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Abstract
High ambient temperatures not only affect animal production but also pig welfare. The decline of the production 

performances and meat quality of pigs during heat stress were traditionally considered to a cause of the decreased 
feed intake. However, it recently has been shown that heat stress disturbed the nutrients metabolism including 
protein, lipid and carbohydrate, and made the body reorganizes the utilization of the nutrition. High temperature 
also disturbed the cell function and antioxidant system. This paper reviewed the effect of heat stress on growth 
performance, meat quality and nutrients metabolism of pigs and their nutritional regulation for meat quality.
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Introduction 
According to the Food and Agriculture Organization of United 

Nations (FAO) statistics, over 50 percent of pig industries were in 
tropical and subtropical regions. The long-term hot weather of these 
regions would have a greater negative effect on pig production, 
especially with the development of intensive high density production, 
the effect of high temperature stress on pig production has become more 
and more serious, not only affecting the pig production performance, 
meat quality, but also affecting the sustainable development and 
economic benefits of the pig industry. In this paper, the effects of heat 
stress on pig production performance, meat quality and its molecular 
mechanism, and the nutritional regulation methods are reviewed, 
those results provide theoretical basis for reducing the effect of heat 
stress on the production and meat quality of pigs.

Effect of heat stress on growth performance of pig

Because the sweat gland of the pig is not developed, pigs maintain 
the body temperature mainly through breathing and stretching in the 
high temperature environment. the suitable environmental temperature 
of finishing pigs is 10-23.9°C, when the ambient temperature is higher 
than 24°C, finishing pigs begin cooling through breathing, and when 
the temperature continue to rise, the frequency of pigs lying on the 
ground increase and their activity decrease [1,2].

Le Dividich et al. [3] reported that when the environmental 
temperature was between 20°C and 30C, the feed intake decreased by 
40-80 g per day with the temperature increasing by 1°C. The sensitivity 
of pig to the environment temperature in different stages is different, 
usually the effect of high temperature on the feed intake and daily 
gain of pigs increased with the increase of pig weight. Ai et al. [4] 
found that under high environmental condition (28-35°C), the daily 
feed intake of pigs in the phase of 15-30 kg, 30-60 kg and 60-90 kg 
decreased by 9%, 41% and 20%, and the daily gain decreased by 9%, 
21% and 23% respectively. Guo et al. [5] studied the effects of different 
environmental temperature (23°C, 26°C, 29°C, 32°C and 3°C) on the 
daily feed intake of pigs at different weight stages (40-60 kg, 60-80 kg 
and 80-100 kg), and found that when the temperature rose, the feed 
intake decreased linearly with the temperature increasing from 23 to 
32°C, the heavier the body weight, the greater the effect of temperature. 

When the temperature was over 32℃, the daily feed intake decreased 
by 101 g with the temperature increasing by 1°C. 

Quiniou et al. [6] reported that the daily feed intake of 60-90 kg pig 
decreased by 128 g with the temperature increasing by 1℃ under the 
22-29°C condition. Le Bellego [7] also found that the daily feed intake 
of 65-100 kg pig decreased by 78 g with the temperature increasing 
by 1°C under 22-29°C condition. Shi et al. [8] reported that the daily 
feed intake of 80-100 kg pig decreased by 116 g with the temperature 
increasing by 1°C under 24-35°C condition, the daily weight gain also 
decreased significantly. These results above were confirmed by Yang 
et al. [9]. 

In conclusion, the effect of environmental temperature on the 
growth performance of pigs was related with feed intake, but the 
relationship between the environmental temperature and the feed 
intake of pigs was different for the different temperature, feeding 
time and pig weight, it need to be analyzed according to the specific 
circumstances.

Effect of heat stress on meat quality

Meat quality also is influenced by environmental temperature. A 
large number of studies have reported that heat stress before slaughter 
stimulated the catecholamine secretion in finishing pigs, which caused 
muscle glycogen rapid decomposition, producing large amounts of 
lactic acid, the muscle pH decrease and PSE meat formation [10]. 
Yang et al. [9] reported that continuous high temperature significantly 
reduced the pH of longissimus muscle at 24 h postmortem, increased 
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decreasing the activities of acetyl coenzyme A carboxylase enzyme 
(ACC), high temperature also decreased the content of FAS in the 
longissimus muscle and beta oxidation of fatty acids in skeletal muscle 
by decreasing the activity of L (+) P-hydroxyacyl CoA dehydrogenase 
(HAD). In addition, high temperature  decreased the activity of 
lipolytic enzymes [26] and the level of non-esterificated fatty acids 
(NEFA) [31], which was independent of the reduction of feed intake. 
Under high temperature condition, the activity of lipolytic enzymes in 
adipose tissue decreased to limit heat production for adaptation to high 
temperature environment.

Carbohydrates could easily be converted into intermediate 
metabolites to generate ATP. The formation of ATP was regulated 
by three major signaling pathways: glycolysis, tricarboxylic acid cycle 
and oxidative phosphorylation. Mild heat stress activitied muscle 
glycogen phosphorylase and pyruvate dehydrogenase, but did not 
affect the content of glucose 6-phosphate, lactic acid, pyruvic acid, 
acetyl CoA, creatine and phosphocreatine and ATP [32]. Chronic heat 
stress reduced the plasma level of glucose, made more glucose enter 
the tissue from the blood to supply the energy, then the fat supplying 
energy decreased. As feed intake and blood glucose decreased, the 
glucose meet the need of the production decreased, so the energy in 
heat stressed pigs need to be rebalanced.

Effect of heat stress on cell and its stress protein 

Heat stress interfered with the balance between oxidation and anti-
oxidation in cells, resulting in excessive production of free radicals, 
damaging the body defense function [33], even producing cytotoxicity 
[34]. Heat stress also induced iron releasing from ferritin and reacting 
with H2O2 to produce ferric oxide ion, which was one of the important 
reasons for heat stress causing dark color of meat [35,36]. In addition, 
ROS was produced from NADP+ transformed to NADPH [37] by 
NADPH oxidase under high temperature condition. Shi [8] also found 
that high temperature enhanced the activity of NADPH oxidase. Moon 
et al. [38] reported that high temperature activated NADPH oxidase 
and increased the NADP+/NADPH ratio, NADPH prevented the 
biosynthesis of NADP+, acting as a cytochrome C reductase inhibitor, 
indicating that heat stress decreased the oxidation resistance of the 
body by destroying the oxidative respiratory chain. 

Heat stress has cellular toxicity, because it disturbs the biological 
function and metabolism of the cell, leading to oxidative damage, and 
even apoptosis necrosis of the cells [39]. Although ROS was produced 
mainly from mitochondria, it first damaged mitochondria by disrupting 
oxide complex I, II, V and IV, resulting in destruction of respiratory 
chain and reduction of ATP [40]. In rodent animal, the morphology 
and structure of mitochondrial changed under high temperature 
condition, oxidative phosphorylation and energy production 
decreased, which could not meet the needs of cell metabolism, the 
mitochondrial membrane lipid also was oxidized and mitochondrial 
protein was degraded [41,42]. Under heat stress condition, free 
radicals activated the intrinsic apoptotic signaling pathway based 
on the mitochondrial pathway of mitochondrial membrane [43], 
once released, the cytochrome c moved to the cell fluid, activating 
the effective factor of apoptosis proteins (called apoptosis protease), 
resulting in programmed cell apoptosis. Although cell function and 
protein synthesis were disturbed under heat stress conditions, heat 
stress proteins synthesis were stimulated, including HSP 110, HSP 100, 
HSP 90, HSP70, HSP 60, HSP 40 and HSP 10. As heat stress proteins 
acted as molecular chaperone and contributed to the protein synthesis, 
folding, assembly, transportation and degradation of thermal stress 
degradation [44]. Among these heat stress proteins, HSP70 and HSP 

the drip loss at 48 h postmortem and shearing force of longissimus 
muscle. The environmental temperature in summer is usually higher 
than in winter, and the meat quality also is inferior to in winter [11]. 
High temperature also decreased the intramuscular fat content and 
increased the L* value of the muscle in finishing pigs [12], but not in 
growing pigs [13], because the content of intramuscular fat in growing 
pigs is vey low. Le Dividich et al. [3] indicated that the fat deposition in 
muscle of finishing pig decreased significantly under high temperature 
condition, which may be related to the decrease of feed intake and 
energy consumption. Lefaucheur [14] found that compared with 
growing pigs less than 10C temperature condition, the metabolism of 
muscle fibers of semitendinosus muscle in growing pigs under 28°C 
condition changed obviously, the fiber types also changed accordingly. 
High temperature increased the sugar fermentation potential and 
changed the energy metabolism of the muscle fiber, with the change 
of the muscular fiber type [15]. Using C2C12 cell line as research 
model, it was found that the sustained high temperatures induced 
muscle cells differentiation from fast to slow transformation [16]. Shi 
[8] reported that high temperature increased the MyHCIIx fiber and 
decreased the MyHCIIb fiber ratio. While in Mardies et al. [17] studies, 
higher temperature decreased the MyHCIIb gene. The reason for this 
difference may be due to the tolerance ability of the pig to heat stress, 
the setting of the environmental temperature and the duration of the 
treatment. 

Effect of high temperature on nutritional metabolism of pigs

In acute or chronic heat stress conditions, animals reduced 
their feed intake by improving leptin, adiponectin and its receptor 
expression [18,19]. Leptin activated the hypothalamus axis, resulting 
in reduced feed intake [20], adiponectin also regulated feed intake 
through central and peripheral nervous system [21]. In addition, heat 
stress reduced feed intake and nutrient digestion and absorption partly 
through affecting insulin, cortisol and ghrelin secretion [22,23,8].

High temperature also decreased the body protein metabolism and 
deposition. When the environmental temperature reached 30°C, the 
amount of body protein deposition in growing pigs decreased directly 
or indirectly by the decrease of feed intake [7]. Kerr [24] also reported 
that high temperature (33°C) reduced the content of pig carcass 
protein. Short term heat stress increased protein degradation, reduced 
protein synthesis and retention; it also decreased the plasma level of 
aspartic acid, serine, tyrosine and cysteine in finishing pigs [25]. While 
long-term heat stress blocked protein synthesis, reduced the protein 
decomposition and amino acids level in blood (especially sulfur and 
branched chain amino acids), and increased the plasma level of aspartic 
acid, glutamic acid and phenylalanine [26,27]. Long-term heat stress 
reduced protein catabolism might by activating gluconeogenesis 
pathway, which increased the glucose level to provide more energy and 
reduce protein usage. 

Long term heat stress also decreased the body lipid metabolism 
and fat distribution; the fat had a trend to transfer from the outer layer 
to the inner [3], which is more benefit for the body heat dissipation. 
Kouba [28] found that the high environmental temperature increased 
the activities of LPL in longissimus muscle and periphery kidney by 
144.6% and 90.5%, respectively. Rinaldo and le Dividich [29] also 
found that high temperature reduced the content of back fat, the 
activities of malate dehydrogenase (ME) and glucose-6-phosphate 
dehydrogenase (G-6-PDH) in back fat and periphery kidney fat by 
60%. Wu et al. [30] reported that high temperature (33°C) had a trend 
to decrease the intramuscular fat of longissimus muscle in finishing 
pigs, it also inhibited the fatty acids de novo synthesis ability by 
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90 were the most important [45]. Shi [8] also found that heat stress 
increased the expression of HSP70 gene in pig muscle. Heat stress 
damaged many proteins, while heat stress proteins helped to repair 
them. Heat stress also influenced the fluidity and stability of the cell 
membrane and inhibited the function of transporter protein [46] on 
the cell membrane. When the ambient temperature elevated from 25°C 
to 35°C or above, heat stress activated sphingomyelinase, phosphatase 
and phosphatidylinositol phosphate kinase [47], stimulating the 
accumulation of phosphatidic acid (PA) and phosphatidyl inositol 
(bisphosphate (PIP2). PIP2 is a signal molecule of fat, which delayed 
the activation of upstream signal of cell repair function. Under heat 
stress condition, the structure of the lipid material is decomposed to 
produce PA [48], which inserted into different cell membrane sites and 
decreased the cell membrane fluidity. The concentration of Ca2+, Na+ 
and K+ ions in the cells also increased with the decrease of cell stability 
[49] and destroy of the ion channels.

Nutritional regulation of improving meat quality 

Protein and amino acids regulation: Under high temperature 
condition, decreasing dietary protein levels with balanced amino 
acids was one of the important methods alleviating the heat stress to 
pig, which did not reduce the pig net energy intake and production 
performance. Stahly et al. [50] reported that supplementation of 
synthetic lysine instead of natural protein in favor of pig production 
performance. Le Bellego et al. [51] reported that decreasing the dietary 
protein level of growing pigs and finishing pigs under high temperature 
condition reduced the pig protein deposition, but fed low protein level 
diet with balanced ideal amino acid pattern didn`t affect pig growth 
performance and carcass traits. Peng et al. [52] concluded (according 
to current literature review) that the appropriate dietary protein level 
of growing pigs under high temperature conditions was from 14% 
to 16%, with the equilibrium model of amino acid lysine, threonine, 
methionine, tyrosine, isoleucine, leucine, valine to dietary ratio was 
1.02%, 0.74%, 0.29%, 0.23%, 0.85%, 1.62% and 0.96% respectively; 
the appropriate dietary protein level of growing pigs under high 
temperature conditions was from 12% to 13%, with the equilibrium 
model of amino acid lysine, threonine, methionine, tyrosine, isoleucine, 
leucine, valine to dietary ratio was 0.84%, 0.58%, 0.27%, 0.17%, 0.53%, 
1.09% and 0.66% .

Supplementation with anti-stress agents

Supplementation with vitamin C, vitamin E or niacin: Pigs were 
nervous and their glucocorticoid secretion increased under heat stress 
condition, supplementation with vitamin C reduced glucocorticoid 
secretion and improved the ability to resist stress of pigs. Frei et al. 
[53] reported that vitamin C effectively resisted the active oxygen 
free radicals and prevented the damage of the biological membrane 
from the oxides. Vitamin C also was the most important antioxidants 
and improved the meat quality of pigs [54]. In order to reduce the 
occurrence of PSE meat, the content of vitamin C in the diet should 
be more than 50 mg/kg. Vitamin E played an important role in the 
stability of lipid, improving pork color and reducing water loss of pork 
[55,56]. Cheah et al. [57] showed that when vitamin E in the pig diet 
was higher than 500 mg/kg, it significantly decreased the drip loss of 
meat; when vitamin E was above 1000 mg/kg, the release of Ca2+ and 
the occurrence of PSE meat were significantly decreased. Buckley et 
al. [58] reported that dietary vitamin E increased from 10 mg/kg to 
100-200 mg/kg, the quality of pork was positively correlated with the 
dose of vitamin E. Real et al. [59] reported that Niacin increased the pH 
value, reduced the drip loss and L value of longissimus muscle.

Regulation of electrolytes: The potassium and carbonate excretion 
increased, and the sodium and hydrogen discharge decreased in pigs 
under high temperature condition, which affected the mineral balance. 
Potassium chloride, chloride or sodium bicarbonate electrolyte should 
be added to the pig diets appropriately to reduce the damage caused by 
heat stress [60]. Supplementation of 0.1 to 0.2% sodium bicarbonate 
or 0.1 to 0.2% vitamin E to the pig diets had good effect on preventing 
heat stress. Wu et al. [61] found that compared with the control (under 
the heat stress condition), the average daily weight gain of piglets who 
drinking the electrolyte solution containing sugar (containing sugar, 
sodium chloride, potassium chloride, sodium bicarbonate, citric acid 
et al.) was significantly increased by 15.64%. Feng et al. [62] reported 
that the average daily gain of pigs was significantly increased by 5% 
with supplementation of 0.3% sodium bicarbonate, 0.2% potassium 
chloride and 0.02% chromium nicotinate respectively to the diets of 
finishing pigs under the high temperature condition. Ao et al. [63] 
reported that in the summer heat stress conditions, the average daily 
feed intake of finishing pigs who drinking 2% electrolyte balance agent 
at the first 5 days and drinking 1.25% electrolyte balance agent at the 
last 25 days increased by 10.14%, the average daily gain increased by 
95 g and feed gain ratio decrease by 9 %, and there were no obvious 
thermal stress clinical indications of the pigs.

Supplementation with trace elements or minerals: Zhang et 
al. [64] supplemented 300 g/kg chromium picolinate to the diets of 
pigs under high temperature condition, the average daily gain and 
average daily feed intake was not different from the control group at 
the first two weeks; while the average daily feed intake increased by 
10.2%, the average daily gain increased by 38.1% at the last 2 weeks, 
the chromium metabolism also was improved. Wang [65] reported 
that supplementation of 530 mg/kg zinc methionine and 200 mg/
kg pyridine chromium carboxylate to pig diets increased the average 
daily feed intake and the average daily gain and decreased the feed 
gain ratio under the high temperature condition, increased the protein 
decomposition and gluconeogenesis, and improved the production 
performance. Liu et al. [66] reported that selenium (Se) had a synergistic 
effect with CAT and SOD in the removal of lipid peroxide, it also played 
antioxidant role coordinated with vitamin E. Mahan et al. [67] reported 
that the drip loss of dorsal muscle decreased by supplementation 
with 0.1 mg/kg Se and a certain amount of VE and VC. Torrent [68] 
reported that 0.3 mg/kg selenium (Se) in the growing pig diet reduced 
the occurrence of PSE meat. Alonso et al. [69] found that high level of 
magnesium (Mg) increased the pH value and decreased the speed of 
the glycogen, slow down the pH value and reduced the occurrence of 
PSE meat. Peeters et al. [70] reported that supplementation with Mg 
reduced stress, improved the muscle system hydraulic. Manganese also 
improved the meat quality of pigs.

To sum up, the production performance of pigs is affected by 
the reduction of feed intake, which is caused by the influence of the 
pig’s nervous system under heat stress condition. The synthesis of 
protein, fat and carbohydrate also is affected by the heat stress. Under 
heat stress condition, pigs how to re-balance the protein, fat and 
carbohydrate metabolism to adapt the environment need to be further 
studied. In addition, heat stress affects the body’s antioxidant system 
directly through the ROS, leading to the damage of cell function and 
decrease of the meat quality, but till now, there are no reports about 
the relationship between the environment temperature and PSE 
meat formation. Whether high temperature causing PSE meat just 
through ROS production also need to be further researched. Nutrients 
adjustment can reduce heat stress, slow down the oxidation and 
improve pork quality, which is also important for human health. In 
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the further, more effective anti-heat stress additives need to develop to 
meet the need of pig production.
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