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Biological damage resulting from exposure to radiation results 
from either single (SSB) or double (DSB) strand breaks in DNA. 
Relatively few such breaks are produced by direct hits of ions on 
DNA, most damage being done by fragmentation products of water. 
Understanding the interaction of massive radiation, such as protons 
or alpha particles, with biological targets, including water, becomes 
increasingly important as we seek to protect healthy cells from 
radiation damage.

The problem of describing and explaining the effects of radiological 
action on biological systems is tremendous, [1,2] as the problem 
extends over many orders of magnitude in complexity, time scale, and 
size. In any such process, where there is exposure of a biological entity 
to radiation, there are long chains of sequential and parallel actions, 
as well as possible non-linearities between initial radiations induced 
molecular changes and final biological effects [3]. The chain of events 
begins with the initial interaction of the radiation with a biomolecule, 
and it is this initial process that is considered here. This is done by 
applying quantum mechanical molecular electronic structure theory to 
the problem. 

Massive particles (ions) deposit energy in a molecule by collision 
with either the electrons, the dominant mechanism at higher collision 
energies, or with the nuclei of the molecule, which is more important 
at lower collision energies. In either case, the collision typically results 
in electronic excitation of the target molecule, followed by ionization, 
decay, emission of secondary radiation, and/or fragmentation. In the 
case of a swift ions colliding with a biomolecule, the energy deposition 
is done predominantly at the end of the ion’s track through the target 
just before the particle comes to rest.

Perhaps the most spectacular form of radiation, due to the large 
amount of energy that it can deposit in matter, comes from impact of 
highly charged, high energy heavy ions (e.g. Xe18+) with biomaterials. 
Most ionic radiation is not so spectacular, however, and consists of swift 
protons and alpha particles. These particles also ionize and fragment 
water as well as causing damage by direct hits on a biomolecule.

Consider the very first steps in the energy deposition by a fast ion 
colliding with a biomolecule. The single materials parameter that best 
describes the energy transfer from the projectile to the target, called 
the ion stopping power of the target molecule, is the mean excitation 
energy (vide infra) of the target, and that is the quantity that we focus 
on here.

The simplest quantum mechanical treatment of energy transfer by 
a fast ion of mass M and charge +Ze to a target atom or molecule is that 
of Bethe [4] which we consider here.

Energy transfer to a molecule by a fast ion is frequently described 
in terms of the so called linear energy transfer (LET), or stopping 
power dE dx− , of the target molecule [5,6]. To avoid problems when 
comparing stopping in targets of different densities, one frequently 
considers the stopping cross section S(v):

( )dE N S v
dx

− = 		(1)

Where N is the number density of the scatterers, and v is the 
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projectile velocity. The cross section is derived by standard time-
dependent perturbation theory [7].

Expanding the time-dependent and employing the machinery 
of time-dependent perturbation theory, yields the differential cross 
section ( )n q dqσ as function of the momentum transfer q. The 
differential cross section is essentially the number of ions experiencing 

a momentum transfer nq q k k= = −
 



 in the inelastic scattering while 

leaving the molecule in the excited state nΨ  with energy nE . The total 
cross section is obtained by summing over all excited electronic states 
of the molecule, bound as well as continuum states, and integrating 
over all possible values of the momentum transfer q.
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Finally, carrying out the summation and integration and comparing 
the result to equation (2), one obtains the Bethe expression for the 
stopping cross section:
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where the quantity I0 is known as the mean excitation energy of the 
target, and is defined as the first energy weighted moment of the dipole 
oscillator strength distribution (DOSD) of the target
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Here the summation is over transitions from the ground state to 
all bound excited states n having energy En and with dipole oscillator 
strength f0n, and integration over all excited continuum states of the 
target molecule.

Inokuti pointed out [8] that “The mean excitation energy, I0, is the 
sole nontrivial property of matter appearing in Bethe’s expression for 
the stopping power for a charged particle at high speed”. The mean 
excitation energy measures the difficulty with which a target molecule 
can absorb energy from a massive projectile. Large mean excitation 
energies correspond to greater difficulty for the absorption of energy 
by a target molecule, and thus lead to lower stopping power. We will 
thus concentrate on the mean excitation energies of the biomolecules 
as descriptors of their interaction with swift ions.
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In this simplest version of stopping theory according to Bethe [4] it 
is assumed that the projectile velocity v is considerably larger than the 
velocity of the electrons in the target molecule. In order to extend the 
treatment to the case of smaller projectile velocity, equation (3) can be 
generalized to

)(4)( 2
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where the stopping number, L(v), is extended by so-called shell 

corrections, ( )

e
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Which approach zero for increasing projectile velocities.

The vertical electronic excitation energies, En – E0, and associated 
electronic transition dipole moments for a molecule that are needed 
in order to obtain the mean excitation energies according to equation 
(4) can conveniently be extracted from the linear response function or
polarization propagator [9].

This approach yields a finite number of excitations. As a result, 
the integrations over the continuum states in equation (4) are done 
numerically using the excitation energies with energies larger than the 
first ionization energy of the system, called pseudo-states, as integration 
points. We have found that this discretization of the continuum works 
well provided sums over the entire excitation spectrum are taken [10]. 
The DOSD sum rules and mean excitation energies in equation (4) 
are then obtained by explicit summation of the oscillator strengths 
to all bound states and to the discrete continuum pseudo-states. 
Experience indicates that about 12% of the mean excitation energy 
is due to excitation to bound states, while the remaining 88% comes 
from transitions into the pseudo-states for the biomolecules we have 
considered.

Experience also shows [11] that some amount of electron correlation 
is needed in order to calculate reliable spectral moments of the DOSD. 
One needs to calculate the propagator at least at the level of the time-
dependent Hartree-Fock, also called the random phase approximation 
(RPA), [12,13] which implies using a Hartree-Fock self-consistent 
field wave function as the function the linear response of which we 
are calculating. The RPA adds correlation in both ground and excited 
states in a balanced way [14]. Alternatively time-dependent density 
functional theory (TD-DFT) [15-17] can successfully be employed in 
the calculation of DOSDs and thus mean excitation energies.

This scheme has been quite successful fin the study of the interaction 
of fast ions with biomolecules [18].
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