
Liu and Kline, J Hematol Thromb Dis 2013, 1:3 
DOI: 10.4172/2329-8790.1000112

Volume 1 • Issue 3 • 1000112
J Hematol Thromb Dis
ISSN: 2329-8790 JHTD, an open access journal 

Novel Immunotherapy to Eliminate Minimal Residual Disease in AML 
Patients
Hongtao Liu* and Justin Kline
Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA

Abstract
Even with the most sophisticated chemotherapy regimens, the majority of patients with acute myeloid leukemia 

will eventually experience a relapse and die from their disease. New treatments are needed to prevent relapse of 
disease in these patients. Immunotherapy using the host immune system to combat leukemia represents an exciting 
and potentially efficacious addition to standard chemotherapy for AML. Immune-base treatments may be particularly 
effective when administered at a time when patients are in clinical remission with normal blood counts; nevertheless, 
these patients often have minimal residual disease which eventually results in disease relapse. Successful vaccination-
based immunotherapy targeting leukemia-specific antigens will likely require the administration of powerful immune 
adjutants and removal of negative immune regulatory pathways in order to achieve maximal efficacy. This review 
article will focus on the rationales underlying our ongoing clinical trial to test the efficacy of WT1 peptide based 
immunotherapy using TLR3 agonist as adjuvant in combination of the depletion of T regulatory cells with anti-CD25 
antibody in patients with hematologic malignancies. 
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Introduction
Standard chemotherapy for adults with AML (Acute Myeloid 

leukemia) can induce remission but is not curative for the majority 
of patients who will eventually relapse and die of their disease. 
Immunotherapy represents a potentially efficacious adjunct to standard 
AML therapy, particularly for those in the Minimal Residual Disease 
(MRD) state during which immune-based therapies may be most 
effective. Unfortunately, the efficacy of cancer immunotherapy has 
been limited by a number of immune evasion pathways which suppress 
anti-tumor immunity and enable tumor progression. A major focus of 
our research group has been to characterize immune evasion pathways 
promoted by AML with the ultimate goal of blocking such pathways to 
unleash the full effectiveness of immunotherapy for leukemia. 

A strong candidate mechanism for immune evasion in AML is the 
expansion of CD4+CD25+FoxP3+ regulatory T cells (Treg) [1,2]. Treg 
accumulate in the blood of AML patients and their numbers correlate 
negatively with response to chemotherapy [2]. Depletion of Treg in 
murine models has been shown to improve immune-mediated tumor 
control [3,4]. Treg depletion has been achieved in cancer patients using 
an anti-CD25 monoclonal antibody [5,6], making it possible to test 
the impact of Treg depletion coupled with immune-based therapies in 
AML patients. 

AML Treatment in the elderly patients

Currently, there is no universally accepted standard of care 
treatment for older adults with AML. Although older adults with AML 
often achieve a complete remission, the median disease free survival is 
only around 6.1 months without further consolidation chemotherapy 
[7], and the efficacy of standard consolidation chemotherapy for this 
patient cohort has not been proven to improve survival. Thus, new 
strategies need to be developed for post-remission management of 
the elderly patient with AML. Even for young AML patients who are 
able to complete intensive chemotherapy consolidation or allogeneic 
stem cell transplantation, disease relapse remains the major failure of 
treatment for which novel; non toxic treatments are badly needed. 

Immunotherapy of cancer

Over the past decades, evidence has mounted suggesting that 

the immune system can play an important role in the elimination of 
malignant cells. Many tumors express specific antigens and allow them 
to be recognized by CD8+ T cells in particular (reviewed in [8]), and 
increased numbers of tumor-specific T cells can be generated in cancer 
patients through either vaccination with tumor-specific antigens or 
adoptive T cell therapy (reviewed in [9]). However, despite the fact that 
the immune system appears to be “aware” of a growing malignancy, 
spontaneous clearance of established tumors is rare, suggesting the 
existence of downstream mechanisms that inhibit anti-tumor immune 
responses [10]. Several of such mechanisms have been described, 
including extrinsic suppression by CD4+CD25+FoxP3+ regulatory T 
cells (Treg), T cell anergy, diminished T cell activation by engagement 
of negative co-stimulatory T cell molecules, such as PD-1 and CTLA-
4, and tryptophan catabolism by indolamine-2,3-dioxygenase (IDO) 
(reviewed in [10-12]). It is quite likely that these mechanisms are 
coordinately active in concert in established tumors. Therefore, it 
may be necessary to block one or more of these negative regulatory 
pathways in combination in order to obtain a maximally effective anti-
tumor immune response in patients. 

WT1 is a leukemia associated antigen

The development of cancer vaccines directed against leukemia has 
been a research area of intense interest in the past decade [13]. Among 
the identified leukemia-associated antigens (LAAs), Wilms tumor 1 
(WT1) is a leading candidate antigen. The WT1 protein is a zinc finger 
transcription factor that is normally expressed in tissues of mesodermal 
origin during embryogenesis. In normal adult tissues, WT1 expression 
is minimal, while WT1 is over-expressed in most cases of AML, CML, 
MDS, ALL, and in several solid tumors [11]. WT1 mRNA level in the 
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peripheral blood and bone marrow is now being used as a marker 
of minimal residual disease [14]. Furthermore, antibodies to WT1 
and WT1-specific Cytotoxic T lymphocyte (CTLs) were detected in 
patients with hematopoietic malignancies, indicating that WT1 is an 
immunogenic antigen [15]. WT1 peptide vaccines have been used in 
a number of clinical trials conducted in various cancer types [16]. For 
example, a phase I trial using a WT1 peptide-based vaccine for patients 
with AML and MDS revealed that 7 of the 14 patients showed clinical 
responses such as a reduction of leukemic cells and/or WT1 mRNA 
level [17]. A phase II clinical trial in AML and high-risk MDS using 
a WT1 peptide vaccine demonstrated that an immunologic response 
was observed in 44% patients, and objective clinical responses were 
observed in 10 out of 17 AML patients [18]. While there are reports 
from small case series which have suggested that WT1 vaccination can 
have long term efficacy in patients [19,20], other groups have observed 
that that repeated peptide vaccination in Montanide failed to induce 
sustained high-avidity, epitope-specific T cell responses in treated 
patients [21]. In addition, Lehe et al. [22] generated WT1 specific T-cell 
clones which carried a CD4+CD25+FoxP3+ Treg phenotype, and which 
significantly inhibited the proliferation and function of allogeneic CD8+ 
CTL induced by WT1 peptide vaccination. These data demonstrate 
that WT1 is not only an antigenic target in AML, but also can result 
in the generation of Treg, which provides rationale for coupling WT1 
vaccination with Treg depletion as an attractive approach to be tested. 
The finding of enhanced tumor immunity of WT1 peptide vaccination 
by interferon-beta administration [23] supports the notion to utilize a 
TLR agonist as a vaccine adjuvant in this setting, which will be further 
discussed below.

Characterization of the WT1 specific CD8+ T cell repertoire

Recent developments in deep sequencing technology makes it 
now possible to analyze the antigen-specific T cell receptor repertoire 
(reviewed in [24]), which is present in hosts after peptide vaccination. 
Because WT1 peptide vaccination has routinely led to a robust 
expansion of WT1-specific CD8+ T cells [17,25], it will be interesting to 
analyze the clonality of WT1-specific CTLs generated in this context. 
We hope to gain a better understanding of the WT1-specific CTL 
response after WT1 peptide vaccination, and further to obtain clues 
as to how to enhance WT1-specific CTL responses in WT1-based 
immunotherapy approaches. Studies from Japanese groups clearly 
demonstrated biased usage of TCR-Vβ gene families in WT1 peptide 
vaccinated patients [26,27]; the group in Germany observed the WT1 
vaccination-induced expansion of a preexisting low abundant TCR 
clone, which became a specific predominant clone after WT1 peptide 
vaccination [28]. The bias towards Vβ11 usage of the WT1-specific 
CTL populations was confirmed in all four patients following a single 
peptide vaccination [29]. In addition, the identification of a WT1-
specific TCR sequence could provide the basis for adoptive transfer of 
ex vivo expanded WT1-specific TCR engineered CTLs [30].

The role of Treg in AML

Tregs express a high level of the FoxP3 transcription factor which 
delineates this subpopulation of CD4+ T cells. Tregs are a population 
of immune suppressive cells which are critical to prevent autoimmune 
diseases under physiological conditions. Tregs also expand in cancer 
patients and are often enriched in the tumor microenvironment. 
Depletion of Treg can render mice capable of rejecting tumors that 
normally grow progressively [31]. Several groups have shown that 
depletion of Treg can improve anti-tumor immunity in combination 
with vaccination [32]. The frequency of Treg in the peripheral blood 
of AML patients was found to be significantly higher than that of 

healthy individuals [1]. Further, Treg numbers correlate negatively 
with response to chemotherapy in AML patients, and patients who 
achieved a complete response after induction chemotherapy had lower 
Treg frequencies at baseline, compared with non-responders [2]. 
Interestingly, human AML cells also promoted the differentiation of 
CD4+CD25- T cells to CD4+CD25+ Treg in vitro, which might partially 
explain the high Treg frequencies often observed in AML patients [33]. 
Collectively, these data suggest that AML can not only promote the 
expansion of naturally-generated Treg, but also that they can mediate 
Treg induction. Thus, Treg appear to play important role in the 
pathogenesis of refractory or relapsed AML [34]. 

Toll-Like receptor ligands as vaccine adjuvants

Toll-Like receptors (TLR), which recognize pathogen-associated 
molecular patterns, have recently emerged as a critical component 
of the innate immune system for detecting microbial infection 
and activation of dendritic cell maturation programs to induce 
adaptive immune responses [35,36]. Stimulation of TLR signaling 
pathways activates dendritic cells and induces the production of pro-
inflammatory cytokines, such as type-I IFN and IL-12, leading to a 
Th1-skewed response favoring cytotoxic T-cell differentiation. It has 
been reported that TLR signaling on dendritic cells by CpG or LPS 
renders effector cells refractory to Treg–mediated suppression [37]. 
Stimulation of dendritic cells with TLR ligands significantly enhances 
the proliferation of naive and effector T cells, making it more difficult 
for Treg cells to inhibit them [38,39]. These findings offer new strategies 
to develop more effective immunotherapy by employing TLRs agonist 
as vaccine adjuvants. TLR3 agonists have been used in the past, with 
variable efficiency, as an adjuvant to treat cancer patients, with the aim 
of inducing an IFN-mediated anti-cancer immune response [40,41]. 
Hiltonol (poly-ICLC) (Oncovir, Inc, Washington, DC), is a clinical grade 
stabilized TLR3 agonist containing poly-L-lysine and carboxymethyl 
cellulose (poly-ICLC), which has been used in several clinical trials 
[42-45]. An open study evaluating the safety and efficacy of long-term 
treatment of malignant gliomas with intramuscularly administrated 
poly-ICLC [42] demonstrated that poly-ICLC administration was well-
tolerated with little or no toxicity, and 66% patients had stable disease 
or disease regression by MRI. Even though poly-ICLC administration 
by itself was not active in advanced renal carcinoma [46] and recurrent 
anaplastic glioma [45], combination of poly-ICLC with radiation or 
with concurrent adjuvant temozolomide had improved efficacy in 
adults with newly diagnosed glioblastoma [43,44]. Most recently, poly 
ICLC was demonstrated to induce rapid immune response in ovarian 
cancer patient when it was used as adjuvant for tumor self-antigen 
[47]. These data demonstrate the safety of poly-ICLC in humans, and 
combined with preclinical data showing the immune potentiating 
effect of this TLR ligand with vaccines, support its clinical application 
for a vaccine adjuvant in patients.

Depletion of Treg in vivo

Because most Tregs express high levels of CD25 (IL2-receptor-
alpha) on their cell surface, targeting CD25 has been exploited to 
deplete Tregs from humans in vivo. Ontak (denileukin diftitox) is a 
recombinant fusion protein between human IL-2 and a fragment of 
diptheria toxin [48]. Interestingly, Ontak is capable of killing normal T 
cells that express CD25; including the Treg subset which is contained 
within the CD25+ population. This was confirmed in a study from 
Vieweg and colleagues who observed that a single dose of Ontak did 
indeed decrease detectable CD4+CD25+ T cells from the circulation 
[3]. In addition, the magnitude of the specific immune response to 
the vaccine appeared to be much greater than what was seen without 
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Ontak [3]. However, a number of follow-up studies in which Ontak 
was utilized to deplete Treg did not find that Ontak led to a significant 
depth or duration of Treg depletion. Daclizumab (Zenapax) is a 
monoclonal anti-CD25 antibody which blocks the interaction of IL-2 
and CD25. Rech et al. demonstrated that single dose of Daclizuamb 
at 1 mg/kg caused marked and prolonged elimination of Treg for 
more than 5 weeks in patients with metastatic breast cancer when 
combined with a cancer vaccine [5,6]. Unfortunately, daclizumab has 
since been removed from the market and is no longer available. On 
the other hand, basiliximab (Simulect), a similar anti-CD25 antibody, 
is currently FDA-approved to prevent renal allograft rejection. Several 
reports have demonstrated that Basiliximab is capable of decreasing 
the number of circulating Treg in humans [49,50]. Recently, Okita et 
al. demonstrated that low-dose basiliximab can safely be administrated 
repeatedly, and can target CD4+CD25high Treg cells while relatively 
preserving CD4+CD25low activated T cells, suggesting that Basiliximab 
could be used to deplete Treg and augment the efficacy of adoptive 
immunotherapy of cancer [51]. All these available data suggest that 
monoclonal anti-CD25 antibodies may be useful to deplete Treg 
and enhance the efficacy of immune response induced by peptide 
vaccination. 

Rationale for an approach for WT1 vaccination in 
combination with Treg depletion in AML patients 

Based on the positive clinical results with WT1 peptide 
immunization, along with observations regarding suppression of 
anti-tumor immunity by Treg, a logical strategy for improving 
leukemia peptide-based vaccine therapy has emerged. An open-label, 
randomized phase I study assessing administration of WT1 vaccine +/- 
TLR3 agonist (poly ICLC) alone or post-basiliximab in AML patients 
who are not candidates for stem cell transplant due to advanced age and 
co-morbidities or who refuse stem cell transplant is proposed. HLA-
A0201-positive patients in complete remission or complete remission 
with incomplete blood count recovery after induction chemotherapy 
(repeat induction chemotherapy or consolidation chemotherapy is 
allowed), will be eligible. Each patient will undergo serial measurement 
of Treg cells from the peripheral blood weekly for 4 weeks prior to the 
stratification to Arm A (WT1 peptide vaccine in Montanide) or Arm B 
(WT1 peptide vaccine in TLR3 agonist, poly-ICLC). 

In the initial stage of the study, 24 patients will be randomized to 
Arm A or Arm B (12 patients in each arm). Cellular immune responses, 
as measured by IFN-γ ELISPOT following stimulation with WT1 
peptide, will be used to determine whether Arm A or Arm B will be 
superior, and basiliximab will be given prior to peptide vaccination 
using the superior vaccination regimen to form Arm C (12 patients will 
be included in Arm C). In the Basiliximab group (Arm C), a single dose 
of Basiliximab 20 mg will be given intravenously over 30 minutes seven 
days prior to the initial vaccination (Day -7, 3 weeks after confirmed 
CR). All patients will receive 100 ul (1000 mcg) WT1 126-134 peptide 
(RMFPNAPYL), which is an HLA-A*0201-restricted peptide, in 
Montanide as an emulsion or in TLR3 agonist, poly ICLC, 1mg in 1ml 
aqueous solution administered intradermally/subcutaneously every 2 
weeks × 6, starting on Day 0 of the study (4 weeks after confirmed CR). 
Disease re-evaluation will be performed every 6 weeks. Treg counts by 
flow cytometry, FoxP3 and WT1 expression by qRT-PCR, and peptide-
specific immunologic responses will be monitored over time. Patients 
without disease progression after 6 vaccinations can be continued on 
additional cycles of 6 monthly vaccinations, but no further Basiliximab 
will be administered. 

The protocol for this study was approved by IRB at University of 

Chicago, and the IND application for WT1 peptide was approved by the 
FDA. With the support by a grant from American Cancer Society, we 
were able to enroll five patients to the clinical trial to date. The clinical 
and correlative immune responses data will be presently separately in 
the future. 

Conclusion
Relapse remains the major cause of treatment failure for 

patients with AML, even after allogeneic stem cell transplantation. 
Immunotherapy may be useful to eliminate MRD present following 
standard therapies, which could reduce the risk of disease relapse. The 
understanding of the immune evasion mechanisms and the ability to 
interfere with them may open the door for the delivery of effective 
immunotherapy. Logical combinations to suppress multiple negative 
regulators of tumor immune responses will likely be required in order 
to maximize the efficacy of immunotherapy, and thus positively affect 
the natural course of AML. 
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