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Introduction
Research into carbon nanocones (CNC) started almost at the same 

time as the discovery of carbon nanotube (CNT) in 1991. In resent 
years, nanostructures involving carbon have been the focus of an 
intense research activity, which is driven to a large extent by the quest 
for new materials with specific applications. Ball studied the closure of 
(CNT) and mentioned that (CNT) could sealed by a conical cap, [1]. 
The official report of the discovery of isolated CNC was made in, 1994 
when Ge and Sattler reported their observations of carbon cones mixed 
together with tubules an a flat graphite surface [2]. This are constructed 
from a graphene sheet by removing a 60º wedge and joining the edges 
produces a cone with a single pentagonal defect at the apex. If a 120º 
wedge is considered then a cone with a single square defect at the apex 
is obtained. the case of 240º wedges yields a single triangle defect at the 
apex [3-5].

Topological indices are graph invariants and are used for 
Quantitative Structure - Activity Relationship (QSPR) and Quantitative 
Structure - Property Relationship (QSPR) studies, [6-8]. Many 
topological indices have been defined and several of them have found 
applications as means to model physical, chemical, pharmaceutical and 
other properties of molecules. 

A topological index of a molecular graph G is a numeric quantity 
related to G. The oldest nontrivial topological index is the Wiener 
index which was introduced by Harold Wiener. John Platt was the 
only person who immediately realized the importance of the Wiener’s 
pioneering work and wrote papers analyzing and interpreting the 
physical meaning of the Wiener index. 

We now recall some algebraic definitions that will be used in 
the paper. Let G be a simple molecular graph without directed and 
multiple edges and without loops, the vertex and edge-sets of which 
are represented by V(G) and E(G), respectively. The vertices in G  are 
connected by an edge if there exists an edge uv∈E(G) connecting
the vertices u and v in G so that u,v∈V(G). In chemical graphs, the
vertices of the graph correspond to the atoms of the molecule, and 
the edges represent the chemical bonds. The number of vertices and 
edges in a graph will be defined by |V (G)| and |E (G)|  respectively. In 
graph theory, a path of length n in a graph is a sequence of n+1 vertices 
such that from each of its vertices there is an edge to the next vertex 
in the sequence. A vertex is external, if it lies on the boundary of the 
unbounded face of G, otherwise, the vertex is called internal.  

 The distance ),( vudG  is defined as the length of the shortest path 

between u  and v  in G. D(u) denotes the sum of distances between u
and all other vertices of G. For a given vertex u  of V(G) its eccentricity, 
ecc (u), is the largest distance between u and any other vertex v  of G.
The maximum eccentricity over all vertices of G is called the diameter 
of G and denoted by Diam(G) and the minimum eccentricity among 
the vertices of G is called radius of G and denoted by R (G) and for any 
vertex u, Su is the sum of the degrees of its neighborhoods and degG (u) 
denotes the degree of the vertex u.

The Wiener index [9] is one of the most used topological indices 
with high correlation with many physical and chemical indices of 
molecular compounds. The Wiener index of a molecular graph G, 
denoted by W(G), is defined 
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The eccentric connectivity index of the molecular graph G, )(Gcξ , 
was proposed by Sharma. V and Gosvami [4]. It is defined as 
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The modified eccentric connectivity index (MEC) is defined as.
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Recently, Ediz et al. [10] introduced a distance-based molecular 
structure descriptor, the reverse eccentric connectivity index defined 
as,
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 In this paper by using an algebraic method, we calculate the reverse 
eccentric connectivity index of one tetragonal carbon nanocones.

Result and Discussion
  Let ][=][ 4 nCNCnC . Our notation is standard and mainly taken 

from standard books of graph theory and the books of Trinajestic and 
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Let   be a molecular graph. The reverse eccentric connectivity index is defined as ( )
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where ecc(u) is a largest distance between u and any other vertex v of molecular graph G and Su is the sum of the 
degrees of all vertices v, adjacent to vertex u. In this paper, an exact formula for the reverse eccentric connectivity 
index of one tetragonal carbon anocones was computed.
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Kumar [11,12]. In this section, the reverse eccentric connectivity index 
of C[n] are calculated. To do this, the following lemmas are necessary.

Lemma 
2| ( [ ]) |= 4( 1)V C n n +

, 
2| ( [ ]) |= 6 10 4E C n n n+ +

Proof. It is clear.

Lemma 

( )( ) 22=][min +nnCecc , ( )( ) 24=][max +nnCecc .

Proof . Suppose u  is a vertex of the central square of S . Then
from Figure 1 one can see that there exists a vertex v  of degree 2 such
that 22=),( +nvudG  and so 22=)( +nuecc . On the other hand, 
there exists another vertex w  of degree 2 such that nwudG 2=),( .
Therefore, the shortest path with maximum length is connecting two 
vertices of degree 2 in C[n]. This complete the proof.  	

The proof of Lemma 2.2, shows that the eccentricities of vertices of 
C[n] are varied between 2n+2 and 4n=2.  Furthermore, we observe that 
there are two types of vertices in C[n]. 4n2 internal vertices of degree 
3 have eccentricities between 2n+2 and 4n and 4n external vertices of 
degree 3 and 44 +n  external vertices of degree 2 have eccentricities 
between 3n+2 and 4n+2.

Now we use an algebraic method for computing the eccentric 
connectivity of ][nC . For this purpose we consider two cases. The first 
case when n  is an odd number and the second case when n  is an 
even number. From Figure 2 when n  is an odd number, the external 
vertices of C[n] are made of 

2
1+n  types of vertices of degree 3 with 

eccentric connectivity equal to kn 223 ++  and 
2

1+n  types of vertices of 
degree 2 with eccentric connectivity equal to kn 233 ++  for 2

10 −
≤≤

nk .
But from Figure 3 when n  is an even number, the external vertices of 
C[n] is made of 2

n  type vertices of degree 3 with eccentric connectivity 
equals to kn 233 ++  for 2

20 −
≤≤

nk  and 
2

2+n  type vertices of degree 2 
with eccentric connectivity kn 223 ++  for 

2
0 nk ≤≤ . Also, we observe that 

there are four types of vertex neighborhoods in C[n]. For  all internal 
vertices, the product of their neighbors degrees is equal to 27. Then, 
there are 4n external vertices of degree 3 such that for all of them, the 
product of their neighbors degrees is equal to 12. There are exactly 8
external vertices of degree 2 such that their neighbors are of degrees 

2 and 3 and for all of them, the product of their neighbors degrees is 
equal to 6. Finally, there are 4n-4 vertices of degree 2 such that both 
neighbors of them are of degree 3.

 In the following theorem, the reverse eccentric connectivity index 
of C[n] is computed when ( 1)n ≥ is an odd number.

 Theorem: The reverse eccentric connectivity index of C[n] is given 
by : 

3 24 1886 67( [ ]) = 5
3 315 35

REEC C n n n n+ + + ,

where ( 1)n ≥  is an odd number. 

Proof. With respect to Figure 2, i
n

i
TnC  1=

=][ , where }{ iT , is a 
partition of the molecular graph C[n]. We have 4 types of vertices 
for every section of iT . There are 8 vertices of type 1 with maximum 
eccentric connectivity 4n+2 and Su=5. Also there are 8(n-2l-2) vertices 
of type 2 when 

2
30 −

≤≤
nl . The eccentric connectivity of 4( 2 2)n l− −

vertices of them equals to 3n-2l and the eccentric connectivity of other 
vertices equals to ln 213 −− . For 1+≤≤ lkl , if 0=lk −  then we 
have 8  vertices with Su =7  and k8 vertices with Su = 9. Also if 1=lk −  
then we have 8  vertices with Su = 6 and k8  vertices with Su = 9 such 
that the eccentric connectivity of them is equals to lkn −−+14  when 
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Figure 1: A maximum and minimum path for computing ecc(u) in CNC4[3].

14
13 12

12

11 11

11

1010

10

9

8 12

12

13
14

Figure 2: The eccentric connectivity of CNC4 [3].
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Figure 3: The eccentric connectivity of CNC4 [2].
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2
30 −

≤≤
nl . Also we have 4 vertices with Su = 7 and 4n-4 vertices 

with Su = 9 and 23=)( +nuecc  and 4n vertices with Su = 9  and 
13=)( +nuecc . Thus we have   

32 16( [ ]) =
5

nREEC C n +

 
( 3)/2 1

=0 =

8 8( )(4 1 )
9 7

n l

l k l

k n k l
k l

− +
+ + + − −

− +∑ ∑
24 4 4 12 4( )(3 2)

7 9 9
n n nn− +

+ + + +

( 3)/2 1

=0 =0

(3 2 )(4 8 8)
9

n

l k

n l k n l− − − − −
+∑ ∑

Now with a calculation in Matlab software we have 
3 24 1886 67( [ ]) = 5

3 315 35
REEC C n n n n+ + + .

 In the following theorem, the reverse eccentric connectivity index 
of C[n] is computed where ( 2)n ≥  is an even number.

Theorem: The reverse eccentric connectivity index of C[n] is given by :
3 24 1886 28( [ ]) = 5

3 315 15
REEC C n n n n+ + + , 

where ( 2)n ≥  is an even number. 

Proof. With respect to Figure 3, i
n

i
TnC  1=

=][  where }{ iT , is a partition 
of the molecular graph C[n]. We have 4 types of vertices for every 
section of Ti. We have 4 vertices with Su=6 and 4n vertices with Su=9 of 
type 1 with mean eccentric connectivity 3n=2 and 8(n-2l-1) vertices ( 

2
20 −

≤≤
nl ) with Su=9 of type 2, such that the eccentric connectivity of

4(n-2l-1) vertices of this type is equals to ln 213 −+  and the eccentric 
connectivity of other vertices of this type is equals to ln 23 − . For 

1+≤≤ lkl , if 0=lk −  then we have 8l+8 vertices with Su=9 and
8 vertices with Su=6. Also if 1=lk −  then we have 88 +l  vertices
with Su=9 and 8 vertices with Su=7 ( ) klnuecc −−= 4  when 2

40 −
≤≤

nl

. Also we ave 8 number of vertices with Su=5 and 24=)( +nuecc  and 8
vertices with Su=7 and 14=)( +nuecc . Thus it implies that :

1

=0

8(4 2 )( [ ]) =
5 2k

n kREEC C n
k

+ −
+∑
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9 6
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( 2)/2 1

=0 =0

(3 2 1)(4 4 8 )
9

n

l k

n l k n l− − − + − −
+∑ ∑ .

Now with a calculation in Matlab software we have 
3 24 1886 28( [ ]) = 5

3 315 15
REEC C n n n n+ + +  .
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