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Abstract
Oxidative stress is a key component in the development of cardiovascular diseases and chronic kidney diseases. 

Statins have cardio-protective activity, and previous reports have indicated that they activate nuclear factor erythroid 
2-related factor 2 (Nrf2), although their molecular mechanism is unknown. Nrf2 is an oxidative stress-responsive 
transcription factor with a crucial role in cellular defense against oxidative stress. We investigated the molecular 
mechanisms of Nrf2 activation by rosuvastatin. Nrf2 activity and Nrf2-mediated antioxidant gene expression were 
upregulated by rosuvastatin in human umbilical vein endothelial cells. Rosuvastatin increased Nrf2 protein levels by 
reducing Nrf2 degradation and upregulating the interaction between Nrf2 and p21Cip1, which was inhibited by p21Cip1-
targeted siRNA. Rosuvastatin-mediated activation of endothelial Nrf2 provides a possible therapeutic alternative for 
cardiovascular diseases. 
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Introduction
The nuclear factor erythroid 2-related factor 2 (Nrf2) is an 

important oxidative stress-responsive transcription factor, which has 
a vital role in combating oxidative damage [1]. Upon activation, it 
becomes free from cytoplasmic sequestering and negative regulation 
by Kelch-like ECH-associated protein 1 (Keap1), resulting in nuclear 
accumulation and transactivation of a vast array of cytoprotective 
genes through the cognate antioxidant responsive element (ARE) [2]. 
Nrf2 plays a critical role in the basal activity and coordinated induction 
of genes encoding numerous antioxidant and phase II detoxifying 
enzymes, including superoxide dismutase (SOD), NAD(P)H:quinone 
oxidoreductase-1 (NQO1), heme oxygenase-1 (HO-1), glutamate-
cysteine ligase modulatory (GCLM) subunit, and thioredoxin, among 
others [3,4]. Therefore, targeting the coordinated upregulation of genes 
coding for detoxifying proteins, antioxidants, and anti-inflammatory 
regulators may be a potential therapeutic strategy to protect against 
insults such as inflammation and oxidative stress [5]. Indeed, targeting 
antioxidant defenses through modulation of Nrf2 could represent 
a new therapeutic approach with potentially major advances over 
conventional therapies [6].

In many clinical trials, 3-hydroxy-3-methyl-glutaryl-CoA reductase 
inhibitors (statins) have shown clear benefits in cardiovascular 
disease beyond their lipid-lowering actions [7], as they also function 
as antioxidants [8]. Statins not only decrease cellular reactive oxygen 
species production but also enhance the antioxidant response by 
upregulating the expression of many antioxidants [9]. Makabe et al. 
reported that fluvastatin protects vascular smooth muscle cells from 
oxidative stress through the Nrf2-dependent antioxidant pathway 
[10], although the molecular mechanism is unknown. The aim of this 
study was to identify the molecular mechanisms of Nrf2 activation by 
rosuvastatin (RSV). 

Materials and Methods
Cell culture and transfection

Primary human umbilical vein endothelial cells (HUVECs; Cell 
System, Kirkland, WA, USA) were cultured in endothelial cell basal 
medium-2 (Lonza, Walkersville, MD, USA) containing 5% (v/v) 
fetal bovine serum under humidified conditions (95% air, 5% CO2) 
at 37 ºC. Subconfluent cells between passages 7 and 10 were used in 
the experiments. These cells were divided into four groups: 5.5 mM 
d-Glucose (Glu) + 22 mM l-Glu (normal glucose), normal glucose + 
0.1, 1.0, or 10 µM RSV (RSV), 5.5 mM d-Glu + 22 mM d-Glu (high 
glucose), and high glucose + RSV. RSV was provided by AstraZeneca 
(London, UK). The dosage of RSV for the cells was in accordance to 
previous studies [11,12]. The cells were incubated at 37 ºC for 6 to 24 
h (6 h for RNA isolation and nuclear protein preparation and 24 h 
for total protein preparation). Cos-7 cells (Health Protection Agency 
Culture Collections, Salisbury, UK) were used for the luciferase assays. 
Cells were cultured to 70% to 80% confluence and were transfected with 
50 nmol/L p21Cip1-siRNA (sc-29427; Santa Cruz Biotechnology, Dallas, 
TX, USA) or control-siRNA for 24 h by using Lipofectamine 2000 (Life 
Technology, Grand Island, NY, USA) according to the manufacturer’s 
protocol. The extent of knockdown was assessed by western blotting.

Nrf2 reporter assay

Since transfection efficiency was low in HUVECs, we used 
monkey african green kidney fibroblast-like (Cos-7) cells (Health 
Protection Agency Culture Collections, Salisbry, UK) for the luciferase 
assay. Cos-7 cells were cultured with Dulbecco’s Modified Eagle’s 
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Medium (Sigma-Aldrich Japan, Tokyo, Japan) containing 5% fetal 
bovine serum. Subconfluent cells were co-transfected with a reporter 
construct containing a human ARE-driven luciferase construct and 
a Renilla luciferase reporter as an internal control. After transfection, 
the cells were pretreated with RSV for 24 h. The cells were harvested, 
washed, homogenized, and analyzed for luciferase activity. The dual 
luciferase reporter assay system (Promega, Madison, WI, USA) and 
a luminometer (MimiLumat LB9506, Berthold Technology, Bad 
Wildbad, and Germany) were used to measure luciferase activity, 
according to the manufacturer's protocols. 

mRNA stability assay

The mRNA stability of NQO1 and GCLM was determined by 
actinomycin D chase experiments. HUVECs were cultured under high 
glucose conditions for 24 h. At time 0, medium was exchanged with 
medium containing 1.0 μg/mL actinomycin D plus RSV or vehicle. 
RNA samples were prepared from RSV-treated and untreated cells in 
triplicate at 0, 1, 3, and 6 h. Quantitative real-time polymerase chain 
reaction (qPCR) of NQO1 and GCLM was performed as described 
below.

Cycloheximide chase assay for Nrf2 degradation/protein 
half-life analysis

After 24-h starvation, HUVECs were treated with 10 µM RSV 
for 6 h in a high glucose medium, and then harvested at 0, 15, 30, or 
60 min after the addition of cycloheximide (25 µg/mL). Lysates from 
cycloheximide-treated cells were analyzed by western blotting. 

RNA isolation and qPCR

Total RNA was extracted with TRIzol (Life Technology). Reverse 
transcriptase reactions were performed by using the ReverTra Ace 
qPCR RT Kit (Toyobo Biosciences, Osaka, Japan) for first-strand cDNA 
synthesis. qPCR was performed by using ABI Prism 7500 sequence-
detection system (Applied Biosystems, Foster City, CA, USA). Primers 
and probes for TaqMan analysis were designed by Primer Express 1.5 
(Applied Biosystems) by using information from the supplier based 
on the sequence information from GenBank or EST databases. The 
primers and probes used for NQO1, GCLM, and p21Cip1 are next: 
NQO1 (NM_008706) Forward, 5′- ttctctggccgattcagagt -3′; Reverse, 
5′- tccagacgtttcttccatcc -3′; Probe, FAM -5′- tttacagcattggccacactccacc 
-3′- TAMRA. GCLM (NM_008129) Forward, 5′- caatgacccgaaagaactgc 
-3′; Reverse, 5′- attcccctgctcttcacgat -3′; Probe, FAM-5′- 
attcccctgctcttcacgat -3′-TAMRA. p21Cip1 (NM_007669) Forward, 5′- 
ttgcactctggtgtctgagc -3′; Reverse, 5′- tctgcgcttggagtgataga -3′; Probe, 
FAM -5′ - aaacggaggcagaccagcctgac -3′ - TAMRA. For each gene, 10 ng 
of cDNA was analyzed on an ABI PRISM 7500 by using the TaqMan 
Universal PCR Master Mix (Applied Biosystems). A standard curve 
was prepared from a positive control with known concentrations, 
and the copy numbers of 18S and the target genes were calculated. 
The relative ratios of target gene to 18S are shown as a bar graph. Fold 
change analysis was based on standardizing RNA levels by correcting 
for 18S levels in the sample.

Western blot analysis

Extraction of total cellular proteins and nuclear proteins was 
performed by using an extraction reagent (T-PER tissue protein 
extraction reagent, NE-PER nuclear and cytoplasmic extraction 
kit; Thermo Fisher Scientific, Rockford, IL, USA), according to the 
manufacturer’s instructions. For immunoprecipitation assays, cells 
were lysed in radioimmunoprecipitation assay buffer (10 mM sodium 

phosphate, 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 
and 0.1% sodium dodecyl sulfate SDS) in the presence of 1 mM 
dithiothreitol, 1 mM phenylmethanesulfonylfluoride, and a protease 
inhibitor cocktail (Roche Diagnostics, Indianapolis, IN, USA). For 
the analysis of Nrf2 expression, the proteasome inhibitor MG132 (10 
µM; Sigma-Aldrich Japan) was added to the extraction buffer to avoid 
Nrf2 protein degradation. Cultured cells were homogenized on ice in 
1.0 mL of lysis buffer containing protease inhibitors and centrifuged at 
8000 g for 10 min. The protein concentration in the supernatants was 
determined with a Bio-Rad protein assay kit (Hercules, CA, USA). SDS-
polyacrylamide gel electrophoresis was performed using cell lysates (20 
μg/lane). Anti-Nrf2 (Cell Signaling Technology, Beverly, MA, USA), 
anti-p21Cip1 (Cell Signaling Technology), anti-Lamin A/C (Santa Cruz 
Biotechnology), anti-GAPDH (Santa Cruz Biotechnology), and anti-
 actin (Sigma-Aldrich Japan) antibodies were used as the primary 
antibodies. For immunoprecipitation assays, cell lysates were incubated 
with anti-p21Cip1 antibody and Protein A/G PLUS-Agarose (Santa Cruz 
Biotechnology) for overnight at 4 ºC. After washing the protein A/G 
agarose beads complex, proteins were extracted with SDS buffer and 
proceed to western-blot for Nrf2 or p21Cip1. Signals were detected by 
using the ECL or ECL plus system (Amersham Biosciences, Piscataway, 
NJ, USA). The relative optical band densities were quantified by ImageJ 
analysis software V1.48 [13].

Statistical analyses

Data were expressed as mean ± standard error of mean (SEM). All 
variables were evaluated by two-tailed unpaired Student’s t-test or one-
way analysis of variance for comparison of multiple means. A p value < 
0.05 was considered significant.

Results
RSV activates Nrf2

To determine whether RSV influences the ARE-Nrf2 pathway, we 
used an ARE-luciferase reporter assay in Cos-7 cells. ARE-luciferase 
activity was significantly higher in high glucose treated cells than in 
normal glucose conditions without RSV (Figure 1A). RSV increased 
ARE-luciferase activity under normal and high glucose conditions 
(Figure 1A). We then examined whether RSV increases nuclear 
translocation of Nrf2 protein in HUVECs. As shown in Figure 1B, 
rosuvastatin produced a marked increase in Nrf2 translocation into the 
nucleus under normal and high glucose conditions. 

RSV increases Nrf2-targeted gene expression

Nrf2-targeted gene expression was evaluated by qPCR. RSV 
produced a dose-dependent increase in NQO1 and GCLM mRNA 
expression under normal and high glucose conditions (Figure 2A,2B). 
To examine the cause of this Nrf2-dependent induction, we assessed 
mRNA stability by actinomycin D chase experiments. RSV did not 
affect NQO1 and GCLM mRNA stability (Figure 2C, 2D).

RSV increases p21Cip1-Nrf2 protein complex formation

It has been reported that p21Cip1 activates Nrf2 by stabilizing 
Nrf2 protein [14]. To elucidate the mechanisms of Nrf2 activation by 
RSV, we examined p21Cip1 expression. As shown in Figure 3A, RSV 
treatment produced a dose-dependent increase in p21Cip1 mRNA under 
normal and high glucose conditions. p21Cip1 protein expression also 
increased in the presence of RSV (Figure 3B). The interaction between 
endogenous Nrf2 and p21Cip1 was assessed in RSV-treated HUVECs. 
As shown in Figure 3C, p21Cip1 protein formed a complex with Nrf2. 
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Figure 1: Nuclear factor erythroid 2-related factor 2 (Nrf2) activation by statins 
(A) Antioxidant response element-luciferase activity after 24 h incubation with 
10 µM rosuvastatin (RSV) in Cos-7 cells in the presence of normal Glu (5.5 
mM d-Glu + 22 mM l-Glu) or high Glu (5.5 mM d-Glu + 22 mM d-Glu). Data are 
expressed as mean ± standard error of mean (SEM). *p < 0.05 vs. RSV (-), †p < 
0.05 as compared with normal Glu. (B) Nuclear translocation of Nrf2 following 
24 h treatment with 10 µM in human umbilical vein endothelial cells (HUVECs) 
in the presence of normal Glu or high Glu. Data are expressed as mean ± SEM. 
*p < 0.05 compared with RSV (-), †p < 0.05 vs. normal Glu.

Figure 2: Nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent target 
gene expression by rosuvastatin. NAD(P)H:quinone oxidoreductase-1 (NQO1) 
mRNA expression (A) and glutamate-cysteine ligase modulatory (GCLM) mRNA 
expression (B) after 24 h of rosuvastatin (RSV; 0.1, 1.0, 10 µM) treatment in 
human umbilical vein endothelial cells (HUVECs) in the presence of normal Glu 
(5.5 mM d-Glu + 22 mM l-Glu) or high Glu (5.5 mM d-Glu + 22 mM d-Glu). Data 
are expressed as mean ± standard error of mean (SEM). *p < 0.05 vs. RSV 
(-), †p < 0.05 vs. normal Glu. mRNA stability of NQO1 (C) and GCLM (D) after 
treatment with 10 µM RSV in the presence of normal Glu, assessed in HUVECs 
by using 1.0 μg/mL actinomycin D (Act D) chase assays. 

Figure 3: p21Cip1 expression by statins (A) p21Cip1 mRNA expression in 
human umbilical vein endothelial cells (HUVECs) after a 24 h treatment with 
rosuvastatin (RSV; 0.1, 1.0, 10 µM) in the presence of normal Glu (5.5 mM 
d-Glu + 22 mM l-Glu) or high Glu (5.5 mM d-Glu + 22 mM d-Glu). Data are 
expressed as the mean ± standard error of mean (SEM). *p < 0.05 vs. RSV (-). 
(B) p21Cip1 protein expression in HUVECs after 24 h RSV treatment (10 µM) 
in the presence of normal Glu or high Glu. Data are expressed as the mean ± 
SEM. *p < 0.05 vs. RSV (-). (C) Interaction with p21Cip1 and Nrf2 in HUVECs 24 
h after treatment with 10 µM RSV in the presence of normal Glu or high Glu. 
*p < 0.05 vs. RSV (-). 
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Furthermore, binding of endogenous p21Cip1 to Nrf2 was enhanced by 
RSV under normal and high glucose conditions. 

RSV increases Nrf2 protein stability

To examine the role of p21Cip1 in Nrf2 activation, we examined 
Nrf2 protein stability in p21Cip1 siRNA knockdown HUVECs. p21Cip1 
protein expression was significantly reduced by transient transfection 
with p21Cip1 siRNA versus control siRNA (Figure 4A). Nrf2 protein 
expression was increased by RSV in control cells but was not altered 
in p21Cip1 knockdown cells (Figure 4B). To assess the Nrf2 protein 
stability, a cycloheximide chase-based assay was conducted in p21Cip1 
siRNA-transfected cells. RSV prolonged the Nrf2 half-life in control 
siRNA-transfected cells but did not affect the half-life of Nrf2 in p21Cip1 
knockdown cells (Figure 4C).

Discussion
The aim of this study was to identify the molecular mechanisms 

of Nrf2 activation by RSV. We demonstrated that RSV activates the 
transcription factor Nrf2 in endothelial cells, thereby enhancing Nrf2-
dependent anti-oxidant genes. To our knowledge, these findings are the 
first reported evidence that RSV exerts its antioxidant effect through 
the Nrf2/ARE pathway in endothelial cells.

We have shown that p21Cip1 upregulation by RSV increased Nrf2 
protein levels in HUVECs. Under non-stressed conditions, Nrf2 is 
negatively regulated by Keap1. Nrf2 is polyubiquitinated by the Keap1-
Cul3 E3 ligase, and degraded by the 26S proteasome. Some electrophiles 
and oxidants oxidize the cysteine thiols of Keap1 and activate Nrf2 
[15]. Recent reports have indicated that p21Cip1 directly upregulates 
Nrf2 protein levels [14]. These interactions have been mapped to the 
DLG and ETGE motifs in Nrf2 and the KRR motif in p21Cip1, which 
directly activates the Nrf2 pathway by competing with Keap1 for Nrf2 
binding, thereby inhibiting Keap1-dependent ubiquitination of Nrf2 
[14]. p21Cip1 regulates various cellular processes such as cell-cycle 
arrest, DNA replication and repair, cell differentiation, senescence, 
and apoptosis. We showed that RSV upregulates p21Cip1 expression in 
HUVECs, prolonging Nrf2 protein stability and activating the Nrf2/
ARE pathway. 

We confirmed that RSV activates the Nrf2/ARE pathway and 
enhances NQO1 and GCLM expression in endothelial cells. Some 
reports have suggested NQO1 activation is beneficial for the treatment 
of the metabolic syndrome by ameliorating obesity, preventing 
arterial smooth muscle cell proliferation, and mitigating spontaneous 
hypertension in animal models [16-18]. Other Nrf2-dependent 
antioxidants include heme oxygenase 1 (HO-1) and superoxide 
dismutase (SOD) [19]. Pharmacological inhibition of HO activity 
or deletion of the HO-1 gene worsens renal injury induced by toxic 
substances [20,21], ischemia reperfusion and diabetes [22]. SOD is 
the major antioxidant enzyme that removes superoxide, converting 
superoxide into hydrogen peroxide and molecular oxygen [23,24]. 
Thus, RSV may protect against cardiovascular diseases, including 
kidney diseases, through the upregulation of NQO1, HO-1, and SOD 
expression via Nrf2 activation. 

RSV is a potent inhibitor of cholesterol biosynthesis and is used 
as a cholesterol-lowering drug [25]. Previous studies show that statins, 
including RSV, possess powerful pleiotropic effects that are independent 
of their effects on lipids and lipoproteins [26,27]. Recent reports have 
indicated that other statins also upregulate p21Cip1 expression [28,29], 
which mediates Nrf2 activation. Thus, we assume that other statins may 

Figure 4: p21Cip1 enhances nuclear factor erythroid 2-related factor 2 (Nrf2) 
protein stability. (A) Western blot analysis of extracts from in human umbilical 
vein endothelial cells (HUVECs) transfected with control or p21Cip1 siRNA. *p < 
0.05 vs. control siRNA. (B) p21Cip1 protein expression in HUVECS transfected 
with control or p21Cip1 siRNA following 24 h treatment with 10 µM rosuvastatin 
(RSV). Data are expressed as the mean ± standard error of mean (SEM). 
*p < 0.05 vs. RSV (-). (C) Nrf2 protein stability assessed using 25 µg/mL 
cycloheximide (CHX) chase-based assay. Data are expressed as the mean ± 
SEM. *p < 0.05 vs. RSV (-).

also activate the Nrf2/ARE pathway, contributing to their pleiotropic 
effects, including decreasing oxidative stress and inflammation.

In conclusion, we showed that the anti-oxidant effects of RSV 
include the amplification of antioxidant potential through Nrf2 
activation. Numerous reports have previously described the vascular 
protective mechanisms of statins; however, this is the first report to 
suggest that statins activate Nrf2 via p21Cip1 upregulation. Oxidative 
stress is the basis of morbidity in many cardiovascular diseases, 
including chronic kidney disease, and statin treatment may be a useful 
therapeutic strategy to enhance anti-oxidative capacity. 
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