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Abstract

Assessing acute pain in those unable to communicate is challenging yet essential. Objective assessment tools
utilizing measures derived from autonomic changes alone or in combination appear to represent a potential solution
to this difficult aspect of pain management.
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Introduction
The evolutionary function of experiencing pain is to protect an

organism against potential tissue damage from a noxious stimulus.
However, pain is itself potentially harmful. In the short term it can be
distressing and alter physiological parameters and without appropriate
treatment can lead to long-term consequences such as chronic pain.
Assessment is the foundation of effective pain management. It screens
individuals for its presence, indicates severity helping to guide
treatment, and finally evaluates the efficacy of such interventions.

Pain is “an unpleasant sensory and emotional experience associated
with actual or potential tissue damage or described in terms of such
damage” [1]. It involves a complex interplay between nociceptive
pathways and an individuals’ psychological and cognitive state, which
interpret the noxious stimuli and relate this to one’s self and the
environment. By definition this subjective experience is best evaluated
by self-reporting assessment scales [2]. However, it is important to
appreciate that the inability to communicate does not negate the
experience of pain and its required management. In circumstances
where self-assessment tools cannot be utilized, such as in individuals
with cognitive or neurological impairment, alternative methods are
required. Healthcare professionals are often unreliable in evaluating
pain severity [3], hence the ideal objective assessment tool should
remove observer error, be reliable in those unable to communicate and
be uninfluenced by disease processes.

The field of developing reliable objective pain assessment tools is
vast. It includes research areas that whilst interesting, are far removed
from practical clinical implementation, such as real time neuroimaging
and biomarkers [4]. More promising are those tools that focus on
altered responses in the autonomic nervous system and composite
algorithms that combine these with biopotential outputs such as
electroencephalography (EEG).

The interaction between the autonomic nervous system and
nociceptive pathways is intricate but incompletely understood. The two
pathways overlap anatomically [5] and together alter hormonal and
physiological responses. As such a traditional approach to evaluating
pain, for example looking for changes in basic physiological

parameters such as blood pressure or heart rate, are unreliable and
inaccurate [6]. These have been superseded by more complex measures
including derived cardiovascular and respiratory parameters, which
will be briefly described below.

The autonomic nervous system is an important determinant of
cardiac function including the control of heart rate. Noxious stimuli
are thought to decrease parasympathetic activity, and increase
sympathetic and baroreceptor responses [7]. Heart rate variability
(HRV) considers the time intervals between consecutive heartbeats. It
uses frequency and time analysis to evaluate the relative contributions
made by the parasympathetic and sympathetic nervous system [8].
Focusing on the predominantly parasympathetic component, HRV is
thought to provide real time information regarding the autonomic
response to noxious stimuli using standard ECG monitoring
equipment. Whilst numerous factors can lead to inaccuracies including
age, sex and medications [9-11], consistent responses have been
observed in anesthetized patients to noxious stimuli and analgesia
[12,13]. Results in non-anesthetized patients and healthy volunteers
are less reliable, with HRV poor at determining pain intensity [8,14].

A number of algorithms were developed to improve HRV accuracy.
The best evaluated is the analgesia nociception index (ANI®, Mdoloris
Medical Systems, France). This combines the parasympathetic
component of HRV with respiratory sinus arrhythmia, which
influences heart rate [15]. It provides a continuous reading, creating a
score from 0-100 where numbers over 50 are thought to reflect
adequate analgesia. ANI scores respond reliably to surgical stimuli
under anesthesia [16,17], however, there have been inconsistent results
regarding a linear relationship with post-operative self-reported pain
intensity scores [18-20]. Furthermore, the use of ANI to titrate
intraoperative opioids has not demonstrated improved postoperative
analgesia compared to normal practice. Specifically, the use of ANI has
not been associated with a decrease in the occurrence of moderate to
severe pain or rescue analgesia requirements [21].

The surgical pleth indexTM (previously called the surgical stress
indexTM) is a measure derived from combining pulse
photoplethysmographic waveform amplitude and normalized heart
rate. It creates a linear scale score between 0-100, with high readings
suggested to represent nociceptive stimulation [22]. Both of the
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contributing measurements are thought to reflect the balance between
sympathetic and parasympathetic tone, which is influenced by
nociceptive stimulation. This non-invasive measurement has been
shown to discriminate noxious stimuli under anesthesia [23]. In the
post-operative setting however, it demonstrates only moderate
sensitivity and specificity in identifying moderate to severe pain
[24,25]. Furthermore it can be affected by factors including posture
and volume status, that are suggested to account for variable inter-
individual responses [26,27].

Sweating, a consequence of sympathetic activation of muscarinic
receptors alters skin conduction and electrical resistance. Fluctuation
in skin conduction is recorded as peaks. Nociceptive stimulation or
pain is evaluated by either counting the number of peaks per second or
combining this frequency with an area under the curve measurement
[28]. It can identify different pain intensities in the post-operative
setting [29,30] and detects noxious stimuli under general anesthesia
[31]. However, the tool is prone to inaccuracies from the effect of the
environment, the equipment used for its measurement and patient
medication. Furthermore the response seen in healthy volunteers to
noxious stimuli are highly individualized, which question the tools
group level predictive properties [32]. Moreover, inconsistencies exist
in its usefulness in pediatric and neonatal populations.

The infrared video-pupillometer utilizes the principle that in awake
individuals’ pupillary dilation is sympathetically mediated. Both the
pupil diameter response to the noxious stimulus itself and light
induced dilatation are thought to reflect sympathetic responses to pain.
However, there are inconsistent results regarding the correlation
between pupillary responses and post-operative self-reported pain
scores [33-35]. Responses can also be influenced by drugs including
opioids and vasoactive agents, along with environmental luminance
and genuine conditions of the eye [36].

Science appreciates that often it is the interactions and relationships
between variables that predict the responses of complex systems, rather
than the absolute values of one parameter. This may be relevant to
assessing pain, as it is highly unlikely such a complex experience is
truly reflected by evaluating one autonomic variable or derived
measure alone. In an attempt to address this, composite algorithms
have been developed using statistical modeling of a number of
autonomic and electroencephalography (EEG) variables.
Combinations that best predict the presence and severity of pain are
then used to create the algorithms. They either join a number of purely
autonomic responses, exemplified for instance by the nociceptive level
index [37,38] or combine autonomic responses with indicators of brain
activity such as EEG or entropy measurements [39,40]. The latter are
most relevant to evaluating nociceptive responses in anesthetized
patients and responses correlate with the presence of noxious stimuli.
The former have shown promise in post-operative patients and healthy
volunteers to determine pain severity, and show increased accuracy
than single parameters alone. The populations investigated however
are small and homogenous, and as such the clinical application of these
algorithms requires further validation.

Conclusion
Pain assessment is critical to ensure patients receive analgesia when

in pain and to evaluate treatment effects. This is challenging yet
especially important in those unable to self-report. Derived
measurements, based on the autonomic response to nociceptive
stimulation, show potential to evaluate pain objectively and composite

algorithms represent real promise. Unfortunately there is conflicting
evidence. For example some methods are successful in guiding intra-
operative analgesia, yet fail to translate to an improved post-operative
pain experience. Furthermore tools successful in guiding intra-
operative analgesia to blunt nociceptive responses, lack reliability in
awake patients to determine pain intensity. Can these methods then be
justified as tools to objectively measure pain?

This quandary perhaps reflects an approach to validating these tools
that is too simplistic. Should an ‘ideal’ objective pain assessment tool
have the ability to determine both the presence and intensity of pain in
awake patients and also determine nociceptive stimulation in the
anesthetized patient to guide analgesia? Striving to create a tool
validated in both these areas could in part explain the evidence
inconsistencies. These two clinical problems do not necessarily reflect
the same entity and likely need to be evaluated in different ways. As
such tools successful in addressing one area may still be clinically
useful. This is illustrated by considering self-assessment tools. They
have no place in evaluating pain in the anesthetized patient, yet are the
gold standard for pain assessment in awake individuals. Therefore, to
truly evidence these promising objective assessment tools investigators
need to clearly consider what each measurement truly represents, how
and what they are trying to validate and hence focus on what clinical
question they are attempting to answer. Accordingly, research should
now be directed to determine their specific place in the clinical setting.
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