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Introduction
Nowadays, brines properties play a pivotal role in various engineering 

and scientific scopes including chemical, physical, geochemical, and 
geothermal domains. More specifically, these researches are mostly 
accomplished around fluid inclusion surveys, CO2 sequestration, water 
desalination, studies of fluid-rock interaction, fluid flow simulation 
and enhanced oil recovery (EOR) [1-3]. Take for instance drilling 
industry, which is well recognized as a costly operation, most of drilling 
fluids categorized as water based fluids are whether built on the basis of 
brine or in evident contact with salt formations, either ways the brine 
density take an undeniable part during the whole drilling procedure. 
Conventionally, a drilling operation faces serious challenges, which 
are in close relation with brine density and solubility through the fluid 
[4]. In other words, the brine density can be a representative index of 
well overhead pressure as well as affecting numerous parameters such 
as pH, contaminations (Ca++, Mg++), shale swelling problem, wash out 
problem, waste management, etc. Therefore, by determining the brine 
density precisely not only can we pave the way for a safe and secure 
operation but also we can manage different problems appropriately. 
Moreover, brine completion fluid has widespread application in 
completion and workover operations [5]. Generally, such fluids own 
high density to provide high fluid column hydrostatic pressure as 
well as overcoming high formation pore pressure. The aforesaid fluid 
should be solid free, thus the defined fluid weight should be obtained 
from saturated salts solutions including CaCl2, CaBr2 and ZnBr2 [6]. 
The effect of temperature, pressure, and concentration on the brine 
properties is undeniable. Thus, precise estimation of brine density is 
required not only to prevent inaccurate determination of overhead 

pressure, which cause overbalance condition but also to avoid high 
cost of expensive completion fluid due to its overproduction in case the 
well experiences serious loss through the formation. In addition, the 
phase equilibrium and PVT properties of the CO2-NaCl–H2O system 
have been investigated broadly since it has extensive applications in 
geochemical processes [7,8]. A wide research effort in determining 
PVT properties of CO2-NaCl–H2O geological fluids in industrial 
processes including the oil and gas production, Enhanced Oil Recovery 
(EOR), natural gas clathrate engineering, geothermal exploitation, the 
exhaust gases treatment, supercritical fluid extraction and oxidation, 
wastewater and waste liquids, fertilizers, and seawater desalination, 
etc. vouches for the fact that recent interests are developing around 
PVT behavior of CO2-NaCl–H2O geological fluids [9]. Interestingly, 
obtaining precise PVT properties of brine is requisite for avoiding 
errors in prediction of other petroleum parameters [10]. As a matter 
of the fact, with a recent considerable growth in oil production rate, 
the amount of brine production increases accordingly. There is no 
doubt that managing such a great amount of produced brine requires 
a tremendous cost. More elaborately, aquifers are the available water 
surround hydrocarbon reservoirs and assist the reservoir to produce 
robustly in various ways: peripheral water drive, edge water drive, and 
bottom water drive [11]. Through so-called water drive approach the 
new wave of brine pushes the hydrocarbon and increases the reservoir 
pressure in order to produce with a higher flow rate. Unfortunately, 
brine may also be produced in conjunction with hydrocarbon. The 
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more the reservoir produces, the lower the reservoir pressure becomes 
and the more the brine will be produced. The production of brine 
along with hydrocarbon would have an adverse effect on the produced 
hydrocarbon both qualitatively and quantitatively [12]. This would 
even cause well shut-in due to lack of appropriate surface treatment. It 
is important to note that in some cases even in reservoirs enjoying most 
recent modern approaches the produced fluid contains more than 90% 
brine in volume [13]. Furthermore, it is contented by many recent 
research surveys that the hydrocarbon recovery through the water 
flooding approach can be boosted by means of adjusting the salinity of 
injected brine [14]. To this end, brine properties should be determined 
with the utmost accuracy. The most outstanding properties are density, 
viscosity, and solubility. Getting acquainted with aforementioned 
properties is crucial for evaluating the effect of volume and movement 
of water in the reservoir, wellbore, and through the surface facilities 
[15]. In general, widespread applications of brine properties in other 
fields induce a vast surge in literature to be engendered elaborately 
[16-19]. The properties of brine can be obtained through different 
approaches including laboratory experiments, available models and 
correlations, and also soft computing methods. Actually, laboratory 
studies were recognized to be the most solid and precise method. 
Nevertheless, this approach was found to be expensive and time-
consuming [20]. Thus, in the absence of laboratory experiments, other 
methods such as implementing empirical models and correlations 
were preferred to determine brine properties. However, these models 
are suffered from uncertainties and limitations [21]. All in all, apart 
from the time and cost issues, the success of different vital operations 
pivots on implementing the right approaches. Hereupon, the power 
of economy in associate with high degree of accuracy expected for 
determination of brine properties force us to seek for new alternatives 
to fulfill this demand. In following a review of all mentioned methods 
is provided.

Determination of brine properties
Basically, there are three main approaches appertain to 

determination of brine properties.

1- Methods, which are on the basis of laboratories surveys;

2- Methods, which link the brine properties to the empirical 
correlations; and 

3- Methods, which are based on soft computing analysis.

These three approaches are discussed further below.

Laboratorial studies
Thus far, extensive experimental studies have been conducted to 

determine brine density in a wide span of temperature, pressure, and 
concentration. Gibson and Loeffler [22] reported the specific volume 
of brine for temperatures between 29815.15 and 385.15 K, pressures 
from 0.1 to 100 MPa, and salinity from 5 to 25 wt% NaCl. Hilbert [23] 
accomplished a massive research work to measure the specific volume 
of brine for temperatures, pressures, and salinities from 293.15 to 673.15 
K, 10 to 400 MPa, and from 0 to 25 wt% NaCl, respectively. Ghafri et al. 
[24] reported the density of NaCl (aq) in a temperature range between 
283 and 472 K and pressures up to 68.5 MPa and molality of 1.06, 3.16, 
and 6 mol/kg. In a similar attempt, Kumar [25] measured the density 
of SrCl2 (aq) for temperatures of 323.15 to 473.15 K and at pressure of 
202.7 MPa and for concentrations up to 2.7 mol/kg. Pitzer et al. [26] 
conducted an experimental study to measure the densities of MgSO4 
and Na2SO4 up to 470 K, 10 MPa and 1 m ionic strength. Similarly, 
Obsil et al. [27] examined densities of Na2SO4 (aq) and K2SO4 (aq) using 

vibrating-tube densitometry at temperatures from 298.15 K to 572.7 K 
and pressures up to 30.7 MPa as well as at concentrations of 0.01 mol/
kg to 1.0 and 0.5 mol/kg, respectively. Moreover, the density of NaCl 
(aq) and other salts were reported by Gates and Wood [28] from 0.1013 
to 40 MPa and temperature of 298.15 K and in a concentration range of 
0.05 to 5.0 mol/kg. Crovetto et al. [29] measured the vapor pressure and 
density of NaCl (aq) at temperature of 623 K and at molalities of 0.25, 
0.5, 1, and 3 mol/kg. Sharygin et al. [30] investigated the densities of 
aqueous solutions of Na2CO3 and NaHCO3 for temperatures in a range 
of 298 K to 623 K and pressures up to 28 MPa and with molalities from 
0.1 mol/kg to 1.0 mol/kg implementing vibrating-tube flow densimeter. 
Further experimental research efforts can be found elsewhere in open 
literature [31-35].

Empirical correlations

Hass [36] presented a model to estimate the density of vapor-
saturated NaCl (aq) applying the empirical Masson’s Rule. This model 
is applicable to predict density in a temperature range of 348.15 to 
598.15 K and up to saturation of 7.3 molal. Similarly, Philips et al. [36] 
brought forward a model to determine brine density for temperatures, 
pressures, and malalities of 283.15 to 623.15 K, up to 50 MPa, and 0.25 
to 5 mol/kg, respectively. This model can predict the experimental 
values with maximum uncertainty of ± 2%. In another attempt, Rogers 
and Pitzer [37] conducted a very elaborated computational research 
to introduce a semiempirical model in order to explain thermal 
properties of NaCl (aq) for concentration range of 0.1 to 5 molal as well 
as determine volumetric data for temperatures from 273.15 to 573.15 K 
and pressures of 0 to 100 MPa. As a result, they provided comprehensive 
reports for values of expansivity, specific volume, and compressibility 
versus temperature, pressure, and molality. Ghafri et al. [1] developed 
an empirical model to predict the density, apparent molar volume, and 
isothermal compressibility of various brines employing corresponding 
experimental data. They were taking into account the whole range 
of experimental data including temperature, pressure, and malality. 
Bahadori et al. [38] presented an Arrhenius type function to discern 
the different characteristics of reservoir brine such as density, vapor 
pressure, and enthalpy over a wide range of 5-25% salt content by mass, 
and temperatures above 303.15 K. The aforementioned model enjoys 
lower roundoff error by excluding massive complexities of mathematics 
and provided in a pretty user-friendly configuration. More correlations 
are available in literature [39,40].

Soft computing techniques

Nowadays, soft computing approaches are well recognized as 
beneficial robust tools, which take a significant part in analyzing 
and unraveling challenging problems in various scopes of science 
and engineering (for instance [41-46]). The preponderance of these 
computer based approaches includes determining a target function 
with high degree of precision compared to many published empirical 
and analytical solutions [47,48].

Intelligent methods including the artificial neural network (ANN) 
[49-51], Adaptive Neuro-Fuzzy Inference System (ANFIS) models 
[52,53], Least Square Support Vector Machine (LS-SVM) [54-56], 
Multilayer Perceptron Neural Network (MLP-NN) [45,57-59], 
and Radial Basis Function Neural Networks (RBF-NN) [60-62] are 
amazingly robust and reliable tools for data analysis and interpretation 
that can be employed to predict regression and classification problems.

LS-SVM and MLP-NN as intelligent methods have been 
satisfactorily implemented in many scopes of science and engineering 
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to unravel very complexes computational challenges; a fact evidently 
acknowledged by recent researches organized around investigating 
PVT properties of reservoir hydrocarbons [54,55,63,64], pressure 
gradient estimation of multiphase flow [65,66], and retention and 
solubility determinations [67,68]. In addition to previous domains, 
Arabloo et al. [69] proposed a LS-SVM algorithm to estimate properties 
of reservoir brine including liquid saturation vapor pressure, density 
and enthalpy. The model results were in acceptable agreement with the 
experimental data regarding the R2 value of 0.999. Moreover, Kamari 
et al. [70] presented an analogous model to determine crude oil salt 
content, their model was tested over 63 data points from literature, 
which exposed satisfactory accuracy thanks to high R2 value of 0.9999. 
Tatar et al. [71] investigated the reservoir brine properties using 
RBF-NN. The results for density, enthalpy and vapor pressure were 
comparatively convincing with respect to low corresponding RMSE of 
0.270810, 0.455726, and 1.264687, respectively. In a similar attempt, 
Tatar et al. [72] implemented MLP and GA-RBF models to determine 
reservoir formation water density. Their models exposed high accuracy 
since the estimations were in good agreement with experimental data 
regarding low RMSE of 3.27E-05.

Based on the convincing background of incorporating least square 
support vector machine and multilayer perceptron neural network to 
resolve an extensive range of engineering problems, we are pursuing 
ongoing development and application of LS-SVM and MLP-NN for 
modeling of brine density of different salts. Therefore, the objective 
of this study is to develop robust soft computing based models for 
accurate determination of the density of the brines of different salts 
for a wide range of concentrations. Underlying the contribution of the 
article, our developed LS-SVM and MLP-NN models cover a broad 
range of input flow data including 1868 data sets. Worth noting that 
the input data cover both natural and synthetic brine densities, which 
are gathered for the first time.

Indeed, the superior high accuracy in determining density of the 
brines of different salts is provided implementing the proposed LS-
SVM and MLP-NN models, which reveals that the aforesaid models 
would be great assets for science and engineering activities in this 
domain. The remainder of this article is organized as following; 
section 3 appertains to background and development of each model. 
Afterwards, the result of proposed models will be presented in section 
4 and both models will be compared with each other. At last, section 5 
brings forward a conclusion of the article.

Details of Model
Data acquisition

In order to develop a reliable model it is essential to incorporate 
valid and authentic data, which covers a wide range of variables [45,73-
75]. A set of 1868 data point are utilized in this study, which is gathered 
from literature [1,24]. The density of pure brines of CaCl2, MgCl2, KI, 
NaCl, KCl, AlCl3, SrCl2, Na2SO4, and NaHCO3 as well as their different 
combinations with different salt concentration are investigated in this 
study. Salt concentration of the samples spans in the range of 0.359-6 
mol/kg. The details of the input and output parameters are listed in 
Table 1.

Backgrounds of modeling

Artificial neural networks are algorithms capable of learning from 
experience, improving their performance and adapting themselves 
to the changes in the environment [76]. ANNs have been used for 
monitoring, controlling, classification, and simulation of activated 

sludge processes. ANNs can provide numerous benefits such as ability 
to process a large amount of data and generalize the results, require 
much less statistical training process, able to diagnose nonlinear 
relationships between dependent and independent parameters 
implicitly as well as capable of diagnosing all possible interactions 
between predictor parameters.

On the other hand, the “black box” nature of ANNs, the great 
computational stress, susceptibility to over-fitting, and the empirical 
nature of model generation are the most evident disadvantages of 
ANNs [44,77]. The two implemented models are described further 
below.

The support vector machines: The support vector machine (SVM) 
is a supervised learning technique from the field of machine learning 
with capability of both classification and regression analysis [78-81]. 
On the other side, the necessity to resolve a large-scale quadratic 
programming problem is one of the main defects of the SVM [82]. 
To deal with this challenge, a new technique so-called Least-Squares 
SVM (LS-SVM) is presented, which is a modification of the traditional 
SVM. This technique solves linear equations (linear programming) 
rather than quadratic programming problems to attenuate the 
complexity of optimization process [83-85]. Considering the problem 
of approximating a given dataset 1 1 2 2{( , ), ( , ),.......( , )}N Nx y x y x y  
with a nonlinear function: 

( ) , ( )f x w x b= 〈 Φ 〉 +                                (1)

Where 〈.,.〉 represent dot product; Φ(x) represents the nonlinear 
function that applies linear regression; b and w are bias terms and 
weight vector, respectively. In LS-SVM for function prediction, the 
optimization problem is formulated as [82,86]:

2 2

, , 1

1 1min  
2 2

N

kw b e k
J(w,e) w eγ

=

= + ∑                        (2)

s.t.  , ( )     1,...,k k ky e w x b k N= + 〈 Φ 〉 + =     (3)

where, ek∈R are error variables; and γ ≥0 is a regularization constant. 
To solve this optimization problem, Lagrange function is established 
as [82, 86]:

{ }2 2

1 1

1 1 , ( )
2 2

N N

LS SVM k k k k k
k k

L w e e w x b yγ α−
= =

= + − + 〈 Φ 〉 + −∑ ∑  (4)

where, αkR are Lagrange multipliers. The solution of Eq. (4) can be 
determined by partially differentiating with respect to w, b, ek and αk 
[82,86]:

Input parameter Minimum Maximum Average Standard 
Deviation

CaCl2 (mole fraction of salt) 0 1 0.113892 0.305974
MgCl2 (mole fraction of salt) 0 1 0.111973 0.311183

KI (mole fraction of salt) 0 1 0.105996 0.307915
NaCl (mole fraction of salt) 0 1 0.274283 0.413956
KCl (mole fraction of salt) 0 1 0.121051 0.298603
AlCl3 (mole fraction of salt) 0 1 0.034261 0.181948
SrCl2 (mole fraction of salt) 0 1 0.101313 0.3016

Na2SO4 (mole fraction of salt) 0 1 0.069138 0.250543
NaHCO3 (mole fraction of salt) 0 1 0.068126 0.25071

Salt Concentration (mol/kg) 0.359 6 2.232862 1.63979
T (k) 283.15 473.02 379.5151 57.82789

p (Mpa) 0.9 68.6 35.40075 22.17534
ρ (kg/m3) 891.65 1406.89 1098.936 100.0464

Table 1: Statistical values of the input and target data.
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value and error is calculated. Because the essence of the supervised 
learning paradigm, error is back-propagated through the network to 
regulate weights and biases. Here, the other type of signal, namely, 
error signal is implemented. This signal propagates backward from the 
output neurons into the network. Figure 2 indicates a portion of the 
MLP network demonstrating function and error signals [89].

Hidden layer neurons take a significant part in performance of 
the MLP as they behave as feature detectors. During training process, 
hidden neurons start to reveal the features of dedicated data for training. 
This is accomplished by nonlinear transformation of the input data to 
feature space. In the new space, it is may be easier to separate data from 
each other for classification. Formation of feature space makes the 
difference between multilayer perceptron and Rosenblatt perceptron. 
Each neuron uses an activation function. Sigmoid functions, which are 
"S" shaped graph, are the most frequent type of activation functions. 
Further details about Sigmoid functions is available in literature [90].

Designing LS-SVM and MLP models representing density of 
brines

The first step to start the simulation is data normalization. All the 
data points including input and output parameters were normalized 
between -1 and 1 using the following formula:

2 1Min
Normal

Max Min

x xx
x x

−
= × −

−
                     (10)

At the next step, 80% of the total data were randomly allocated for 
training and the rest for testing the developed networks. This division is 
such that there is no local accumulation of train or test data points. Matlab® 
2014a was utilized to implement the MLP-NN and LS-SVM codes.
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By defining 1v = [1;…1], Y = [y1;…;yN], α = [α1;…;αN] and excluding 
w and e, the following linear equations are obtained [82]:

1

00 1
1

T
N

N N

b
YI αγ −

     
=     Ω +     

                       (6)

where, IN refers to an N×N identity matrix and Ω is the kernel matrix 
that is introduced as [82]: 

( ) ( ) ( , ),      , 1lk l k l kx x K x x l k ,...NΩ =Φ Φ = =                   (7)

There are several kernel functions including linear, spline, 
polynomial, and radial basis function [87,88]. On the side, radial basis 
function, a Gaussian function, and polynomial function are the most 
widespread functions.

)/exp(),( 22 σlklk xxxxK −−=                               (8)

d
l

T
klk cxxxxK )/1(),( +=                      (9)

where, σ denotes the width of the RBF, which controls the regression 
capability and  d is the polynomial degree.

Multilayer perceptron networks: Multilayer Perceptron Neural 
Networks (MLP-NNs) consist of three different kind of layers, 
namely, input layer, hidden layer(s), and output layer (Figure 1). A 
single MLP may have one or more hidden layer. Each layer comprises 
some neurons accordingly. The number of neurons in the input and 
output layers are attributed to the number of input and output data, 
respectively. The number of hidden layers as well as included neurons 
in them is optional and can be specified either intelligently or by trial 
and error to gain the most efficient performance. Minimum Square 
Error (MSE) demonstrates the performance of the presented network. 
In such networks, the error is back-propagated through the network 
and the weights and biases are optimized through some iteration called 
epochs. The number of epochs should be determined in a manner 
that the network neither undertrain nor overtrain. In the former, the 
network does not have sufficient time to complete the learning process. 
In the latter, the network does not learn but memorizes. This leads to 
poor performance of network in estimation of test data set. Figure 1 
demonstrates a general form of a fully connected multilayer perceptron 
with two hidden layers.

There are two different types of signals in MLP network, namely, 
function signal and error signal. In each node that function signal 
passes, it is calculated as a function of the inputs values and their 
corresponding weights and biases. This signal is also called input 
signal. No computational task is performed in input neurons. In 
following layers, the activation levels are calculated in each neuron 
and the results are propagated through the next layers until reaching 
the output layer. The output of the network is specified in the output 
layer's neuron(s). Afterwards, this value is compared with the target 
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Figure 1: Structure of a fully connected multilayer perceptron with two hidden 
layers [90].

 

Figure 2: Direction of different signal propagation in an MLP 
network.
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Figure 2: Direction of different signal propagation in an MLP network.
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Development of LS-SVM: In order to prevent overfitting problems, 
the data set was separated into two subdata sets. To this end, 80% and 
20% of the main data set was randomly selected for the training set and 
test set, respectively.

During the computation, the extensively implemented kernel 
function, i.e., radial basis function (RBF), has been utilized. It has the 
general form as following [63,64,91]:

)/exp(),( 22 σlklk xxxxK −−=                  (11)

in which, σ is a decision parameter that is determined during the 
optimization calculations [84]. 

The Mean Square Error (MSE) between the developed model 
results and corresponding experimental data reported in the literature, 
as defined by equation (12), was considered as objective function 
during model computation [92,93].

( )∑
=

−=
n

j
jj ot

n
MSE

1

21
                       (12)

in which t and o are target value and estimated value, respectively; and 
n is number of the data points.

Development of MLP-NN: Cybenko [94] stated that it is 
mathematically proved that every function can be estimated adequately 
by an MLP-NN with only one hidden layer. Therefore, only MLP-NNs 
with only one hidden layer are investigated in this study. Different 
MLP-NNs structures with 4-25 neurons in the hidden layer were 
examined and finally it was proved that the MLP-NN with 24 neurons 
in the hidden layer leads to the best prediction of brine density. The 
MSE of the examined neural networks is shown in Figure 3.

Accuracy of the proposed model and validation

Both graphical and statistical methods are utilized to validate and 
show the accuracy of the proposed models. Four different statistical 
parameters including correlation factor (R2), Average Absolute 
Relative Deviation (AARD), Standard Deviation (STD), and Root 
Mean Squared Error (RMSE) are employed (Equations (13)-(16)) to 
investigate the accuracy of the proposed models. The formulation of 
these parameters is as follows:
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Results and discussion
The LS-SVM has two tuning parameters called, γ and σ2. Utilizing 

simulated annealing optimization algorithm, the optimal values for 
the mentioned values were determined to be 3630241399 and 7.58, 
respectively.

The statistical parameters obtained from the developed models are 
demonstrated in Table 2. The statistical parameters are including R2, 
AARD, STD, and RMSE. As it can be seen, the statistical parameters 
are calculated for both train and test data sets. With regard to high 

values of correlation factor for MLP-NN and LS-SVM models, which 
are 0.999999 and 1.000000, respectively, both developed MLP-
NN and LS-SVM models enjoy high level of accuracy in predicting 
experimental data. Furthermore, low values of AARD, STD and RMSE 
for proposed MLP-NN model which are 0.006893, 0.000115 and 
0.117512, respectively, validate the great authenticity of the MLP-NN 
model.  Moreover, the low values of AARD, STD and RMSE obtained 
from the proposed LS-SVM models which are 0.003657, 5.11E-05 and 
0.054512, respectively well demonstrate that the model estimations are 
in great accordance with experimental data points.

Accuracy of the developed models is further investigated by means 
of graphical analysis methods such as cross plot, relative deviation, 
and error distribution. Cross plots indicate the degree of validation, 
whereas error distribution explains if the developed models have an 
error trend.

Figures 4-7 are indicative of comparison between MLP-NN and 
LS-SVM models estimated/represented brine density and target 
(experimental) values for both train and test data sets.

Figures 4(a) and 4(b) display a scatter plot of experimental brine 
density versus developed MLP-NN and LS-SVM models estimation, 
respectively. These plots are for both train and test data sets. At it is 
displayed, presence of almost all data points on the bisector of the first 
quadrant leads us to a conclusion that a close agreement is obtained 
between the predictions of both MLP-NN and LS-SVM models and the 
experimental data points for both train and test data sets.

The degree of correspondence between experimental data points 
and MLP-NN and LS-SVM models estimated values is further 
demonstrated in Figures 5(a) and 5(b), respectively. Figure 5 displays 

 

 

 Figure 3: Performance of different MLP networks. The horizontal and vertical 
axes denote number of neurons in the hidden layer and the MSE as the cost 
function, respectively.

R^2 AARD STD RMSE N

MLP-NN
Train Data 0.999999 0.006483 0.000101 0.104272 1494
Test Data 0.999998 0.008532 0.000159 0.159809 374
All Data 0.999999 0.006893 0.000115 0.117512 1868

LS-SVM
Train Data 1.000000 0.003246 4.46E-05 0.047559 1494
Test Data 0.999999 0.0053 7.15E-05 0.076201 374
All Data 1.000000 0.003657 5.11E-05 0.054512 1868

Table 2: Statistical parameters of the proposed models.
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Figure 4: Cross-plot of experimental data versus predicted data by the proposed (a) MLP-NN and (b) LS-SVM models.
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Figure 5: Relative error deviation between real and predicted values for (a) MLP-NN and (b) LS-SVM models.

the relative deviations of the proposed models predictions versus 
experimental data points for both train and test data sets. According 
to the Figure 5, the predicted brine densities are in a desired agreement 
with target values since the distribution of relative deviation is close 
to the horizontal line and almost coincides that. For the sake of better 
visual comparison, the estimated and target values are displayed 
simultaneously versus the data point number (i.e., data index) for both 
MLP-NN and LS-SVM models in Figures 6(a) and 6(b), respectively. It 
goes without saying that coincidence of the experimental and predicted 
values signifies the accuracy of both MLP-NN and LS-SVM models. 
In order to shed more light on the reliability of developed models, the 
error distribution plot is demonstrated for both proposed models in 
Figure 7. For both models, as it is displayed, the error distribution is 
completely symmetric around the center of 0. To round it off, RMSE 
bar plot of both MLP-NN and LS-SVM models is illustrated for train, 
test, and all data sets in Figure 8. The result explains that the LS-SVM 
model slightly outperforms MLP-NN model, however, both models 
enjoy great accuracy with respect to low values of RMSE (0.054512 and 
0.117512, respectively) and other statistical parameters including R2, 
AARD and STD.

Conclusion
Various scopes of industry face a serious challenge for precise 

determining of brine density. These scopes are more around fluid 
inclusion surveys, CO2 sequestration, studies of fluid-rock interaction, 
drilling industry and Enhanced Oil Recovery (EOR). In spite of recent 
breakthrough in determining brine properties including brine density, 
a swift reliable model is required for an accurate determination of 
brine density. Hereupon, two soft computing models named, LS-SVM 
and MLP-NN have been proposed in this paper to address this need. 
These models cover both natural and synthetic brines as well as an 
extensive range of input parameters including temperature, pressure, 
and concentration.

The reliability of designed models was verified in favor of 
employing statistical parameters. Indeed, the LS-SVM and MLP-NN 
revealed R2 of 1.000000 and 0.999999, AARD of 0.003657 and 0.006893, 
STD of 5.11E-05 and 0.000115 and RMSE of 0.054512 and 0.117512, 
respectively. Hereupon, it can be concluded that developed models are 
reliable enough to predict brine density, which correspondingly they 
can be implemented to assist delicate industrial designations.
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Figure 6: The estimated and target values versus the data point number (i.e., data index) for (a) MLP-NN and (b) LS-SVM models.
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Figure 7: Histogram of error distribution for density values prediction by (a) MLP-NN and (b) LS-SVM models.
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