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Introduction
Mesenchymal stem cells (MSCs) are self-renewing multipotent 

cells capable of differentiating into several cell lineages including 
osteoblasts, chondrocytes, and adipocytes [1]. First described by 
Friedenstein et al. [2], MSCs have successfully been isolated from 
bone marrow [2,3], adipose [4,5], peripheral blood [6], umbilical cord 
blood and matrix [7], fetal blood and liver [8], connective tissue of 
dermis [6,9], and skeletal muscle sources [6]. The multi-differentiation 
potential of MSC raises a clinical interest to employ these cells for 
regeneration purposes, for example, in osteogenesis imperfecta. MSCs 
lack major histocompatibility complex class II antigens and have been 
shown in vitro to inhibit the activation and/or function of natural killer 
cells [10], T cells [11-13], dendritic cells [14-16], and B-cells [17]. These 
immunomodulatory properties have led to clinical trials to assess their 
therapeutic potential for graft-versus-host disease after hematopoietic 
transplantation, type I diabetes, and multiple sclerosis. Due to easy 
access via liposuction, adipose has become the preferred source of 
MSCs for therapeutic applications. 

Irrespective of their source, MSC isolation involves several steps 
including positive selection via the properties of plastic-adherence 
and colony formation [18]. Although this eliminates contaminants 
such as blood and immune cells, a heterogeneous starting population 
and fibroblast contamination represent disadvantages. Fibroblasts are 
known to undergo senescence and apoptosis in culture, while surviving 
cells become immortal and potentially tumorogenic [19]. Thus, 
identification and elimination of fibroblasts from MSC culture could 
improve MSC yield and differentiation potential and also prevent 
tumor formation after MSC transplantation. 

However, there are currently no markers which can be used to 
identify and isolate MSCs. Despite consensus that MSCs are positive 
for expression of CD73, CD90, and CD105, and negative for expression 
of hematopoietic cell surface markers CD11a, CD19, CD34, CD45, 
and HLA-DR [20], expression levels of these markers vary across 
laboratories due to tissue source or the specific culture conditions 

used [18]. Perhaps more importantly, fibroblasts also express CD105, 
CD73, and CD90 on their surface and lack hematopoietic markers 
[21]. Additionally, fibroblasts and MSCs share an almost identical 
in vitro morphology, rendering useless physical filtration techniques 
[22]. Thus, more effective strategies to purify MSCs are needed. In 
the present study, we compared AMSCs and dermal fibroblasts using 
real-time RT-PCR and flow cytometry and identified CD54 as a novel 
negative selection marker that enhances MSC differentiation potential. 

Materials and Methods
Isolation and cultivation of AMSCs

AMSCs were isolated from lipoaspirate using a modified method 
as described [23]. Briefly, lipoaspirate was obtained and washed with 
equal volume of hank’s buffered salt solution (HBSS; Invitrogen, Grand 
Island, NY). After gentle shaking, isolated samples were separated 
into two phases. The lower phase (containing stem cells, adipocytes, 
and blood) was washed and enzymatically dissociated with 0.075% 
collagenase type I (Sigma-Aldrich, St. Louis, MO)/HBSS for 1 h at 
37°C with gentle shaking. Collagenase was inactivated by adding a 1:10 
volume of fetal bovine serum (FBS) to adipose collagenase mixture. 

The mixture was centrifuged at 400 g for 10 min at 25°C. 
The cellular pellet was resuspended in red blood cell lysis buffer 
(eBioscience, San Diego, CA) and incubated at 25°C for 10 min. The 
pellet was resuspended in washing medium (HBSS with 2.4% FBS) and 
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sequentially passed through 100, 70, and 40 μm mesh filters to remove 
cell masses. An equal amount of HISTOPAQUE-1077 (Sigma-Aldrich) 
was added and centrifuged at 400 g for 30 min to separate MSCs. Cells 
were seeded at 1-2×104 cells/cm3 and grown at 37°C in dulbecco’s 
modified eagle medium-High Glucose (DMEM, Invitrogen) with 10% 
FBS and 1% penicillin/streptomycin and equilibrated against 5% CO2 
and 95% air. 

Media was changed every 2-3 days. At 70-80% confluency, cells 
were washed with PBS and then detached with 0.25% trypsin-EDTA 
(Invitrogen). Cells were centrifuged at 300 g for 5 min. After removing 
the supernatant, cells were then resuspended in DMEM culture media 
and seeded at approximately 5×103 cells/cm3 counting as passage one. 
MSCs were harvested at 70-90% confluency for RNA extraction, flow 
cytometry, or magnetic-activated cell sorting (MACS) at early (≤ 5) 
passage.

Human adult dermal fibroblasts (ATCC, Manassas, VA) were 
cultured in DMEM-high glucose (Invitrogen) with 10% FBS and 1% 
penicillin/streptomycin at 37°C in an incubator with 5% CO2. Cells 
were harvested at 70-90% confluency for mRNA extraction and flow 
cytometry. 

Real-time and semi-quantitative RT-PCR 

Harvested cells were homogenized using cell shredders (Qiagen 
Inc, Valencia, CA). Lysates were collected and total RNA retrieved 
using a Qiagen RNA isolation mini kit (Qiagen Inc, Valencia, CA). 
RNA purity was determined using spectrophotometry at 260/280 nm. 
cDNA was synthesized from 2 μg of purified total RNA using reverse 
transcriptase (Super Script III kit, Invitrogen). 

Real-time PCR was performed using SYBR green PCR core reagents 
(Applied Biosystems, Foster City, CA) following the manufacturer’s 
protocol on an ABI Fast Real Time PCR 7900 System (Applied 
Biosystems, Foster City, CA) as previously described [24]. All primers 
(Table 1) were designed using the Primer3 program (Whitehead 
Institute, Cambridge, MA). The PCR protocols involved activation of 

analyzed in triplicate. Reactions without template were used as negative 
controls. β-actin mRNA was used as an internal control. Standard 
curves were plotted for each target gene and internal control. RNA 
quantity was expressed relative to the corresponding β-actin mRNA 
control. Relative expression levels were calculated using the standard 
curve method recommended by Applied Biosystems. 

Semi-quantitative PCR was performed in a Bio-Rad DNA Engine 
thermal cycler using the appropriate oligonucleotide primer pairs 
(Table 1). 15 μL of each PCR product was detected by ethidium bromide 
gel electrophoresis using a 1% agarose gel. Each sample was tested in 
triplicate. Data were analyzed using Alpha Innotech’s AlphaEase FC 
Software: Fluor Chem HD2 version 6.0.2. Intensities were measured 
using the spot-denso tool. The relative expression level was taken as a 
ratio over the expression of the house keeping gene β-actin. 

Flow cytometry 

1×105 cells were collected, washed, blocked with 10% goat serum 
(Abcam, Cambridge, MA) and diluted in PBS containing 3% BSA 
(Sigma-Aldrich) for 20 min at 4°C. Cells were then incubated with 2 
µg/mL of CD54 antibody (Biolegend, San Diego, CA) for 1 h at 4°C. 
Isotype-matched control antibody was used at the same concentration 
as the primary antibody to evaluate non-specific binding. After 3 
washes with PBS, cells were incubated with FITC-conjugated goat 
anti-mouse secondary antibody for 30 min in the dark at 4°C followed 
by 3 washes with PBS. Cells were resuspended in PBS containing 3% 
BSA. Propidium iodide (Vector laboratories, Burlingame, CA) was 
added at a final concentration of 0.02 µM for live cell gating. Ten-
thousand events were acquired with a FACScaliber flow cytometer 
(Becton Dickenson, Mountain View, CA) and results were analyzed 
with CellQuest software program (Becton Dickenson). The cutoff level 
defined by the isotype control antibody was set to less than 1%. The 
mean fluorescent intensity (MFI) ratio was calculated by dividing the 
MFI of CD54 antibody by the MFI of the isotype control antibody. 

Magnetic-activated cell sorting

Sorted cells were cultured in a 6 well plate with 2 mL of DMEM-High 
Glucose (Invitrogen) with 10% FBS and 1% penicillin/streptomycin. 
Cells were allowed 1 day to recover before they were harvested for 
mRNA or subjected to either adipogenic or osteogenic differentiation. 

CFU-F assay

Various adipose-derived MSC (AMSC) lines (sorted and unsorted) 

15 s, and annealing and extension at 60°C for 1 min. Each sample was 

DNA polymerase followed by 40 cycles of denaturation at 94°C for 
MACS was performed according to protocols described by 

Miltenyi Biotech Inc (Auburn, CA). Briefly, 1×106 cells were labeled 
with 2 μg anti-CD54 antibodies in 100 μL PBS, incubated for 1 h at 
4°C and then washed with PBS. Cells were centrifuged at 300 g for 
10 min. The supernatant was aspirated and cells were resuspended 
in 50 μL of MACS buffer. 20 μL of goat anti-mouse IgG1 conjugated 
microbeads were added to cells and incubated at 4°C for 30 min. Cells 
were then washed, collected, and resuspended in 500 μL of buffer. 
MACS columns attached to the magnetic sorter were first rinsed with 
3 mL of buffer and eluent discarded. Cells were then applied to the 
columns and washed with 3 mL of buffer 3 times, and eluent collected 
in a single centrifuge tube labeled as CD54- cells. Columns were then 
removed from the magnetic sorter and 5 mL of buffer was immediately 
applied. The eluent was collected in a fresh centrifuge tube and labeled 
as CD54+ cells.

Gene Direction Sequence (5’->3’) Fragment     
Length    

Gene Bank 
Number      

CD54 F GGCTGGAGCTGTTTGAGAAC 249 NM_000201
R TCACACTGACTGAGGCCTTG

CD49d F GTTTTCCAGAGCCAAATCCA 185 NM_000885
R GCCAGCCTTCCACATAACAT

CD73 F CGC AAC AAT GGC ACA ATT AC 241 NM_002526
R CTC GAC ACT TGG TGC AAA GA 

CD81 F TCATCCTGTTTGCCTGTGAG 270 NM_003756
R CCTCCTTGAAGAGGTTGCTG

CD90 F CACACATACCGCTCCCGAACC 190 NM_006288
R GCTGATGCCCTCACACTTGACC

CD105 F TGC CAC TGG ACA CAG GAT AA 205 NM_000188
R CCT TCG AGA CCT GGC TAG TG 

CD109 F GTCTCCTTCCCACATCCTCA 192 NM_133493
R CAGCTTCTTTCCCAAACTGC

CD146 F ACCCTGAATGTCCTCGTGAC 202 NM_006500
R TCTCTGTGGAGGTGCTGTTG

CD164 F AAGTGGGGAACACGACAGAC 159 NM_001142401
R TGAAACTGGCTGCATCAAAG

CD172a F TGGTAGTGCAGCCTTCTGTG 101 NM_080792
R GGCATTGGGTCTCGATAAGA

Table 1: The sequences of primers used in study.
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were seeded at 156 cells/cm3 on 6 well plates in triplicate, cultured for 
14 days, and then stained with 0.5% crystal violet (Sigma-Aldrich) in 
25% methanol to evaluate clone number. 

MSC differentiation

Reagents used in adipogenic and osteogenic differentiation assays 
were purchased from Sigma-Aldrich otherwise indicated. AMSCs used 
in the adipogenesis assay were seeded at 1.5×104 cells/cm3. Adipogenic 
induction medium was comprised of DMEM with 4.5 G/L glucose, 
2 mM glutamine, 10% FBS, 1% penicillin/streptomycin (Invitrogen) 
containing 0.5 M IBMX, 2.5×10-3 M dexamethasone, 1.7 mM insulin, 
and 140 mM indomethacin. Adipogenic induction medium was 
applied 1 day after seeding and replaced every 3 days thereafter. Cells 
were stained with oil red O at day 14.

AMSCs used in the osteogenesis assay were seeded at 2.5×103 cells/
cm3. Osteogenic induction medium was comprised of DMEM with 4.5 
G/L glucose, 2 mM glutamine, 10% FBS, 1% penicillin/streptomycin 
(Invitrogen) containing 1 M beta-glycerophosphate, 2.5×10-3 M 
dexamethasone, and 10 mg/mL ascorbic acid. Osteogenic induction 
medium was applied 1 day after seeding and replaced every 3 days 
thereafter. Cells were stained with alazirin red S at day 21.

Statistical analysis of data

All data are expressed as means ± standard error of the mean (SEM) 
of 3 independent experiments. Analysis of significance was performed 
using a 2-tailed student t-test with p<0.05 considered significant.

Results
Expression of CD54 marker in AMSCs and fibroblasts

In vitro expanded human AMSCs displayed typical morphology. 
RT-PCR data demonstrated AMSCs were positive for expression of 
CD73, CD90, and CD105, and negative for expression of CD11a, CD19, 
CD34, CD45, and HLA-DR (data not shown). Figure 1 shows there 
was no statistical difference in the relative expression levels of CD81, 
CD109, CD146, CD164, and CD172a in AMSCs versus fibroblasts 
whereas fibroblasts expressed significantly higher CD49d and 10.3-fold 
greater levels of CD54. Thus, we selected CD54 for further analysis.

Flow cytometry data illustrated that 88.0% ± 4.1% fibroblasts 
strongly express CD54 on the cell surface with a MFI ratio of 24.0 ± 
0.0 while only 11.0% ± 0.7% of AMSCs showed weak staining (Figures 
2a and 2b). MACS was used to sort the expanded AMSCs at early 
passage with anti-CD54 antibody. Consequently we created two new 
subpopulations, CD54- and CD54+ AMSCs. We found 15.8% ± 1.9% of 
AMSCs were CD54+ (Figure 2c).

Phenotypic and CFU analysis of CD54- and CD54+ AMCS 

We next isolated RNA from CD54- and CD54+ AMSC fractions 
and analyzed for expression of MSC markers using semi-quantitative 
RT-PCR. Figure 3 demonstrates that CD73 mRNA expression was 
2.2-fold higher in CD54- versus CD54+ cells. Both fractions expressed 
similar levels of CD90 and CD105. 
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Figure 1: Expression prolife of CD markers on AMSCs and fibroblasts. Early 
(≤ 5) passage AMSCs and primary human dermal fibroblasts were harvested 
and total RNA was isolated. Real-time RT-PCR was conducted to examine 
the expression of CD49d, CD54, CD81, CDD109, CD146, CD164, and 
CD172a. Y-axis refers to expression levels normalized to β-actin (*p<0.05).
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Figure 2: Quantitative evaluation of CD54 protein expression in AMSCs 
and fibroblasts. (A) Early passage AMSCs and primary human dermal 
fibroblasts were stained with anti-CD54 specific antibody (black histograms) 
or an isotype-matched control antibody (grey histograms). Expression of 
CD54 was analyzed by flow cytometry. MFI of CD54 reactivity normalized 
to the MFI of the isotype control. Means ± SEM for 3 independent runs are 
shown. (B) Cells stained with anti-CD54 specific antibody or an isotype-
matched control antibody was gated on side scatter dot plot versus the FITC 
profile. (C) Early passage AMSCs were harvested and sorted with anti-CD54 
specific antibody by MACS. 
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populations. Semi-quantitative PCR was performed using primers specific for 
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expression level was taken as a ratio over the expression of the house 
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Clonogenic assays revealed that early passage unsorted AMSCs 
displayed the highest colony forming capability with 16 colonies 
per 1,500 cells seeded (Figure 4) whereas CD54+ and CD54- AMSCs 
produced 14 and 11 colonies per 1,500 cells seeded, respectively. 

Adipogenic and osteogenic differentiation potential of CD54- 
and CD54+ AMSCs

displayed a round shape with the formation of lipid droplets that 
accumulated the oil red O stain (Figures 5a-5c). Control cells were 
negative for oil red O staining (Figures 5d-5f). CD 54- AMSCs showed 
the highest accumulation of oil red O with 46.7% ± 5.0% postive 
staining. Positive staining was observed in 28.7% ± 6.4% of unsorted 
AMSCs and 16.2% ± 6.7% of CD54+ AMSCs (Figure 6). 

Osteogenic differentiation potential was assessed next. After 21 
days of induction, CD54- and unsorted AMSCs stained with alizarin 
red showed a more dense extracellular matrix than did CD54+ cells 
(Figure 7).

Discussion
MSCs hold great promise in regenerative medicine but excitement 

has been tempered due to the possibility of fibroblast contamination 
[25]. Distinguishing MSCs and fibroblasts is currently not possible as 
both adhere to plastic and express similar levels of CD73, CD90 and 
CD105. The aim of our study was to identify a novel selection marker 
capable of separating MSCs from fibroblasts resulting in enhancced 
MSC multipotency.

We focused on CD markers because their cell surface localization 
allowed for their potential use in sorting procedures. Previous studies 
from several groups reported qualitative differences in expression of 
CD49d, CD54, CD81, CD109, CD146, CD164, and CD172a by MSCs 
and fibroblasts [6,21,26-28], but none of these studies confirmed their 
utility as selection markers. In the present study, mRNA expression 
levels of these CD markers were further analyzed and validated by real-
time PCR, a more quantitative method. We found dermal fibroblasts 
express 10-fold more CD54 mRNA and 5-fold more CD54 cell surface 
protein than AMSCs. To our knowledge, this is the first quantitative 
comparison of CD54 mRNA and protein expression in MSCs and 
fibroblasts. This finding is in line with a previous report that 70-
100% of human adult fibroblasts positively stained with anti-CD54 
antibody using flow cytometry [21]. However, a recent study showed 
the only 25% of human adult dermal fibroblasts were CD54+, in line 

Figure 7: Osteogenic differentiation of CD54-, CD54+, and unsorted AMSCs. 
CD 54+ (A and D), CD54- (B and E), and unsorted (C and F) AMSCs were 
cultured in osteogenic induction medium (A, B, and C) or normal DMEM 
medium (D, E, and F). After 21 days, alizarin red staining was used to illustrate 
calcification of mineralized extracellular matrix formed in the induced cells.
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Figure 4: Colony forming capability of CD54 sorted and unsorted AMSC 
populations. (A) Cells from unsorted, CD54-, and CD54+ fractions were 
seeded at 156 cells/cm3 on 6-well plates in triplicate and cultured for 14 d, 
then stained with 0.5% crystal violet in 25% methanol. (B) Clone number was 
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cultured in adipogenic induction medium (A, B, and C) or normal DMEM 
medium (D, E, and F). After 14 days, oil red O staining was used to illustrate 
intracellular lipid droplets.
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with AMSCs [29]. This discrepancy may be explained by the difference 
in the experimental design, because endothelial growth medium 
supplemented with 10% FCS and bFGF was used to culture dermal 
fibroblasts [29], whereas in our study we used DMEM supplemented 
with 10% FBS. 

CD54, also called inter-cellular adhesion molecule 1, is a 
transmembrane glycoprotein with 5 extracellular immunoglobulin 
G-like domains and a short cytoplasmic tail that associates with 
multiple cytoskeletal linker proteins [30]. CD54 is primarily expressed 
in endothelial cells and its interaction with lymphocyte function-
associated antigen-1 and macrophage antigen-1 is important for 
leukocyte adhesion and transendothelial migration [30]. It was 
reported that lymphocyte function-associated antigen-1-dependent 
monocyte migration across connective tissue barriers was primarily via 
engagement of CD54 on fibroblasts [31]. 

The difference in CD54 expression by MSCs and fibroblasts suggests 
that if MSCs become gradually overgrown by contaminating fibroblasts, 
expression of CD54 should increase at later passage numbers. To test 
this hypothesis, we compared CD54 mRNA expression in AMSC 
cultures of passage 2 and 20. The results confirmed our hypothesis 
as CD54 expression was substantially increased in AMSCs at passage 
20 (data not shown). This finding encouraged us to sort AMSCs with 
anti-CD54 antibody before cell expansion to generate CD54+ and 
CD54- populations. We found CD73 expression was 2.2-fold higher 
in CD54- cells relative to CD54+ cells, while, expression of CD90 and 
CD105 was similar. CD73, a membrane-bound nucleotidase, is pivotal 
in the conversion of immunostimulatory ATP into adenosine, which 
exerts potent immunosuppressive effects on both CD4+ and CD8+ T 
cells [32,33]. Thus, increased CD73 expression in CD54- AMSCs would 
benefit their immunosuppressive effects.

Conclusion
Herein, we demonstrated that dermal fibroblasts express 10-fold 

more CD54 mRNA and 5-fold more CD54 protein on their surface than 
AMSCs. Cultured CD54- AMSCs expressed higher levels of CD73, an 
immunosuppressive molecule, and increased differentiation capacity 
into adipocytes and osteoblasts. In conclusion, we identified CD54 
as a novel selection marker for distinguishing MSCs from fibroblasts. 
CD54 may allow for enrichment of MSCs with enhanced multipotency 

and immunosuppressive properties, both advantageous features for 
therapeutic applications.
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