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Introduction
Functioning as ligand-activated transcription factors, nuclear 

receptors have the ability to regulate gene expression by interacting 
with specific DNA sequences adjacent their target genes [1,2]. Because 
NRs can regulate a myriad of human developmental and physiological 
functions (reproduction, development, metabolism), they have 
been implicated in a wide range of diseases, such as cancer, diabetes, 
inflammatory diseases or osteoporosis [3,4]. 

The importance of NRs has prompted a rapid accumulation of the 
relevant data from a great diversity of fields of research. If searching in 
the comprehensive protein database UniProt (Release 2013_05) with 
the query words “nuclear hormone receptor family”, you will obtain 
7,752 results, from which you can access the information of protein 
attributes, comments, ontologies and so on. Specific databases about a 
single protein family can bring researchers great convenience in using 
all data needed for their research, while relieving them of the onerous 
tasks to retrieve many data from different sources [5]. As a professional 
database for NRs, NucleaRDB holds many different data types in a 
well-organized form, what’s more, the data are validated, internally 
consistent and updated regularly [6,7]. 

These accumulated data are very helpful for data mining and 
knowledge discovery. There is a strong link between the function of 
a protein and the family or subfamily it belongs to, so it is very useful 
to develop bioinformatics tools for identifying NRs and their types 
rapidly and effectively. In recent years, researchers have made some 
studies and attempts for this problem. 

Initial effort was made by Bhasin and Raghava [8] with amino 

acid and dipeptide compositions as input, a SVM-based model was 
developed for predicting four sub-families of NRs. Later, to identify 
a NR sequence among the same four sub-families as Bhasin and 
Raghava had worked upon, Gao et al. [9] reconstructed the dataset, 
and introduced the pseudo amino acid composition (PseAAC) [10] 
to represent the protein samples in hope to improve the prediction 
quality. However, the biggest weakness of the above predictors was that 
all the input sequences would be assumed to be NRs, obviously this 
might generate meaningless outcome. Recently two novel predictors 
were proposed, in which the prediction was carried through two steps. 
Firstly, the input protein sequences are screened, and secondly, if the 
input proteins are recognized as NRs, they will be further identified 
among seven sub-families [11,12]. 

All the aforementioned methods each have their own merits and 
did play a role in stimulating the development of this area, but they all 
have the following main shortcomings. (1) The datasets constructed to 
train the predictors were derived from the old version of NucleaRDB, 
which has been much updated recently. (2) Various feature extraction 
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methods were proposed yet no feature selection approach is employed, 
thus there may be bad features which would increase calculation and 
decrease the classification performance. 

To solve the problem mentioned above, the present study proposed 
a new model. In order to extend the coverage scope of NR subfamilies 
and reduce the homology bias, new benchmark datasets were 
constructed based on the latest version of NucleaRDB (version 11.7.1), 
yet the old datasets used in Wang et al. and Xiao et al. [11,12] were 
derived from the very old version of NucleaRDB (version 5.0). The 
new datasets contains more recently updated NRs and cover eight sub-
families, however the old dataset in Wang et al. and Xiao et al. [11,12] 
consisted of seven sub-families. The prediction was carried by the 
Support Vector Machine (SVM) classifier based on feature extraction 
by incorporating various physicochemical and statistical information 
derived from the protein sequences. What’s more, the features extracted 
will be optimized by forward feature selection algorithm for improving 
performances. This crucial step was not performed in previous studies. 
As a result, the new proposed method only need fewer features to get 
better prediction performance than the methods in Wang et al. and 
Xiao et al. [11,12]. For more detail, see below.

Materials and Methods
Benchmark datasets

Nuclear receptor sequences were collected from the NucleaRDB 
(version 11.7.1) at http://www.receptors.org/nucleardb/, which is a 
molecular class-specific information system for NRs [7]. The database 
has collected and harvested all the eight subfamilies of nuclear receptors 
marked with (1) NR1: Thyroid hormone like (TR, RAR, ROR, PPAR, 
VDR), (2) NR2: HNF4-like (HNF4, RXR, TLL, COUP, USP), (3) NR3: 
Estrogen like (ER, ERR, GR, MR, PR, AR), (4) NR4: Nerve Growth 
factor IB-like (NGFIB, NURR), (5) NR5: Fushi tarazu-F1 like (SF1, 
FTF, FTZ-F1), (6) NR6: Germ cell nuclear factor like (GCNF1), (7) 
NR0A: Knirps like (KNI, KNRL, EGON, ODR7), and (8) NR0B: DAX 
like (DAX, SHP). The initial data set had 3016 sequences belonging 
to eight subfamilies of nuclear receptors. A redundancy cutoff was 
imposed with the program CD-HIT [13] to set the redundancy degree 
to 40% for NR1~NR5 and 80% for NR6, NR0A and NR0B, because 
the later contain too few sequences. If the 40% redundancy degree was 
also set on these classes, the samples left would be too few to have any 
statistical significance. The final dataset SNR contains 267 NR sequences 
belonging to eight different subfamilies as shown in Table 1. To identify 
query proteins between NRs and non-NRs, 1000 protein sequences 
that are not NRs were also collected in SnNR for training the 1st level 
predictor. The protein sequences in SnNR were randomly collected from 
the UniProt (Release 2013_05) at http://www.uniprot.org/ according 
their annotations in the “Keyword” field. The redundancy reduction 

was also operated in SnNR, so that none of the proteins in SnNR has 
40% pairwise sequence identity to any other. The accession numbers 
and sequences for the dataset SNR and SnNR are given in Supporting 
Information S1. 

Sequence-derived features 

A protein sequence P with L amino acid residues can be expressed 
as:

1 2 3 4 5 6R R R R R R R L=P 
               (1)

As pointed out in Chou [10], to develop a classifier for protein 
sequences, how to formulate the protein samples with an effective 
mathematical expression is the critical question. To answer this 
question, many features will be extracted from three different sources 
so as to capture as much useful information as possible.

Amino acid composition (AAC): As a simple and effective 
method, AAC was widely used for feature extraction (see, e.g., [14-
16]). The AAC of a protein is defined as the normalized occurrence 
frequencies of 20 amino acids in that protein, i.e., 

[ ]1 2 20AAC , ,  ,  f f f= T


   (2)

where /i if n L=  with each i (= 1,2,···,20) corresponding to one of 
the 20 native amino acid types, and ni is the number of type i amino 
acids in the protein, while T is the transpose operator.

Dipeptide composition (DC): One of the main drawbacks of 
amino acid composition is that it only emphasizes on overall sequence 
information but ignores the sequence order information. Dipeptide 
(amino acid pair) composition can make up for with capturing the 
local-order information of a protein sequence, which gives a fixed 
pattern length of 400 (20×20) [17], and can be generally formulated as 

DC = [d1,d2,···,d400]
T				                (3)

where di denotes the occurrence frequency of the i-th dipeptide as 

Total number of dip( )
Total number of all possible dipeptidesi

id = (4)

Where dip(i) (i = 1,2,···,400) is the i-th dipeptide. 

Correlation factor (CF): Given a protein sequence P, suppose 
H(R1) is the certain physicochemical property value of the 1st residue 
R1, H(R2) that of the 2nd residue R2, and so forth. In terms of these 
property values the protein sequence can be converted to a digit signal 
[H(R1), H(R2),···H(RL)], from which we can get correlation factors [18] 
as follow, 

1

1 (R ) (R )      ( )
L i

i j j i
j

H H i L
L i

θ
−

+
=

= ⋅ <
− ∑    (5)

where θ1 is the 1st-tier correlation factor, θ2 the 2nd-tier correlation 
factor, and so forth. Here we only choose the first 10-tier correlation 
factors to be candidate features because the high-tier correlation factors 
made very little difference in prediction but increased much calculation 
in the feature selection procedure.

In this study, the following eight physical-chemical properties 
were taken into account: (1) Hydrophobicity index, (2) Hydropathy 
index, (3) pK-N, (4) pK-C, (5) Mean polarity, (6) Isoelectric point, (7) 
Molecular weight, (8) Normalized van der Waals volume. The values 
of these properties can be obtained by entry searching from AAindex 
(http://www.genome.jp/aaindex/), which is a database of numerical 
indices for various physicochemical and biochemical properties of Table 1: Breakdown of the benchmark dataset.

Family Subfamily Number of sequences

NR

NR1 82
NR2 68
NR3 33
NR4 11
NR5 15
NR6 10

NR0A 29
NR0B 19

Non-NR N/A 1000

http://www.uniprot.org/
http://www.genome.jp/aaindex/
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amino acids and pairs of amino acids. All data in this database [19] 
are derived from published literatures. Thus we will extract 8×10 = 80 
correlation factors. 

Feature normalization: Finally, we obtained a total of 500 feature 
elements, of which 20 are from AAC, 400 from DC, 80 from CF. We 
can easily find that different features have different scales, so every 
feature will be normalized as follow

( ) min
max min min

max min

x xy y y y
x x

−
= − ∗ +

−
                  (6)

where x is the original feature value, while y is the normalized feature 
value, xmax and xmin is the maximum and minimum value of the original 
feature respectively, ymax = 1 and ymin = −1, thus every feature value will 
be normalized in the range of -1 to 1. 

Thus, a protein sample can be formulated as a normalized 500-D 
vector given by

1 2 500[ , , , ]ψ ψ ψ= ⋅⋅⋅   (7)

Support vector machine

In machine learning, support vector machines (SVMs) are 
supervised learning models with associated learning algorithms that 
analyze data and recognize patterns. The original SVM algorithm was 
invented by Vapnik [20] and the current standard incarnation (soft 
margin) was proposed by Cortes and Vapnik [21]. An SVM model is a 
representation of the examples as points in space, mapped by a kernel 
function so that the examples of the separate categories are divided by 
a clear gap that is as wide as possible. New examples are then mapped 
into that same space and predicted to belong to a category based on 
which side of the gap they fall on. Different kernel functions define 
different SVMs. In principle, SVM is a two-class classifier, but it can 
directly cope with multi-class classification problem through the one-
against-all or pairwise method.

SVM has been widely used for predicting protein attributes (see, 
e.g. [8,22-26]). In this study, the LIBSVM package [27] was used as
an implementation of SVM, which can be downloaded from http://
www.csie.ntu.edu.tw/~cjlin/libsvm/, the popular radial basis function
(RBF) was taken as the kernel function, and there were two unknown
parameter: penalty parameter C and kernel parameter γ. The values of
the two parameters are closely related to the quality of the model, how
to determine them will be discussed later.

Cross-validation and performance measures

In statistical prediction, cross-validation [28] is a model validation 
technique for assessing how the results of a statistical analysis will 
generalize to an independent data set. In K-fold cross-validation, the 
original sample is randomly partitioned into K equal size subsamples. 
Of the K subsamples, a single subsample is retained as the validation 
data for testing the model, and the remaining K-1 subsamples are 
used as training data. The cross-validation process is then repeated K 
times (the folds), with each of the K subsamples used exactly once as 
the validation data. Leave-one-out cross-validation (LOOCV) involves 
using a single observation from the original sample as the validation 
data, and the remaining observations as the training data. This is 
repeated such that each observation in the sample is used once as the 
validation data. This is the same as a K-fold cross-validation with K 
being equal to the number of observations in the original sampling. As 
elucidated and demonstrated by Eqs.28-32 of Chou [29], the LOOCV 
test has the least arbitrary that can always yield a unique result for a 

given benchmark dataset, and hence has been increasingly and widely 
used by investigators to examine the accuracy of various predictors 
(see, e.g. [30-36]). Accordingly, the LOOCV test was also adopted here 
to examine the quality of the present predictor.

For performance measures we used accuracy (ACC) and Matthew’s 
correlation coefficient (MCC). Accuracy measures the proportion of 
correct predictions. MCC takes into account true and false positives 
and negatives and is generally regarded as a balanced measure which 
can be used even if the classes are of very different sizes. The MCC can 
be calculated using the formula:

(TP)(TN) - (FP)(FN)MCC =
[TP + FP][TP + FN][TN + FP][TN + FN]                     (8)

where TP represents the true positive, TN, the true negative, FP, the 
false positive, and FN, the false negative. Specifically for a hypothetical 
class X, all the other classes are marked X , then TP is the number of 
correctly predicted sequences that belong to X, TN is the number of 
correctly predicted sequences that belong to X , FP is the number of 
sequences wrongly predicted to belong to X while FN is the number 
of sequences wrongly predicted to belong to X . Eq.8 returns a value 
between −1 and +1. A coefficient of +1 represents a perfect prediction, 
0 no better than random prediction and −1 indicates total disagreement 
between prediction and observation.

Feature selection

As we know, not all the extracted features would contribute 
to the classification, so the feature selection procedure is always 
indispensable in a classification problem. In essence, feature selection 
is a combinatorial optimization problem. Its goal is to seek the feature 
subset that maximizes the performance of the predictor. To find the 
optimal feature subset from the original feature set, all the combination 
of features should be tried from the point of view of the exhaustion 
principle, which is of computational intractability. Hence we usually 
rely on some heuristics to overcome the complexity of exhaustive 
search. Sequential Forward Selection (SFS for short) proposed by 
Whitney [37] is one of the commonly used heuristic methods for 
feature selection. It involves the following steps:

(1) Use one classifier (in this case, SVM), and the cross-validation
test for prediction accuracy estimate.

(2) Select the first feature that has the highest accuracy among all
features.

(3) Select the feature, among all unselected features, together with
the selected features that gives the highest accuracy.

(4) Repeat the previous process until you have selected enough
number of features, or until the accuracy is good enough.

Results and Discussion
Before the procedure of features selection, the two uncertain 

parameters (C and γ) in SVM must be determined firstly. However, 
it would need a lot of computational time to find their optimal values 
by LOOCV. Therefore, as a first step, the values of the two parameters 
were determined by pursuing the highest prediction accuracy of 10-
fold cross-validation through 2-D grid search as shown in Figure 1. The 
values thus obtained for the two parameters were given by

 
11 14 st

1 5 nd

2 ,     2    for the 1 -level prediction
2 ,       2     for the 2 -level prediction

C
C

γ
γ

−

−

 = =


= =
(9)
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where the 1st-level prediction was for identifying a query protein as 
NR or non-NR, while the 2nd-level prediction was for identifying a NR 
among its eight subfamilies.

Next, the Sequential Forward Selection algorithm was implemented 
on the original features set. Again, to reduce time consuming of 
computation, prediction accuracy by 10-fold cross-validation was 
taken as the measure of the feature subset. For each feature newly 
selected, there would be overall accuracy accordingly. With the 
number of features as x-axis and overall accuracy as the y-axis, SFS 
curve was plotted to reveal the relation between the performance of 
the predictor and the feature subset. From the SFS curve in Figure 2 
we can see that, in the 1st level prediction, the SFS curve peaks at 0.9795 
when the feature set is comprised of the first 421 features, while in the 
2nd level prediction, the SFS curve peaks at 0.9663 when the feature 
set is comprised of the first 455 features. The optimal feature subset is 
considered with the highest prediction accuracy, and the predictor thus 
obtained was used to identify the NRs and their subfamilies. From this 
figure we can also find that, in the 1st-level prediction, if input all the 
original 500 features, the prediction accuracy is about 97%, however 
if input the first 152 optimal features, the results are equivalent, and 
if only input the first 17 optimal features, more than 90% accuracy 
could be obtained. Similarly in the 2nd-level prediction, 92% accuracy 
is obtained with all the 500 original features as input, while only input 
the first 91 optimal features, the same result can be achieved. So feature 
selection is very useful here, and the contribution of most of the 
features is quite limited. The sequentially selected features by Sequential 
Forward Selection algorithm in the 1st and 2nd level prediction are given 
in Supporting Information S2, from which we can find that, for the 1st 
level, the previous features selected are mainly AAC, it seems that the 
nuclear receptors are clearly different from the other proteins in amino 
acid composition, for the 2nd level, DC and CF are selected firstly and 
contribute more to the classification, it shows that NR sequences in 
different NR subfamilies are similar in amino acid composition, and 
it need more sequence order and physical-chemical information to 
distinguish.

Finally, using the parameters values of Eq.9 for the SVM operation 
engine and optimal feature subset in the features selection procedure, 
the LOOCV was performed on the benchmark dataset. The results thus 
obtained in identifying proteins as NRs or non-NRs are given in Table 
2, while those in identifying NRs among their eight subfamilies are 
given in Table 3. 

To verify the effectiveness of the proposed model, we also compare 
the prediction results among NRPred-FS, NR-2L [11], and iNR-
PhysChem [12], the latter two are the latest predictors for nuclear 
receptors. However, because the datasets for training and testing 
are not the same and the latter two can only identify NR among 
seven subfamilies in the 2nd level prediction. In the cause of fairness, 
NRPred-FS was also tested on the old dataset as used in NR-2L and 
iNR-PhysChem. The old dataset was also derived from the NucleaRDB 
(version 5.0) and UniProt (Release 2010_10). After redundancy cutoff, 
there were 500 non-NRs and 159 NRs which were classified into seven 
subfamilies. For more detailed information about the old dataset [11]. 
It needs to be stressed that, for the old dataset the calculation and 
optimization are carried out again as described above. All the results are 
listed in Tables 4 and 5 for the 1st and 2nd level prediction respectively, 
from which we can see that, for the same dataset the prediction quality 
of NRPred-FS is improved a lot. What’s more, NRPred-FS need only 
435 features in the 1st level and 340 features in the 2nd level to get the 
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Figure 1: The 3D graph to show the prediction accuracies by the 10-fold cross-
validation with different values of C and γ in the SVM engine. (a) The results 
obtained for the 1st-level prediction. (b) The results obtained for the 2nd-level 
prediction.
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Figure 2: SFS curve reveal the relation between the performance of the 
predictor and the feature subset. (a) In the 1st level prediction, the SFS curve 
arrives at the apogee when the feature set is comprised of the first 421 features. 
(b) In the 2nd level prediction, the SFS curve arrives at the apogee when the
feature set is comprised of the first 455 features.
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best results, while iNR-PhysChem used 1000 features and 500 features 
are adopt in NR-2L. 

Conclusion
In this study, the feature selection method with various 

physicochemical and statistical features is implemented for improving 
prediction performance. The prediction accuracy on the newly 
constructed benchmark dataset is 97% and 93% in the 1st-level and 
2nd-level classifier. It is anticipated that NRPred-FS may become 
a useful tool for identifying NRs and their functional types. Feature 
selection procedure is very important and necessary for protein 
attribute prediction based on machine learning, because some features 
contribute very little to, even interfere with the decision-making, 
especially when you don’t know the intrinsic correlation between the 

Table 2: ACC and MCC in the 1st-level prediction by LOOCV. 

Family ACC MCC

NR
247 92.51%
267

= 0.91

Non-NR
982 98.20%

1000
= 0.91

Overall
1229 97%
1267

= 0.94

Table 3: ACC and MCC in the 2nd-level prediction by LOOCV. 

Subfamily ACC MCC

NR1
79 96.34%
82

= 0.90

NR2
63 92.65%
68

= 0.91

NR3
28 84.85%
33

= 0.84

NR4
10 90.91%
11

= 0.95

NR5
12 80%
15

= 0.89

NR6
8 80%

10
= 0.89

NR0A
29 100%
29

= 0.96

NR0B
19 100%
19

=     1

Overall 248 92.88%
267

= 0.92

Table 4: Comparison of the prediction results among NRPred-FS, iNR-PhysChem 
and NR-2L in identifying NRs and non-NRs by the LOOCV on the old dataset. 

Family
NRPred-FS iNR-PhysChem NR-2L
ACC MCC ACC MCC ACC MCC

NR
153 96.23%
159

= 0.97
153 96.23%
159

= 0.95
156 98.11%
159

= 0.83

Non-NR
498 99.60%
500

= 0.97
494 98.80%
500

= 0.95
454 90.80%
500

= 0.83

Overall
651 98.79%
659

= 0.98
647 98.18%
659

= 0.96
610 92.56%
659

= 0.85

Table 5: Comparison of the prediction results among NRPred-FS, iNR-PhysChem 
and NR-2L in identifying the subfamilies of NRs by the LOOCV on the old dataset.

Subfamily
NRPred-FS iNR-PhysChem NR-2L
ACC MCC ACC MCC ACC MCC

NR1
50 100%
50

= 0.99
47 94.00%
50

= 0.87
43 86.00%
50

= 0.88

NR2
36 100%
36

= 0.95
35 97.22%
36

= 0.93
31 86.11%
36

= 0.85

NR3
37 100%
37

= 1.00
37 100%
37

= 0.95
37 100%
37

= 0.86

NR4
7 100%
7
= 1.00

5 71.43%
7
= 0.84

6 85.71%
7
= 0.70

NR5
10 83.33%
12

= 0.91
10 83.33%
12

= 0.91
10 83.33%
12

= 0.86

NR6
5 100%
5
= 1.00

5 100%
5
= 1.00

5 100%
5
= 1.00

NR0
10 83.33%
12

= 0.91
8 66.67%

12
= 0.81

9 75.00%
12

= 0.86

Overall
155 97.48%
159

= 0.97
147 92.45%
159

= 0.91
141 88.68%
159

= 0.87

features extracted and the attribute to be predicted. T﻿he feature subset 
optimizing is usually very time-consuming, however, it will make the 
final predictor faster and more efficient, this is worthwhile.
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