Nucleation of High Pressure Crystallization of Polypropylene with Sorbitol Derivative

Przemysław Sowinski^{1*}, Ewa Piorkowska¹, Severine AE Boyer², Jean-Marc Haudin²

¹Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza, Lodz, Poland ²MINES ParisTech, PSL Research University, Centre for Material Forming, Sophia Antipolis, France

ABSTRACT

The orthorhombic γ -form of isotactic polypropylene (PP) is unique because of non-parallel chain alignment. γ -PP can exhibit higher yield strength and elastic modulus than usual α -PP solidified in the monoclinic form [1,2]. Crystallization of PP in the γ -form is facilitated under high pressure. Previously we have demonstrated that nucleants able to nucleate the α -form under atmospheric pressure (Patm) efficiently nucleated the crystallization in the γ -form under high pressure [3, 4]; α -lamellae were nucleated first and served as seeds for the γ -form [4].

The study focuses on the nucleation of high pressure crystallization of PP with 1,3: 2,4-bis (3,4-dimethylbenzylidene sorbitol (DMBS). PP 3250MR1 from Atofina and Millad 3988i from Milliken Chemical were used in the study. Crystallization of PP with 0.2-1 wt.% of Millad under pressure up to 300 MPa was carried out in a high pressure crystallization cell [3], under various thermal conditions. Samples in the cell were compressed using an Instron machine. Following a cross-head displacement and a volume change due to crystallization allowed todetermine the temperature of maximum crystallization rate, Tc, during cooling. The samples were analyzed ex-situ by DSC, PLM and WAXD. It was found that Millad ability to nucleate high pressure crystallization of PP in the γ -form under high pressure, whereas 0.2 wt% is sufficient to nucleate crystallization of PP under Patm in the α -form. The results demonstrate that it is possible to increase Tc and to drastically decrease a grain size during high pressure crystallization of PP in the γ -form using DMBS as a nucleating agent.

REREFERENCES

- 1. E Lezak. Plastic Deformation of the γ Phase in Isotactic Polypropylene in Plane-Strain Compression. Macromolecules. 2006; 39(14): 4811-4819.
- C von Beckman. The influence of crystallization conditions on the macromolecular structure and strength of γ-polypropylene. Therm Acta. 2019; 677: 131-138.
- P Sowinski. Nucleation of crystallization of isotactic polypropylene in the gamma form under high pressure in nonisothermal conditions. Eur Polym J. 2016; 85: 564-574.
- P Sowinski. On the structure and nucleation mechanism in nucleated isotactic polypropylene crystallized under high pressure. Polymer. 2018; 151: 179-186.

Correspondence to: Przemysław Sowinski, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza, Lodz, Poland, Tel: 48513192013; E-mail: przem_so@cbmm.lodz.pl

Received: August 03, 2020; Accepted: August 31, 2021; Published: September 10, 2021

Citation: Sowinski P, Piorkowska E, Boyer SAE, Haudin JM (2021) Nucleation of High Pressure Crystallization of Polypropylene with Sorbitol Derivative. J Phys Chem Biophys. 11:p267.

Copyright: © 2021 Sowinski P. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.