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Introductory Remarks on the Ubiquitin-Proteasome 
Proteolytic Pathway

In eukaryotic cells, the Ub-Proteasome proteolytic pathway is the 
major intracellular system for the selective degradation of nuclear 
and cytosolic proteins (1,2). Proteins are targeted for degradation 
through the covalent ligation to Ub, a highly conserved 76 amino 
acid polypeptide (3,4). Multi-ubiquitinated proteins are then 
degraded in an ATP-dependent manner by a high molecular mass 
structure known as the 26S proteasome (5,6). The Ub-Proteasome 
pathway maintains cellular homeostasis through dynamic switches in 
protein functional states to control essential cellular processes such 
as cell-cycle progression and programmed cell death. Deregulation of 
ubiquitination in tumor models results in malignant transformation 
and tumor progression likely due to the altered degradation of 
oncoproteins and tumor suppressor proteins (7-11).

Three enzymatic components are required to covalently link Ub 
chains onto protein substrates that are destined for degradation. E1 
(Ub-activating enzyme) and E2’s (Ub-conjugating proteins) prepare 
Ub for conjugation, but the key enzyme in the process is the E3 (Ub-
protein ligase), because it recognizes a specific target protein and 
catalyzes the transfer of activated Ub (3,4). The specificity of target 
selection in the Ub-Proteasome pathway is through E3 Ub ligases that 
bind substrates for degradation and catalyze the transfer of activated 
Ub from the E2 to a lysine residue on the target. Subsequently 
additional Ub moieties are then attached to lysines that are present 
in Ub, yielding a substrate-anchored chain of Ub molecules. 

The 26S proteasome is a ~2.5-MDa highly organized structure 
that recognizes and degrades ubiquitinylated substrates targeted for 
destruction. The 26S proteasome contains a barrel-shaped proteolytic 
core complex (the 20S proteasome), capped at one or both ends by 
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Abstract
The proteasome serves as the catalytic core of the Ubiquitin (Ub) protein degradation pathway and has become an 

intriguing target in drug development and cancer therapy. Successful pharmacologic inhibition of the proteasome with 
the small molecule bortezomib led to US Food and Drug Administration (FDA) regulatory approval for the treatment of 
mantle cell lymphoma and multiple myeloma (MM) and has been extended to a steadily increasing number of clinical 
trials to assess effi cacy and safety in other hematologic malignances and solid tumors. Proteasome inhibition results in 
the accumulation of multi-ubiquitinated proteins, which are normally degraded through the tightly regulated Ub pathway. 
The Ub-Proteasome pathway is responsible for the selective degradation of many proteins that regulate the cell cycle 
and growth. Inhibition of the proteasome generates the accumulation of multi-ubiquitinated proteins that eventually 
leads to apoptosis although the exact mechanism of cell death is not completely understood. A specialized form of the 
proteasome, known to as the immunoproteasome, processes intracellular and viral proteins to generate peptides that 
are then presented at the cell surface bound as antigens (Ags) bound to the Major Histocompatibility Complex (MHC) 
class I molecule receptor. Importantly, inhibitors of the immunoproteasome decrease the processing and generation 
of MHC class I Ags and alter tumor cell recognition by the principal cellular effectors of the immune system. Hence, 
proteasome inhibitors may be employed as therapeutics to regulate the production of tumor specifi c Ags and for the 
selective removal of tumor cells through recognition by cytotoxic T lymphocytes (CTLs), natural killer (NK) cells and 
dendritic cells (DC). Proteasome inhibitors have been validated as effective cytotoxic agents and may have further 
potential as novel immunotherapeutic strategies.

19S regulatory complexes. The 20S proteasome is a multicatalytic 
protease that exhibits various peptidase activities to function as the 
catalytic core the 26S proteasome and more broadly the functional 
core of the Ub-Proteasome pathway. All peptidase activities for 
proteolytic cleavage of the protein substrate reside within the 20S 
structure. In mammalian tissues, the 20S proteasome is comprised 
of up to 14 different proteins, with each subunit represented twice. 

similarities to the two subunits found in the 20S proteasome from the 
archaebacterium Thermoplasma acidophilum.
form four seven-membered rings that stack on top of each other to 
form a barrel-shaped structure. 

Targeting the Ub-Proteasome Pathway in Multiple 
Myeloma

Multiple myeloma (MM) is a neoplasia hallmarked by the clonal 
expansion of malignant plasma cells (PCs) and the accumulation of 
a monoclonal immunoglobulin (Ig) (12,13). MM is the second most 
commonly diagnosed hematologic malignancy in the Western world 

 The a  and b  subunits 

These are classified as either a  subunits or b  subunits based on their 
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and despite conventional treatment that includes high-dose therapy 
with autologous hematopoietic stem cell transplantation (auto-HSCT) 
is generally considered incurable (14,15).  Proteasomal-dependent 
turnover of multi-ubiquitinated substrates has been targeted 
therapeutically with the small molecule inhibitor bortezomib and 
has demonstrated significant clinical benefit in MM patients (16-
19). In the CREST study, relapsed MM patients received bortezomib 
and overall response rates (ORR) reached 50% and, with the addition 
of dexamethasone (DEX) RRs rose to 62% (20). The Assessment of 
Proteasome inhibition for Extending remissions (APEX) trial then 
compared bortezomib with high dose DEX in MM patients that had 
relapsed after one or more prior therapies and demonstrated an ORR 
of 38% in the bortezomib arm vs. 18% in the arm that received DEX 
alone (21). At one year, overall survival (OS) was 80% in those that had 
received bortezomib compared to 67% in the DEX arm. Advances in 
mechanistic understanding and treatment modalities have extended 
median survival to greater than six years and 10% of MM patients 
survive beyond 10 years (16,17). Novel immunomodulatory agents 
(IMIDs) such as thalidomide and the analogs lenalidomide and 
pomalidomide as well as proteasome inhibitors have significantly 
improved prognosis but patient survival remains highly variable 
and patient response to therapy cannot be accurately predicted. 
Furthermore, nearly one-half of the MM patients that receive 
bortezomib do not respond to treatment and therapeutic efficacy 
is compromised by the emergence of drug-resistance- the molecular 
basis of which remains elusive. Thus, novel therapeutic approaches 
are urgently needed for the treatment of MM.

Immunotherapy and the Immunoproteasome as a Target 
in Multiple Myeloma

Immunotherapy for hematologic malignancies such as MM offers 
therapeutic interventions that may utilize the host immune system 
to target and eradicate malignant cells. An advance in understanding 
how tumor cells evade immune surveillance mechanisms has assisted 
the development of immune-based therapies. One potential benefit 
of immunotherapy is the ability to eradicate tumor cells that are 
not eliminated by cytotoxic or targeted methods. Furthermore, an 

immune response may be generated through a mechanism completely 
independent of proteasome inhibition and therefore avoid the 
generation of resistance to proteasome inhibitors. Finally since the 
effectors of an immune response are long-lived (relative to cytotoxic 
chemotherapy) they offer the opportunity for a durable anti-tumor 
effect through sustained immune vigilance. Whether promising 
preclinical and phase I clinical trials will ultimately translate into 
improved, long-term OS remains to be determined. 

Early reports established a role for the proteasome in the 
processing and generation of class I MHC Ag’s (22-24), and 
proteasome inhibitors have been used to study class I Ag processing 
and presentation in vitro (25-30). The proteasome, or a specialized 
form known as the immunoproteasome, cleaves intracellular proteins 
within tumor cells to generate peptide fragments that then are 
transported to the cell surface (Figure 1). The peptides are inserted 
into the binding pocket of class I MHC molecules to facilitate tumor 
cell recognition by the CTL. Importantly, a single peptide~MHC class 
I complex may trigger cytolysis of a tumor cell. It is also noteworthy 
that the proteasome is not a static structure. Exposure of cells to 
cytokines, such as g-interferon, induces partial replacement of 
the three catalytic subunits with new subunits referred to as LMP-
2, -7, and -10. Proteasome inhibitors were shown to reduce the 
generation of endoplasmic reticulum (ER) leader-derived T cell 
epitope and may either up- or down-regulate Ag presentation at 
non-toxic doses (31,32). Furthermore, bortezomib was shown to 
alter viral Ag processing with increased susceptibility to lymphocytic 
choriomeningitis virus (LCMV) infection in vivo (33). Therefore, 
the reduction of class I Ag presentation of virus-derived peptides 
may suppress the CTL response and allow virus replication (Figure 
2). However, while immunoproteasome inhibition may overcome 
resistance to conventional drugs and nonspecific proteasome 
inhibitors, e.g., bortezomib, it also may generate unwanted effects. 
Therefore, the immunoproteasome may be selectively targeted with 
greater specificity and less toxicity (34). Finally, alterations in the Ag 
processing machinery have been detected in transformed PCs and 
are associated with reduced recognition by CD8+ T cells (35). The 
changes in the Ag processing machinery may allow PCs to elude 

Figure 1: Processing of Intracellular Proteins by the Immunoproteasome Generates Peptides that Serve as Class I MHC Antigens at the Tumor Cell Surface.
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immune surveillance and be a part of the MGUS to MM sequence in 
myelomagenesis.

Tumor Specific Antigens as Therapeutic Targets in 
Multiple Myeloma

Since the immunoproteasome is responsible for the generation 
of antigenic peptides it is noteworthy to report the identity those 
that have been reported or detected. A number of recent studies 
have identified tumor specific Ags that have been either detected 
on MM cells or have been associated with MM. These Ags include 
survivin (36), Muc-1 (37), telomerase (38), Sp-17 (39), PRAME, MAGE-A 
family members (40), Wilms tumor gene (WT1), (41) and gp96 (heat-
shock proteins) (42). These Ags may be used as targets for cytotoxic 
and immunologic modalities to elicit selective tumor cell removal. 
To generate a robust, sustained immune response, the host immune 
system must recognize Ags as being foreign, over expressed or 
inappropriate. An ideal Ag would be expressed exclusively on the 
tumor cell and in high numbers; the selective interaction between the 
Ag and immune system effector, e.g. CTL or NK cell, should produce a 
rapid, sustained cytotoxic effect. The immune response should then 
be upregulated to elicit a response directed against as many myeloma 
cells as possible. 

Idiotype (Id) proteins have been targeted in multiple 
lymphoproliferative disorders as immunotherapy against malignant 
B-cells (43).  In myeloma, studies have shown that host response is 
inadequate to control the tumor cell proliferation as seen with the 
higher probability of a TH1 lymphocytic response with increased 
IFN- levels and IL-2 in indolent and early-stage myeloma versus TH2
response with increased IL-4 in patients with late-stage myeloma. 
This is mainly an MHC class II restricted effect with little role for CTL 
activity and suggested that MM cells do not produce an immunogenic 
Id protein.  This differs from other B-cell malignancies.  However, 
Wen et al. demonstrated that exposure of myeloma patient specific 
Id protein on the cell surface to cultured, leukapheresed  peripheral 
blood mononuclear cells (PBMCs) produced DCs as Ag-presenting 
cells (APCs) to suggest that under these circumstances, MM cells may 
process and present Id proteins as MHC antigens (44). 

Another antigenic target is the Dickkopf-1 (DKK1) protein, which 

normally is only found in placenta and mesenchymal stem cells 
(MSCs) but is aberrantly found in elevated levels in bone marrow 
and myeloma PCs by immunohistochemical (IHC) staining (45). DKK-
1 is a secreted protein that inhibits the Wnt/[b]-catenin signaling 
pathway by interacting with the co-receptor protein Lrp-6 (46,47) and 
expression is associated with lytic bone lesions (48). DKK1 peptides 
attached to HLA-A*0201 cells produced a cytotoxic response from 
CTLs primed against this peptide using DCs as APCs.  DKK-1 also 
produced a killing response in the MM cell lines U266 and IM-9, as 
well as HLA-A*0201-positive myeloma cells. However, this method 
did not kill DKK1+/HLA-A*0201-negative cells nor lyse HLA-A*0201 
B lymphocytes (49). DKK1 may be a universal tumor-associated Ag to 
produce myeloma cell-directed vaccine.

Immune surveillance may play a role in preventing the MGUS to 
MM progression and the identification of immune responsive Ags in 
MGUS may provide insight into myelomagenesis and immune-based 
therapeutic applications. A serologic analysis of recombinant cDNA 
expression library (SEREX) approach screened an MM cDNA library 
with sera from 3 MGUS patients (50). Ten Ags were identified with 
specific antibody responses in MGUS patients. A response against the 
Oral-facial-digital type I syndrome (OFD1) was seen in 6/29 (20.6%) 
MGUS patients but 0/11 newly diagnosed MM patients. Interestingly, 
3/11 (27.2%) MM patients following autologous SCT showed responses 

to OFD1. OFD1 functions in the Hedgehog (Hh) and Wingless (Wnt) 
pathways and may represent a critical step in the transformation of 
the pre-malignant MGUS condition to the malignant state. The cancer 
testis Ags MAGE-3 and NY-ESO-1 are normally present in male germ 
cells, ovarian cells and gestational trophoblasts but atypically occur 
in MM and may also induce a selective CTL-mediated response (43).

Antibody-based I mmunotherapy in Multiple Myeloma
Monoclonal antibodies (mAb) recognize Ags on the tumor cell to 

induce complement-mediated lysis as well as ADCC and have been 
successful in solid tumors such as melanoma and renal cell carcinoma 
(51,52). CS1 is a transmembrane glycoprotein that shares a structural 
similarity with surface Ig. Myeloma cells commonly express CS1 
and increased CS1 blood levels seen in MM patients are indicative 
of active disease. A fully humanized mAb (HuLuc63, Elotuzamab) 

Figure 2: The Effect of Proteasome Inhibitors on the Generation of Antigen Peptides and Tumor Cell Recognition by Cellular Effectors of the Immune System.
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was developed to exploit these properties (53) and demonstrated 
inhibition of MM cell adhesion to stromal cells, induced ADCC in 
vitro and injections into xenograft myeloma mice caused tumor 
regression. Elotuzumab has been combined with bortezomib in a 
phase I, dose escalation trial as well as with lenalidomide (LEN) and 
dexamethasone in a phase I/II trial. The bortezomib combination 
showed a best response of rate 60% with 40% achieving a >/= partial 
response (PR) and median time to progression (TTP) of 9.6 months 
(54). Meanwhile, the LEN/DEX combination showed an ORR of 82% 
(64% PR, 18% VGPR) and an adjusted ORR of 95% (73% PR, 23% VGPR) in 
patients that had not been exposed to lenalidomide.  At present, the 
median TTP had not been reached in the phase II portion and further 
studies will address CS-1 mAb efficacy in MM (55).

2-microglobulin (2M) is a component of the MHC class I molecule 
but is non-covalently bound to the -chain and freely exchanges with 
serum 2M.  The serum level of 2M is greatly increased in active
MM and increased levels are associated with poor prognosis.  A mAb 
directed against 2M specifically induced apoptosis in 90% of myeloma 
cells without harming normal lymphocytes, plasma cells, stem cells 
or osteoclasts (56-58).  Moreover, injection into mice produced a 
therapeutic response without damage to the hematopoietic system or 
murine organs (58). The novel mechanism thought to be at work here 
is the transfer of lipid rafts to the MHC class I molecule and removal 
from the IL-6/IGF-I receptor with consequent down regulation of the 
proliferation signaling and up regulation of apoptosis.

Interleukin-6 (IL-6) is a major cytokine that promotes MM cell 
growth and CNTO328 is a chimeric mAb directed against IL-6 that 
has shown modest clinical benefit. CNT0328 produced stable disease 
in 5/14 MM patients but no significant response as a single agent. 
Ten patients went on to have DEX added to their regimen and 5/10 
achieved a PR (59). CD56 is a membrane glycoprotein with structural 
similarity to Ig and is seen in 70-90% of MM cells. CD56 prevents 
apoptosis and up regulates and promotes cellular proliferation (60). 
IMGN901 is a humanized anti-CD56 mAb conjugated to a potent 
chemotherapeutic maytansinoid (DM-1). In a phase I study in MM 
patients with relapsed/refractory disease, 3/18 patients showed a 
minor response (MR) and at least 8/18 patients had stable disease 
(SD).  Treatment lasted at least 24 weeks in 5 patients and at least 
42 weeks in 2 (61). Other targets under evaluation include CD74 
(), IGF-IR (62), AVE1642 (53), HM1.24/BST-2/CD317 (anti-HM) (63), 
and TNF-related apoptosis-inducing ligand (TRAIL) (53). In addition, 
a humanized anti-DKK1 mAb, BHQ880, has been used in human 
myeloma mouse models (64).

Multiple Myeloma-Specific Cytotoxic T Cells
 Agents targeted against key immunosuppressive, oncogenic or 

anti-apoptotic factors may sensitize tumor cells to CTL-mediated 
death. Progress in understanding the mechanisms of Ag processing 
and cancer cell escape from the normal processes that govern the 
removal of unwanted cells further support a CTL-based approach to 
cancer therapy. CTLs recognize target cells using clonally unique T 
cell receptors (TCRs) that confer specificity for Ags expressed on the 
surface of targets. To investigate this approach, a HSCT donor was 
immunized with MM Ig prior to transplantation it was shown that 
tumor Ag-specific immunity could be transferred to the recipient 
(65). Detection of a lymphoproliferative response, a parallel response 
in the carrier protein, recovery of a recipient CD4+ T-cell line with 
unique specificity for myeloma idiotype, and demonstration by in-
situ hybridization that the cell line was of donor origin, proved that a 
myeloma idiotype-specific T-cell response was successfully transferred 

to the recipient. The idiotypic structure of clonal Ig expressed on the 
B-cell surface can be regarded as a tumor-specific Ag and a potential 
target for anti-idiotypic T and B-cells in an immune response (66). 
Active immunization using the autologous monoclonal Ig as a 
vaccine induces tumor-specific immunity in murine B-cell tumors and 
in patients with B-cell lymphoma. An anti-idiotypic T-cell response 
was amplified 1.9 to 5-fold in 3/5 patients during immunization and 
in two of the patients induction of idiotype-specific immunity was 
associated with a gradual decrease of CD19+ B cells. This warrants 
further study to optimize the immunization schedule to achieve long-
lasting T-cell immunity.

Another potential target is HM1.24 Ag, which is preferentially 
over expressed in MM but not in normal cells. T cells specific for the 
HM1.24 antigen were generated from MM patients using stimulation 
with protein-pulsed dendritic cells (67). HM1.24-primed T cells 
responded selectively to HM1.24-loaded autologous peripheral blood 
mononuclear cells (PBMCs) in an IFN- ELISPOT assay to indicate the 
promise of HM1.24 as a target Ag. To further explore the potential
of HM1.24 as a target, Jalili et al. selected 4 HM1.24-derived peptides 
that possessed binding motifs for HLA-A2 or HLA-A24 by using 2 
computer-based algorithms (68). The ability of these peptides to 
generate CTLs was then examined in 20 healthy donors and 6 patients 
with MM by a reverse immunologic approach. DCs were induced from 
PBMCs harvested from patients with MM, and autologous CD8+ T 
cells were stimulated with HM1.24 peptide–pulsed DCs. Interferon-g–
production and cytotoxic responses from CD8+ T cells were both 
observed after stimulation with either HM1.24-126 or HM1.24-165 
peptides. Importantly, HM1.24-specific CTLs were also induced from 
peripheral blood stem cell (PBSC) harvests of MM patients and these 
CTLs were able to kill MM cells in an HLA-restricted manner. This 
finding demonstrates the existence of functional DCs and HM1.24-
specific CTL precursors within PBSC harvests and provides the 
rationale for cellular immunotherapy in combination with autologous 
PBSC transplantation in MM.

Prior studies of Id-protein specific CTLs for myeloma-lysed tumor 
cells indicated that the mechanism of cytotoxicity was mediated 
primarily through the perforin pathway because concanamycin 
A, but not brefeldin A, down-regulated CTL activity (69). Since 
CTLs continuously re-circulate through the body as a surveillance 
mechanism, antigenic stimulation of CTLs may serve as a potentially 
useful means to fight systemic disease. Evidence of T cell reactivity 
against survivin Ag in patients with MM suggests that this Ag might 
be effective (70). Both cytolytic and IFN--producing responses to 
autologous myeloma cells were generated in 6/7 MM patients after 
stimulation ex vivo with DCs that had processed autologous tumor 
cells. The antitumor effectors recognized fresh autologous tumor 
but not non-tumor cells in the bone marrow, myeloma cell lines, 
DCs loaded with tumor-derived Ig or allogeneic tumor. Importantly, 
these CD8+ effectors developed with similar efficiency by using T 
cells. Therefore, even in the setting of clinical tumor progression, the 
tumor bed of myeloma patients contains T cells that can be activated 
readily by DCs to kill primary autologous tumor.

IMIDs are standard of care treatment for MM and one of mechanism 
of action proposed includes T cell clonal expansion. A retrospective 
trial examined MM patients that received prednisone +/- thalidomide 
maintenance following auto-HSCT (71). T cell expansions were seen 
in 48% of patients pre-transplant and 68% after 8-month maintenance 
therapy and the T cell expansions, previously shown to be clonal, 
were predominantly CD8+ (93%). Thalidomide therapy was associated 
with a significant increase in the percentage of patients with multiple 
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expansions of CTL clones. The presence of expansion was associated 
with a significantly longer median in progression-free survival (PFS) 
(32.1 vs. 17.6 months) and OS. Novel methods to expand anti-
myeloma derived CTL clones in the pre-clinical setting involve fusing 
myeloma cells to DCs to bring tumor Ags in proximity to the APCs 
and hence, stimulate more CTLs and form a more intense, longer-
lasting immunity. These methods were used in mouse plasmacytoma 
models and anti-myeloma humoral and CTL responses were seen, 
leading to longer lives in the mice; however, no reduction in tumor 
size was seen.  Further study led to the finding that more mature DCs 
rather than immature DCs used in the fusion cells led to a stronger 
immune response with higher levels of cytokines and CTL activity 
(72). Another technique used involves alternative APCs, namely CD40 
activated B-cells loaded with myeloma Ags.  These methods may 
induce intense, myeloma-specific CTL responses similar to that seen 
in the in vitro killing of cultured myeloma cell lines (73).

Modulation of Natural Killer Cell Activity through 
Proteasome Inhibitors

NK cells are of lymphoid origin, constitute up to 20% of PBMCs 
and function to lyse tumor and virus-infected cells that lack MHC class 
I molecules (74,75). NK cells express surface receptors that either 
inhibit or activate cell lysis. Importantly, inhibitory receptors with 
different specificities for class I molecules have been identified. The 
two main receptor groups are the killer Ig-like receptors (KIR) that 
bind HLA-class I molecules and the heterodimeric receptors CD94-
NKG2A/B that recognize HLA-E. The absence of even a single MHC-I 
allele sensitizes tumor cells to NK-mediated cytotoxicity.  NK target 
recognition is achieved by the absence of syngeneic MHC molecules 
through dominant NK-inhibitory receptors. Alternatively, NK cells 
may utilize the presence of allogeneic MHC molecules or MHC-like 
molecules by NK activating receptors to recognize targets. Should a 
cell down regulate MHC expression, such as that seen in malignancy, 
that cell is less susceptible to CTL-induced lysis but may actually 
become more susceptible to NK recognition. Bortezomib was shown 
to sensitize tumors to death receptor signaling pathways used by 
both NK and T cells. Bortezomib simultaneously results in divergent 
effects on NK and T cell function since bortezomib sensitized cells to 
NK cell-induced apoptosis but also altered tumor Ag presentation and 
paradoxically reduced tumor-specific T cell effector response (76). 

Additional cell surface receptors affected by bortezomib include 
the tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) 
receptors DR4 and DR5. Compared with cycling populations, 
quiescent CD34+ Chronic Myelogenous Leukemia (CML) cells have 
higher surface expression of DR4 and DR5 (77). Cells treated with 
bortezomib were shown to up regulate TRAIL receptor expression 
on quiescent CD34+ CML cells, and furthermore enhanced their 
susceptibility to cytotoxicity by in vitro expanded allogeneic donor 
NK cells. The results suggest that donor-derived, NK cell–mediated 
Graft-versus-Leukemia (GVL) effects may be improved by sensitizing 
residual quiescent CML cells to NK-cell cytotoxicity. 

Human leukocyte antigen (HLA) class I molecules expressed by 
tumor cells play a central role in the regulation of NK cell-mediated 
immune responses (78,79). When one such molecule, KIR-ligand 
(KIR-L), is mismatched, NK cells have potent antileukemic effects 
in the setting of heavily T cell–depleted haplo-identical allogeneic 
transplantation. This is problematic for the majority of MM patients, 
as most are unlikely to be able to tolerate the associated toxicity 
of such a regimen. It is postulated that mature NK cells express at 
least one inhibitory receptor for autologous HLA class I to preserve 

self-tolerance. In contrast, NK cells avidly lyse tumor cells that do not 
display such inhibitory KIR-L. The humanized IgG4 anti-KIR blocking 
antibody IPH2101 enhances NK cell IFN- and granzyme B release 
against MM cells (80) and proceeded to phase I trials without dose-
limiting toxicity reported (81).

Dendritic Cell-based Therapy and Proteasome Inhibitors

Dend ritic cells (DCs) are potent APCs that efficiently survey for 
incoming pathogens. Encounter of DCs with pathogen leads to DC 
activation, migration to secondary lymphoid organs and maturation 
(82, 83). Mature DCs stimulate not only quiescent, naive CD4+ and 
CD8+ T cells but also B cells to initiate a primary immune response 
through the optimal use of co-stimulatory, adhesion, and MHC 
molecules.  A strong secondary immune response is mounted, which 
requires a relatively small number of DCs and low level of Ag. Given 
their central role in controlling immunity, DCs are logical targets for 
treatment of MM but preliminary reports of DC-based immunotherapy 
have demonstrated low clinical responses. Vaccination with tumor 
Ag-pulsed DCs are protective in animal models and have induced 
potent tumor-specific immunity and durable regression of human 
solid tumors and B-cell lymphoma in these models (84). The results 
indicate that DCs pulsed with Id protein could be used to induce the 
type 1 anti-Id response in patients with MM.

Hete r okaryons generated by the fusion of DC’s with tumor 
cells combine the machinery needed for immune stimulation 
with presentation of a large repertoire of tumor cell-specific Ags. 
Subsequent fusions of MM cells with DC as a vaccination strategy 
were shown to be potent stimulators of autologous patient T 
cells and more importantly, fusion cell-primed autologous PBMCs 
demonstrated MHC-restricted cytolysis (85).  In a murine model, 
vaccination of DCs fused with mouse 4TOO plasmacytoma cells was 
associated with induction of antitumor humoral and CTL responses 
(86). Immunization with the fusion cells protected mice against 
tumor challenge and extended the survival of tumor-established mice 
without eradication of the tumor cells while addition of IL-12 further 
eradicated disease.

A novel extension of the heterokaryon approach fused Id-protein 
pulsed DCs that were then induced to undergo maturation with 
exposure to CD40 ligand (CD40L) (87).  The experimental premise 
is that mature DC’s are better at stimulating CD4+ and CD8+ cell 
activation than immature DC’s, but myeloma, as with other cancers, 
can impair the T-helper cells. Thus, CD40 activation of DC’s is similarly 
impaired. Vaccination with CD40L-stimulated DC’s may reduce the 
effect on host immune system. In a murine model, bortezomib 
sensitized B16 melanoma tumor cells to the lytic effects of immune 
effector cells (88) but also impaired the immune stimulatory capacity 
of myeloid DC’s (89).

While bortezomib has the potential to enhance DC-mediated 
anti-tumor immunity, it has also been reported to impair several 
stimulatory properties of monocyte-derived DC’s. The precise role 
of proteasome inhibitors and the effect on the innate and adaptive 
immunity as combined therapy is still unclear. It has been shown that 
the uptake of human MM cells by DC’s after bortezomib-induced 
death leads to antitumor immunity and depends upon cell surface 
exposure of hsp90 on dying cells (90). Bortezomib impaired several 
properties of DC’s such as phagocytic capacity, maturation in response 
to LPS and TNF-a and CD40L and reduced cytokine production (91). 
Bortezomib was found to down-regulate MyD88, an essential adaptor 
for TLR signaling as well.



Citation: Driscoll JJ, Burris J, Annunziata CM (2010) Novel Strategies in the Treatment of Multiple Myeloma: From Proteasome Inhibitors to 
Immunotherapy. J Cel Sci Therapy 1:101. doi:10.4172/2157-7013.1000101

J Cel Sci Th erapy
ISSN:2157-7013 JCEST, an open access journal 

Volume 1• Issue 1•1000101

Page 6 of 8

Conclusions
 The clinical s uccess of proteasome inhibitors in the treatment of 

MM and an increasing number of hematological malignancies validates 
the proteasome as viable therapeutic target. Bortezomib combined 
with IMIDs and a number of chemotherapeutic agents in MM has 
demonstrated improved RR, CR and OS comparable or superior to 
those achieved in the auto-HSCT. Furthermore, bortezomib-based 
therapy may be more applicable particularly in the elderly or frail 
patient populations. Future efforts are directed the identification of 
synergistic drug combinations that produce more durable responses, 
less toxicity and prolonged survival for patients to make certain 
plasma cell dyscrasias increasingly chronic and treatable diseases. 
Clinical response to agents or cells that enhance immunity alone is 
rare; however, it is more likely to show benefit when combined with 
other agents such as proteasome inhibitors. Durable tumor regression 
and potential cures of metastatic solid cancers can be achieved by 
a variety of cellular immunotherapy strategies, including cytokine 
therapy, dendritic cell–based vaccines, and immune-activating 
antibodies, when used in so-called immune-sensitive cancers such as 
melanoma and renal cell carcinoma. However, these immunotherapy-
based strategies have very low tumor response rates, usually in the 
order of 5% to 10% of treated patients. The antitumor activity of 
adequately stimulated tumor antigen–specific T cells is limited by local 
factors within the tumor milieu and that pharmacologic modulation 
of this milieu may overcome tumor resistance to immunotherapy. By 
understanding the mechanisms of tumorigenesis and of cancer cell 
immune escape, it may be possible to design rational combinatorial 
approaches of novel therapies such as proteasome inhibitors able to 
target immunosuppressive or antiapoptotic molecules in an attempt 
to reverse resistance to immune system control. The Ub-Proteasome 
pathway is an ideal target for immunopotentiating drugs that block 
key oncogenic mechanisms in cancer cells resulting in a proapoptotic 
cancer cell milieu while at the same time do not negatively interfere 
with critical CTL functions and may actually augment NK-cell based 
tumor lysis. Further studies are warranted and in progress to 
incorporate these immunotherapeutic approaches with existing 
and emerging novel, biologic approaches aimed at the improved 
treatment of MM.
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