
Volume 6 • Issue 1 • 1000169J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Jo
ur

na
l o

f I
nf

or
m

ati

on Technology & Software Engineering

ISSN: 2165-7866

Mancas, J Inform Tech Softw Eng 2016, 6:1
DOI: 10.4172/2165-7866.1000169

Opinion Open Access

Journal of
Information Technology & Software Engineering

On Database Relationships versus Mathematical Relations
Christian Mancas*
Department of Computer Science, Bucharest Polytechnic University, Romania

*Corresponding author: Christian Mancas, Department of Computer Science,
Bucharest Polytechnic University, Romania, Tel: +40722357078; E-mail:
christian.mancas@gmail.com

Received Janaury 27, 2016; Accepted Janaury 28, 2016; Published February
11, 2016

Citation: Mancas C (2016) On Database Relationships versus Mathematical
Relations. J Inform Tech Softw Eng 6: 169. doi:10.4172/2165-7866.1000169

Copyright: © 2016 Mancas C. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Introduction
The widely used Entity-Relationship (E-R) Data Model (E-RDM,

e.g. [1-3]) is and will continue to be successful in database (db) design
mainly due to the graphical nature of its E-R Diagrams (E-RDs) and
simplicity.

E-RDs

In its original version [1], atomic (entity-type) object sets are
represented in E-RDs by rectangles, compound (relationship-type)
ones by diamonds, and the Relational Data Model (RDM, e.g. [3-
5]) attributes (object set properties) by ellipsis (attached to the
corresponding rectangles and diamonds).

Structural E-RDs only contain rectangles and diamonds (which
connect rectangles), without any ellipsis. As such, they are non-
directed graphs whose nodes are rectangles and diamonds and whose
edges are so-called “roles” (of the connected entity-type object sets in
the corresponding relationship-type ones).

Figure 1 shows an example of a Chen-style E-RD, while Figure
2 presents the corresponding structural one. Obviously, CITIES and
COUNTRIES are entity-type object sets, CITIES_COUNTRIES and
COUNTRIES_CAPITALS are relationship-type ones, belongs to,
has, is capital, and has capital are roles, whereas Name, ZipCode,
Population, Code, TelPrefix are attributes.

Roles have associated cardinalities. For example, read from left to
right, CITIES_COUNTRIES is said to be a many-to-one relationship
(as there generally are many cities in a country) and this is why belongs
to has cardinality n, while has has 1. Obviously, read from right to
left, it is a one-to-many relationship (as generally a country has many
cities). Similarly, COUNTRIES_CAPITALS is said to be a one-to-one
relationship (as countries may have only one capital and any city may

be the capital of only one country) and this is why both is capital and
has capital have cardinality 1.

Figure 3 shows a so-called many-to-many relationship (as any
person may get married several times with different persons), where
both roles have cardinality n.

We are using a slightly different notation [3] just like in its original
version, atomic (entity-type) object sets are represented by rectangles,
mathematic non-functional relation type ones (i.e. subsets of Cartesian
products) are represented by diamonds, but functional ones are
represented as arrows, just like in math. Hence, in our version structural
E-RD (from now on abbreviated as E-RD) are oriented graphs whose
nodes are only object sets and whose edges are structuralfunctions (i.e.
functions defined on and taking values from object sets1).

For example, as, in fact, both CITIES_COUNTRIES and
COUNTRIES_CAPITALS are functional, Figure 4 shows the equivalent
of the Chen-style E-RD from Figure 2.

As MARRIAGES is not functional, our math-type notation is
identical to the Chen-type one from Figure 3.

Corresponding mathematical relations

Recall that, algebraically, a relation is a non-empty subset of
a Cartesian product. First (minor) difference of db relationships
as compared to math relations is that they may be empty (at least

1As compared to attribute-type ones, also defined on object sets, but taking values
into (subsets of) data types (e.g. Population : CITIES→ [0, 3*106])

Abstract
Unfortunately, the widespread used one-to-many, many-to-one, one-to-one, and many-to-many database

relationships lack precision and are very often leading to confusions that affect the quality of conceptual data modeling
and database design. This paper advocates replacing them with the rigorous math notions of relations and (one-to-
one) functions.

Figure 1: An example of a Chen-style E-RD.

Figure 2: The Chen-style structural E-RD corresponding to the one of
Figure 1.

Figure 3: An example of a many-to-many relationship.

Volume 6 • Issue 1 • 1000169J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C (2016) On Database Relationships versus Mathematical Relations. J Inform Tech Softw Eng 6: 169. doi:10.4172/2165-
7866.1000169

Page 2 of 3

explicitly asserted whenever desired. For example, in the (Elementary)
Mathematical Data Model ((E)MDM, e.g. [6]), the complete declaration
of Country is Country : CITIES→COUNTRIES, total. In RDM, this is
called a not-null constraint, meaning that the corresponding column
does not accept null values (i.e. distinguished values represented either
as null strings or with the keyword <NULL>). Considering a countable
distinguished set NULLS, a possible dual (E)MDM notation for the
above two functions is Country : CITIES→COUNTRIES and Capital
: COUNTRIESCITIES∪ NULLS, respectively, in which case total
definition is always satisfied, just like in math.

Obviously, Capital is a one-to-one function, i.e. one for which to
any pair of distinct domain elements corresponds a pair of distinct
function values. This is why, in our notation (e.g. Figures 4 and 6) its
arrow is a double one, and its complete (E)MDM definition is Capital :
COUNTRIES↔CITIES.

Note that roles of non-functional relationships (e.g. Husband
and Wife from Figure 3 above) are also structural functions, namely
canonical Cartesian projections (e.g. Husband:MARRIAGES
→PEOPLE, Wife: MARRIAGES →PEOPLE).

Disadvantages of using db Relationships Instead of
Math Relations and Functions

There is only one advantage in using E-RD relationships, especially
when using our simpler and math-type notation: the fact that they are
graphic (and a good picture is worth thousand words). Unfortunately,
there are much more important disadvantages as well.

Unnaturalness of Chen-type functional relationships

Representing functional relationships as diamonds has several
pitfalls:

• It is true that, being particular cases of binary relations, they
can be thought of as object sets as well (in particular, sets of elements of
the type <x, f(x)>), but, in fact, both mathematically (which considers
them functions, not sets) and from the db point of view (which, by
applying the Key Propagation Principle [3], implements them as table
columns, in particular foreign keys) they are not dealt with as such, just
like the non-functional ones (which are implemented as tables, just like
for the entity-type ones).

• Their names are confusing: obviously, for example, both
Country and Capital are much clearer than CITIES_COUNTRIES and
COUNTRIES_CAPITALS; a clear sign that they are unnatural objects
is that they lack natural names, which only exist for non-functional
relationships (e.g. STOCKS instead of WAREHOUSES_PRODUCTS).

• The need for three distinct names (for the relationship and its
two roles) instead of only one (the function) is also unnatural. Again, as
compared to non-functional relationship role names, which are natural
(e.g. Husband, Wife, Product, Warehouse, HomeTeam, VisitingTeam,
etc.), they generally have an Artificial Intelligence flavor (e.g. is, has,
belongs, etc.), not a db or math one.

• The redundancy of one-to-many relationships: as we read
math from left to right, functions are many-to-one relationships; one-
to-many ones are the same corresponding functions, but read from
right to left (i.e. from the co-domain to the domain).

Confusion between one-to-oneness and bijectivity

Not only beginners, but also, for example, MS Access designers
are confusing one-to-oneness with bijectivity. For example, if you first
declare Capital as a (unique) key (i.e. as being one-to-one) and then try

immediately after they are declared and up to the moment when a first
element is inserted into their instances, but possibly also afterwards,
whenever their instances are emptied by deleting all of their elements
and up to the moment when new elements are again inserted into
them).

Second (major) difference between them is that the math ones are
positional (as Cartesian products are non-commutative), whereas db
ones are not: they only require that all roles of any relationship be pair
wise distinct.

For example, mathematically, CITIES×COUNTRIES
≠COUNTRIES ×CITIES, which means that when both relationships
from Figures 2 and 5 are read either from left to right or from right to
left they are distinct, whereas from the db perspective they are strictly
equivalent, no matter how are they read (which would correspond to the
equivalence classes of Cartesian products immune to the permutations
of their member sets).

Another advantage of our notation (beside simplicity and math
compatibility) becomes clear when comparing Figure 2 with its
corresponding dual from Figure 6 no relationship-type set name has to
change – only arrow directions are reversed.

Also recall that there is a very important particular case of math
relations, namely the functions (mappings); a function is a binary
relation satisfying two additional constraints: it is totally defined and it
is functional. Read from left to right, the first set is called the domain,
while the second is called co-domain. For example, the function
Country: CITIES→COUNTRIES has domain CITIES and co-domain
COUNTRIES and it is a function because is totally defined (that is any
city belongs to a country) and functional (i.e. any city belongs to only
one country).

Database functions (which in relational ones are implemented
as table columns) differ slightly from math ones only because
totality is not compulsory: for example, as capitals might not be
temporarily known or of interest for any country, the function Capital:
COUNTRIES→CITIES may not be totally defined.

Totality is considered in dbs as a constraint that has to be

Figure 5: The E-RD dual to the one of Figure 2.

Figure 6: The E-RD dual to the one in Figure 4.

Figure 4: The math-style E-RD equivalent to the one in Figure 2.

Volume 6 • Issue 1 • 1000169J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C (2016) On Database Relationships versus Mathematical Relations. J Inform Tech Softw Eng 6: 169. doi:10.4172/2165-
7866.1000169

Page 3 of 3

to enforce its referential integrity, depending on the instances of the
two tables it relates, you might not succeed in either enforcing it (when
there are more cities than countries, which is the norm) or inserting
data in any of the two involved tables (when both instances are empty,
enforcing referential integrity succeeds, but then you may not enter
either cities, as there are no corresponding countries, or countries, as
there are no corresponding cities).

This is clearly due to the confusion done between one-to-oneness
and bijectivity (i.e. one-to-oneness and ontoness).2

The many-to-many relationships trap

The worst issue with db relationships is that they may not even
correspond to object sets.

For example, if you enforce uniqueness of elements in the above
MARRIAGES (i.e. uniqueness of the product Husband • Wife), then
you may not store re-marriages (e.g. Elisabeth Taylor and Richard
Burton married and divorced each other several times). If you do not
enforce it, then it is not even a set, as it accepts duplicates.

Generally, you have to validate data modeling correctness for each
relationship, by checking the one-to-oneness of the product of all of its
roles: if it is not (like for MARRIAGES, where Husband • Wife is not
one-to-one), then the corresponding relationship is ill-defined (and
2Fortunately, there is a workaround for it in MS Access too: if you first enforce
referential integrity and only then uniqueness, no issue arises.

Figure 7: Correct data model of MARRIAGES (as an entity, not relationship-
type object set, like it is incorrectly modeled in Figure 3).

either it lacks at least another role or it is, in fact an entity-type object
set). Consequently, the correct model in all contexts in which divorce
(hence, remarrying) is possible is the one in Figure 7.

Conclusion
To conclude with, during conceptual data modeling and db design

it is always much, much better to think in terms of math relations and
functions, rather than in those of one-to-many, many-to-one, one-to-
one, and many-to-many ones.3

Otherwise, you risk confusions between one-to-many and many-
to-one ones, one-to-oneness and bijectivity, and even between
relationship and entity-type object sets. Moreover, our E-RD notations
[3] are much simpler, natural, and close to math than the original ones.

References

1. Chen PP (1976) The entity-relationship model: Toward a unified view of data.
ACM TODS 1: 9-36.

2. Thalheim B (2000) Fundamentals of Entity-Relationship Modeling. Springer-
Verlag, Berlin.

3. Mancas C (2015) Conceptual Data Modeling and DB Design. A Fully Algorithmic
Approach. Vol. I: The Shortest Available Path, Apple Academic Press, NJ.

4. Codd EF (1970) A relational model for large shared data banks. CACM 13:
377-387.

5. Abiteboul S, Hull R, Vianu V (1995) Foundations of Databases. Addison-
Wesley: Reading, MA.

6. Mancas C (1990) A deeper insight into the Mathematical Data Model. 13th Intl.
Seminar on DBMS, ISDBMS, Mamaia, Romania, 122-134.

3And things get even worse when extending the E-RDM to also incorporate totality
(not null) constraints: in order to declare that a functional relationship may also
accept null values, zero-to-many, many-to-zero, zero-to-one, and even zero-
to-many-to-many, many-to-zero-to-many, and zero-to-many-to-zero-to-many
relationships were introduced as well…

http://dl.acm.org/citation.cfm?id=320440
http://dl.acm.org/citation.cfm?id=320440
https://scholar.google.co.in/scholar?hl=en&q=Fundamentals+of+Entity-Relationship+Modeling.&btnG=
https://scholar.google.co.in/scholar?hl=en&q=Fundamentals+of+Entity-Relationship+Modeling.&btnG=
http://dl.acm.org/citation.cfm?id=362685
http://dl.acm.org/citation.cfm?id=362685
http://wiki.epfl.ch/provenance2011/documents/foundations of databases-abiteboul-1995.pdf
http://wiki.epfl.ch/provenance2011/documents/foundations of databases-abiteboul-1995.pdf
https://books.google.co.in/books?id=reKYCgAAQBAJ&pg=PA33&lpg=PA33&dq=A+deeper+insight+into+the+Mathematical+Data+Model&source=bl&ots=jmO0ZPh_Lb&sig=Jykf5O4CxyPS6Qj1xOdlqX-D4P4&hl=en&sa=X&ved=0ahUKEwixzOT27NjKAhWNV44KHZgKA4kQ6AEIGzAA#v=onepage&q=A deeper%
https://books.google.co.in/books?id=reKYCgAAQBAJ&pg=PA33&lpg=PA33&dq=A+deeper+insight+into+the+Mathematical+Data+Model&source=bl&ots=jmO0ZPh_Lb&sig=Jykf5O4CxyPS6Qj1xOdlqX-D4P4&hl=en&sa=X&ved=0ahUKEwixzOT27NjKAhWNV44KHZgKA4kQ6AEIGzAA#v=onepage&q=A deeper%

	Title
	Corresponding author
	Abstract
	Introduction
	E-RDs
	Corresponding mathematical relations

	Disadvantages of using db Relationships Instead of Math Relations and Functions
	Unnaturalness of Chen-type functional relationships
	Confusion between one-to-oneness and bijectivity
	The many-to-many relationships trap

	Conclusion
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	References

