
claimed that the effect of (2.7) will balance the exponential
growth of (2.12) resulting in a bound for the mean energy of the
entire K-S equation. For the numerical experiment we formulate
the problem as follows

The validation is given in Fig. 6. We note that all the schemes
determine approximately the same bound. However the non-
staggered scheme gives a profile lower that the other schemes.

Figure6: Mean energy profiles for the full K-S equation.

Next, we validate the bound as proved in earlier literatures. We
write the inequality (1.3) above as

Here, p is the exponent of L in each of the inequalities. Hence,
we plot log(∥u(x; t)∥2) against log(L) and the slope of the graph
gives the value of p. This we show in the figures below for each
of the fractional splitting schemes and the spectral method. The
conjectured bound is of O(L) (see [31]. And literatures therein).
The value of the slope of each of the graphs in Fig. 7 a agrees
with this claim.

It is obvious that the value of p (0:976659) given by NSTG
scheme is lower than the rest. For the Fully implicit scheme p =
1:00469, for the C-N scheme p = 1:0074, for semi-discrete
scheme p = 0:998822. Fig. 7b shows the system size
independence of the quantity

as proved theoretically in [12]. Hence, the expression in (3.7)
should be of O(L0). Our computation reveals that the exponent
is 0:0202529, 0:000108553, 0:006311 and 0:000948 for the
NSTG, semi discrete, fully implicit and C-N schemes
respectively. It is also evident from the Fig. 7b that NSTG
deviates much from all other schemes. It is obvious from the
Figure that the semi-discrete and the implicit schemes behave
equally well unlike the non-staggered central scheme.

CONCLUSIONS
In this paper we validated the bounds of the solution to the K-S
equation as documented in the literature and several properties
mentioned in section 2 using the fractional time-splitting
method. We used several numerical examples to highlight the
capabilities of the method. For the Burger’s equation, we
showed that our selected schemes conserve energy before the
onset of the shock while the energy density grows exponentially
for the linear terms. When the fractional time-splitting scheme
is implemented, we showed that the mean energy of the full
scheme is bounded.

The results presented allow us to point at the efficiency,
accuracy and stability of the presented schemes. In particular, all
the schemes required less than 60 seconds of computer time on
a 2.50 GHz Windows PC with 2.0GB of RAM. In summary, the
NSTG scheme performed better than all the other schemes
considered in this work. This can be seen in Table 2 and backed
by comparison of the schemes to the exact solution as given in
Fig. 3(b).

On the validation of the zero average, the implicit schemes
perform better than the explicit schemes. The little deviations of
up to 10 3 from zero are observed for the explicit schemes.
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Considering the dependence of the L2 norm of the solution on
the system size and system size independence of the quantity

The implicit and the semi-discrete schemes perform better than
the NSTG.

In this article, we have employed first order schemes for our
simulations. It is possible to improve both the spatial and
temporal order of accuracy of the simulation in this article. Very
soon, we will present results towards this by employing both
standard and nonstandard spatial discretization while
exponential time differencing coupled with RungeKutta will be
used to step in time.
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