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ABSTRACT

Determining the correct number of layers as input for 1D resistivity inversion is important for constructing a model 
that represents the subsurface accurately. Current common methods to select the number of layers are performed 
in one of three ways: by trial-and-error and choosing the best model data-fit, by using the modified F-test, smooth 
over-parameterization, or through trans-dimensional model parameterization. Although these methods are creative 
approaches, they are computationally expensive, as well as time-consuming and painstaking in practice. In this 
article, we provide a method that solves the problem of choosing the correct number of layers represented by the 
apparent resistivity curve. The method follows the two-steps approach suggested by Simms and Morgan (1992) 
to systematically recover the optimum number of layers. The first step is to run a fixed-thickness inversion using 
a large number of layers in which the number of layers and layer thicknesses are fixed, and resistivity values are 
inversion parameters. We then cumulatively sum the outcome of the first inversion over depth (the resistivity 
model) to determine the optimum number of layers based on changes of the slope. The detected number of layers 
is used as an input parameter for the second step; which is running a variable-thickness inversion (layer thicknesses 
and resistivities are both inversion parameters) for the outcome, the final resistivity model. Each step uses the 
Ridge Trace damped least-square inversion. The two inversion steps are integrated to run sequentially. The method 
determines all inversion parameters based on the data in a self-consistent manner. This proposed method uses a 
robust ridge trace regression algorithm, which has proven to be stable, accurate, and at least a hundred times faster 
than current methods. 
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INTRODUCTION

Vertical electrical soundings (VES) are one of the oldest geophysical 
methods to determine resistivity variation with depth as a mean to 
evaluate the deep and shallow structure of the subsurface, dating 
back to 1920 [1,2]. The simplicity of the method, with its low cost 
of carrying out the survey and interpretation, make it a common 
geophysical survey that has been applied to a wide variety of 
geophysical exploration problems. Successful and beneficial VES 
surveys have been carried out for hydrogeological, geothermal, 
environmental and engineering applications [3-8]. Even though 
VES is only a 1D approximation of a 3D earth, it does lead to 
useful results and use more frequently than 2D and 3D resistivity 
surveys because it is cheap. The VES data collected from the field is 
apparent resistivity data and does not represent the true resistivity 

distribution of the subsurface. The apparent resistivity data must be 
inverted to obtain a VES profile of Earth resistivities versus depth. 
The obtained resistivity values are an approximation of the true 
resistivities at depth. Electrical resistivity inverse problems were 
first investigated in the early 1930s. 

In determining which inversion method to use, a number of 
questions need to be asked. For example, should one use the direct 
method, where a resistivity model is transformed directly from 
the apparent resistivity [9-13] or the indirect method [14-19]. If 
indirect, should a variable-thickness or a fixed-thickness algorithm 
be used? In the variable-thickness algorithm, the layer thickness 
and resistivity values for each layer are allowed to change and be 
recovered; while in the fixed-thickness algorithm, the thickness is 
set and fixed, however, resistivity values for each layer are allowed 
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function. An interested reader is referred to the aforementioned 
work. 

Inversion

In geophysical inverse problems, the goal is to construct the 
distribution of subsurface properties (an “earth model”) from 
measurements usually acquired at the surface. Here, the acquired 
apparent resistivity curve from the field is inverted to obtain the 
number of layers, the layer thicknesses, and the electrical resistivity 
values of horizontal layers sensed by the survey. The work showed 
that the “variable parameter scheme” inversion, where layer 
thicknesses and resistivities are inversion parameters, gives the most 
accurate inversion results [20]. In the “variable parameter scheme,” 
layer thicknesses and resistivity are inversion parameters, allowed 
to change and are recovered. The ‘variable parameter scheme’ will 
be referred to as “variable-thickness inversion” from now on. In 
this scheme, the optimal number of layers sensed by the electrical 
survey, which is usually not known before the inversion, is a critical 
input parameter to represent the sub-surface in the most accurate, 
yet simple way possible. There exist some methods to estimate the 
number of layers, such as the F-test, picking the model with lowest 
calculated error, or by trans-dimensional inversion [20,27,28,30]. 
It is worth noting that increasing the number of layers means 
increasing the number of inversion parameters, which usually 
results in an inversion with less data misfit. However, this does 
not necessarily best represent the subsurface, for the decreased 
calculated error is just a by-product of the increase in number of 
parameters [20]. Thus, some of these methods that depend on the 
lower calculated error can fail in detecting the optimum number 
of layers, where the optimum number of layers is the least number 
of layers with the best data misfit. Also, these methods are time 
consuming [27]. 

Here, a novel two-step approach for 1D resistivity inversion is 
adopted. This approach is an extension and simplification of the 
work done by Simms and Morgan [20]. The proposed method yields 
a final result of the inversion (number of layers, layer thicknesses, 
and resistivity values) in one run, which consists of two consecutive 
steps. The method can be deployed in the field to process the data 
on the spot and get immediate results. The steps in the proposed 
methods, as shown in Figure 1, are:

1. Perform a fixed-thickness inversion in which a large 
number of layers and their thicknesses are set and fixed 
at the beginning and only resistivity values are allowed to 
change and be solved for. 

2. Obtain the model resistivity profile resulting from the 
first step.

3. Cumulatively sum this resistivity model over depth 
(resulting in a summation of resistivities over depth). This 
will be referred to as integrated curve.

4. Determine the number of layers from the points of 
changing slope in the integrated (cumulative summation 
over depth) curve, as in Figure 2.

5. Use the number of layers, so determined, for a variable-
thickness inversion. In this step, the thickness for each 
layer is allowed to change simultaneously and be resolved 
along with the resistivity values. 

The first step of this process is the fixed-thickenss inversion. Initial 
values are set and fixed for thickness of layers, 1 meter. The number 

to change and be recovered. Lastly, what is the optimum number 
of layers to be used [20-22] have discussed the answer for the first 
question and demonstrated that the indirect approach yields better 
results. Therefore, an indirect method using a nonlinear least-
squares inversion is used in this article. 

In the indirect method case, a variable-thickness or fixed-thickness 
scheme can be followed. In the fixed-thickness scheme, holding 
the layer thicknesses fixed reduce the number of parameters and 
the inversion then involves solving only for the layer resistivity 
values, have used fixed-thickness schemes [23-25]. However, It is 
demonstrated by examples that the variable-thickness inversion 
scheme gives the most accurate inversion results that represent the 
subsurface [20]. Inverting the apparent resistivity data to obtain 
a resistivity model using the variable-thickness inversion entails a 
prior selection of the number of layers and many other inversion 
parameters [20]. Consequently, one can obtain different models 
for the same input apparent resistivity [26]. Currently, there are 
few means to determine the number of layers represented by the 
apparent resistivity data collected. Most commonly, the number of 
layers is an arbitrary defined parameter in the inversion, and the 
processor tends to a follow trial and error technique to determine 
the optimum number of layers. A second method follows the 
modified F-test as discussed [20]. One additional method to 
determine the optimum number of layers is trans-dimensional 
model parameterization [27]. This approach is an extension of 
Bayesian parameter estimation that accounts for the posterior 
probability of how complex an earth model is (specifically, how 
many layers it contains). Each of the methods mentioned above 
require tens of trials to reach a final conclusion on the optimum 
number of layers, which is computationally expensive and can 
take a while to finalize  [20,27,28]. Although these methods are 
creative approaches, they are time-consuming and painstaking 
in practice. 

The method proposed in this article systematically determines 
the number of layers used in a VES inversion and takes less than 
one minute to complete. Therefore, saving the processor time 
and effort. The method follows the two-step approach suggested 
to systematically recover the optimum number of layers [20]. 
Unlike others, this approach has the advantage of allowing the 
geophysicist to process immediately the data at the field site as it 
does not require high computational power and can run in a short 
time. In addition, it is self-consistent, and stable in terms of the 
convergence of the inversion algorithm.

METHODOLOGY

The purpose of the VES inversion is to determine a model of 
resistivity as a function of the depth of the subsurface. The result 
of this inversion will be number of the layers and the estimated 
resistivity and the thickness of each layer. The data collected from 
the field is the apparent resistivity following different possible 
configurations [2]. In this article, we will address inverting the data 
following a novel approach. We will convert the apparent resistivity 
data to an inverse model using an iterative inversion scheme. The 
forward model is an essential part of every inversion scheme. 

Forward model

The forward resistivity modeling code adopts the analytic solution 
for multiple horizontal resistivity layers reported [2,29]. The 
apparent resistivity curve (apparent resistivity vs. separation) is 
computed for a given number of layers, layer thicknesses, and 
electrical resistivity values of horizontal layers through a kernel 
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of layers equals the total depth and is not allowed to change. 
The resistivity values can vary and are solved [20]. The purpose 
of fixing the layer thicknesses is to reduce the parameters solved 
for during the inversion process to resistivity values only. By doing 
this, non-uniqueness may be reduced [20], because of the resistivity 
thickness product can be recovered [31]. The resulting resistivity 
model is then cumulatively sum over depth to create an “integrated 
resistivity” curve. The purpose of integrating the resistive model is 
to smooth the small changes over depth and only those significant 
changes from the resistivity model will be pronounced as a change 
of slope on the integrated curve. The slope at each point in the 
curve is calculated (f’(x)), and the point of changing slope will be 
interpreted for a layer boundary that represents a new layer in the 
model with a different ‘true’ resistivity value, as illustrated in Figure 
2. These points of changing slope in the integrated curve correlate 
with the inflection points in the resulted resistivity model from the 
fixed-thickness inversion (f’’(x)=0), as shown later.

Simms and Morgan explained that the number of layers is usually 
based on the shape of the sounding curve (apparent resistivity 
curve), but can hide either thin layers and/or an adjacent layer 
with a small contrast of resistivity [20]. However, the proposed 
method is sensitive to thin layers and changes of resistivity. Figure 
2 illustrates how the number of layers is calculated based on the 
layer boundaries detected from this curve. This method assumes 
that each layer with a resistive value will be represented with 
constant accumulating rate, which will be reflected as constant 
slope on the integrated curve. The points of change of the slope 
(f’(x)) will be considered as a new layer with a new resistivity 
value. This is a stable method to obtain the optimal number of 
layers that can represent the subsurface [32]. This number of 
layers is then used as input for the variable-thickness inversion 
and the depths of the layer boundaries are used as initial values 
for the layer thicknesses as shown in Figure 2. Using the layer 
boundaries as initial values for the layer thicknesses, even 

though they are allowed to change during the variable-thickness 
inversion, can be a good first guess for a faster convergence. In 
the variable-thickness inversion, layer thicknesses and resistivity 
values are each allowed to change and be solved. This scheme 
guarantees that the number of layers is not an arbitrary guess, 
but a systematically determined parameter. 

The inversion scheme used is a damped non-linear least square 
(NLLS). The modeled parameters X describing the system is 
related to observed data b through the forward model operator 
such that:

 . (1)

The main objective in the inversion is to determine parameters 
from the observed data b. The lowest data misfit exists with the 
minimum difference between the observed data (field data) and 
the modeled data (calculated data). A common method used to 
quantify the misfit between observed and model data is the Root 
Mean Square Error, which is also known as RMSE. Minimizing the 
RMSE is achieved by providing a least square solution for Equation 
(1). This solution is provided by a correction vector , which is 
updated at each iteration [33]:

 (2)

Where  is the correction vector to the parameters ,  is the 
Jacobian matrix, and  is data misfit.

However, calculating the inverse in equation (2) can be 
computational expensive, or impossible if  is a singular 
matrix. To avoid these problems, we will follow a damped NLLS 
method. Equation (2) will become:

 (3)

Where  is a simple regularization parameter (“damping”) and 
I is the identity matrix. In order to further stabilize the Jacobian 
matrix, we will apply correlation-rescaling [34].

Figure 1: Breakdown of the two-step approach.

Figure 2: Graphic illustration of integrated resistivity curve (resulted of cumulatively summing the resistivity values over depth) of a fixed-layer resistivity 
model. The horizontal axis is the integrated resistivity values and the vertical axis is depth. The points of changing slope at depth 10, 15, and 25 m are 
layer boundaries. The number of layers detected here is three layers plus the half space at the bottom. The number of layers, three in this example, will be 
used as the number of layers in the next step of the inversion, variable-thickness inversion. The points of changing slope indicate layer boundaries and will 
be used as initial values for layer thicknesses in the variable-thickness inversion (10, 5, and 10 m layer thicknesses).
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Correlation Rescaling

Correlation rescaling is a method to stabilize the inversion of 
the Jacobian matrix. After the data is conditioned by correlation 
rescaling, the range for the regularization parameter is between 0 
and 1. Let’s redefine   [33,34]:

.(4)

 (5)

. (6)

Define

. (7)

. (8)

Then the original correctional vector in equation (2) will be:

. (10)

After the conditioning, the matrix is stable and the damping value 
is limited between 0 and 1. Picking the right damping value will 
lead to fast convergence but also stable algorithms. To ensure self-
sufficiency that is stable and will always converge, we will run the 
Ridge Trace algorithms to pick the damping value [35]. 

Ridge trace regression

We have discussed adding a damping factor  to help obtain an 
inverse for the matrix  in equation (2). Also, by adding 
the damping factor , we accept a little bias, and substantially 
reduce the variance, thereby improving the mean square error 
of the estimation  [35]. The Ridge Trace algorithm is used to 
decide the value. It is stable in terms of convergence, with one 
adjustable parameter, , that results in an optimal damping factor. 
The algorithm determines which damping value to use for each 
parameter individually. This method provides a damping matrix 
instead of a single damping value for all inversion parameters. The 
algorithm provides NLLS solutions for a range of damping values 
between 0 and 1, and calculates the gradient  for each parameter 

 [35]:

 (11)

For each parameter, the damping per iteration is the minimum  
for which . The  is set at 0.4, a value that 
can result in a smooth convergence. The damping value is chosen 
right before the parameter starts to rapidly diverge, which will be 
shown later by examples. It is worthy to note that the inversion 
cannot handle the addition of data uncertainty, and assumes that 
data uncertainties are normal with a mean of 0 and a standard 
deviation of 1. With each iteration i, the parameters are updated 
and a forward model is run to compare the modeled and observed 
apparent resistivities and a root mean square error (RMSE) is 
calculated:

. (12)

Where:

 =1,2,..,n

n is the number of data points. d
i
 is the residual between data and 

model. The solution will continue to converge per iteration until 
it satisfies a stopping mechanism. One stopping mechanism is the 
number of iterations; the inversion will stop when it reaches the 
maximum iteration number, 150. The other stopping mechanism 

is arriving to a convergence stage of 99.5% that satisfies this 
condition [33]:

 (13)

The same inversion algorithm and same  are applied for 
the fixed-thickness and variable-thickness inversions. We use the 
latter method.  

RESULTS

Synthetic examples

Model studies with established and known solutions enable 
researchers to realistically evaluate inversion methods. Several 
synthetic models have been computed and inverted to validate 
the inversion scheme. The first synthetic example follows a 
Schlumberger configuration with a simple and shallow model. The 
second example also follows a Schlumberger configuration but 
with a deeper and more complex model that includes both resistive 
and conductive layers. Finally, the third example follows a Wenner 
configuration. In the synthetic examples, the following parameters 
are controlled: number and location of measurements, number of 
layers in the subsurface, layers thicknesses, and true resistivities. 
The forward 1D resistivity model is used to create the synthetic 
data of apparent resistivities using input parameters, as explained 
previously. From the apparent resistivity and the survey geometry, 
the layers thicknesses and resistivities are inverted for. 

Case 1: Schlumberger Configuration –Simple Model

The first example is a simple and shallow two-layer model where 
the resistivity increases as a function of depth. Table 1 shows the 
input parameters (points of measurements, number of layers, layer 
thicknesses, and true resistivity values). The input parameters are 
used to generate the apparent resistivity curve using the forward 
model. Typically, a maximum current electrode spacing needs to 
be three times the depth of investigation to guarantee sufficient 
data [36,37]. The resistivity values are for layer-1, layer-2, and a half 
space. The used data consists of the current electrodes spacing L, 
the potential electrodes spacing and apparent resistivity. Figure 
3 shows a plot of the apparent resistivity curve. The apparent 
resistivity plot contains half-current electrodes spacing Land the 
apparent resistivity at that point. 

Figure 4 presents the first step of the inversion, the fixed-thickness 
inversion. The inversion will run without any additional input and 
determine the resistivity value bounds from the apparent resistivity 
provided in the imported data. In Figure 5, the top plot shows 
the RMS error. The bottom-left plot shows the data and inverted 
fit, with quantified RMSE that changes per iteration. The bottom-
right plot shows the resistivity as a function of depth. Note that it 
is hard to determine the number of layers and their depths with 
any accuracy from the apparent resistivity VS depth plot in Figure 
4. The fixed-thickness inversion will supply us with a resistivity 
model as shown in the bottom right of Figure 4. This resistivity 
model is integrated and used in the next step for detecting 
the number of layers covered by this survey. Figure 5 shows 
the result of cumulatively summing this resistivity model. In 
Figure 5, the number of layers can be visually estimated to be 
two by counting the sharp changes along this curve. There is 
an automated process in place to detect the number of layers 
from the curve based on the changes of the slope. So, the slope 
changes (blue starts) are detected automatically as the slope of 
the curve changes value. The number of layers is used as input 
for the variable-thickness inversion. 
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Type Input

ρ [Ω·m] 100, 150, 200

Thickness [m] 5,7, ∞

Number of measurements (expand electrode separations logarithmically) 9

Table 1: Input parameters for case 1.

Figure 3: Plot of the apparent resistivity for case 1. The x-axis is the apparent resistivity, and the y-axis is half current electrodes spacing. The 9 points of 
apparent resistivity show trend of increased resistivity with depth.

Figure 4: Fixed thickness inversion for case 1. The top section shows RMSE at each iteration. Bottom left is data and inverted fit. Bottom right is the 
resistivity model.

The changes of the slope in the curve (shown in Figure 5) correlate 
with the inflection points of the resistivity model from the fixed-
thickness inversion. However, based on many trials, using the 
integrated curve is a more stable method to select the number 
of layers than using the inflection points in the resistivity model, 
lower left of Figure 4, and it also mutes the noise. Figure 6 shows 
a comparison between the detected layer boundaries, derived 
from the “integrated fixed-thickness resistivity model,” and the 
actual boundaries from the synthetic model. In this comparison, 

we multiply the fixed-thickness resistivity model by ten to be able 
to plot it on the same scale. The last two points of the resistivity 
profile representing the last layer were neglected, as it is usually 
poorly recovered because the last layer is not bounded by anything 
underneath it. From Figure 7, the reader can see how the detected 
layer boundaries (green) correlates with the change of slopes in 
the integrated resistivity profile (red) and the inflection points in 
resistivity model resulted from the fixed-thickness inversion (blue). 
The true layer boundaries (grey) are from the synthetic model. 
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Figure 5: Integrated resistivity model for case 1. The blue stars indicate the start of each new layer. The number of layers detects is two.

Figure 6: Comparison between the detected layer boundaries, derived from the “integrated fixed-thickness resistivity model,” and the actual boundaries 
from the synthetic model for case 1.

The number of layers detected (two layers) is used as an input for the 
variable-thickness inversion. Also, the depths of layer boundaries, 
detected at 5 m and 12 m, are used as initial values for layer 
thicknesses (5 m and 7 m). In this case, it happened to be the exact 
match between the detected layer boundaries and the true layer 
boundaries from the synthetic model. However, this is not always 
the case, as the reader will see in the next example. Therefore, in 
the variable-thickness inversion, both layer thickness and resistivity 
values are allowed to change and be recovered. Figure 8 shows the 
variable-thickness inversion. This is the last step of the inversion 
and the final resistivity model is shown at the bottom-right of 
Figure 7. Figure 8 shows a comparison between the synthetic and 
the inverted model. The same  is used as in the previous 
step. The final result of the variable-thickness inversion has data 
RMSE of 0.00%. Figure 9 shows almost a perfect match between 

the synthetic and inverted models. Table 2 compares the input 
and inverted model parameters for case 1. Case 2: Schlumberger 
Configuration

Table 3 shows the input parameters used to generate the apparent 
resistivity curve following the Schlumberger configuration. This 
is a three-layer model with two resistive layers on top of a less 
resistive layer and a half space. Even though having higher 
resistivity contrast is between layers is easy to detect, the higher 
contrast makes it difficult for the inversion to determine the 
true resistivity values and layer thickness esaccurately and 
independently [20,31]. I will use these parameters to synthesize 
a noise-free apparent resistivity following the forward model. 
Figure 9 shows the resulting apparent resistivity curve for the 
parameters given in Table 3. The result of the forward model 
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Figure 7: The result of the variable-thickness inversion. The bottom-right plot states the number of layers used in title, and the half-space (last layer in the 
resistivity model) is shown in dashes.

Figure 8: Comparison between the synthetic and inverted model for case 1.

is used as an input for the inversion. The inversion will run 
without any additional input. The  is set at 0.4 for 
both steps of inversion (fixed-thickness and variable-thickness 
inversion). Figure 10 shows the fixed-thickness inversion.

In Figure 11, the number of layers can be visually estimated to be 
three via counting the sharp changes along this curve. The same 
mechanism discussed before is implemented here to detect the 
number of layers (three layers plus half space). Once satisfied with 
the result, the number of layers is used as input for the variable-
thickness inversion, and the depth of layer boundaries are used 

as initial values for layer thicknesses. The points of changing slope 
are classified as new layer boundaries. Those points of changing 
slope on the integrated resistivity curve correlate with inflection 
points in the fixed-thickness resistivity model. Figure 12 shows the 
comparison between the detected layer boundaries, derived from 
the “integrated fixed-thickness resistivity model,” and the actual 
boundaries from the synthetic model. In order to plot both the 
“fixed-thickness resistivity model” and the “integrated resistivity 
model” on the same scale, we multiplied the values of the former 
by twenty. 
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Type Input Output

ρ [Ω·m] 100, 150, 200 100, 150, 197

Thickness [m] 5, 7, ∞ 5, 6.5, ∞

Data RMSE  - 0.00%

Table 2: Input and inverted parameters for case 1.

Type Input

ρ [Ω·m] 1000, 2000, 200, 500

Thickness [m] 10, 20, 30, ∞

Number of measurements (expand electrode separations logarithmically) 18

Table 3: parameters for case 2.

Figure 9: Plot of the current electrode spacing (AB/2) and apparent resistivity values for the 18 measurements, case 2.

Figure 10: Fixed-thickness inversion for case 2. The top shows data RMSE per iteration. Bottom left is the data and inverted fit with RMSE. Bottom right 
is the resistivity model.
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The match between the detected layer boundaries and the true 
layer boundaries (based on the synthetic model) increases in error 
with depth as shown in Figure 12. Using the extracted number 
of layers, the next step of variable-thickness inversion starts with 
using the number of layers (three layers) and the initial values of 
the layer thicknesses (11 m, 20 m, 49 m). The initial values of layer 
thicknesses are good preliminary guesses for faster convergence, 
but the layer thicknesses are allowed to change during the variable-
thickness inversion and recovered along the resistivity values. Figure 
13 shows the result of the variable-thickness inversion. This is the 
last step of the inversion and the resulting final resistivity model is 
shown at the bottom-right of Figure 13. The final resistivity model 
presents layer thicknesses different from the initial values, as both 

layer-thicknesses and resistivity values are recovered. In an effort to 
simulate more realistic data conditions, we added different levels 
of Gaussian noise (5% and 20%) on the apparent resistivity points 
on the same example of case 2

While the scheme was able to detect the number of layers for each 
of the added noise cases (three layers plus half space), the variable-
thickness inversion resulted in higher data RMSE, as expected, in 
comparison to the case with no added noise. Figure 14 shows a 
comparison among the synthetic model, the inverted model with 
no noise, the inverted model with 5% Gaussian noise, and the 
inverted model with 20% Gaussian noise. Table 4 compares the 
input parameters, the inverted parameters of the previous case with 

Figure 11: The integrated resistivity for case 2. Stars indicate the points where a new layer is detected.

Figure 12: Comparison between the detected layer boundaries, derived from the “integrated fixed-thickness resistivity model,” and the actual boundaries 
from the synthetic model for case 2.
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Figure 13: The result of the variable-thickness inversion. Bottom-right plot's title states the number of layers used, the half space is shown in dashes.

Figure 14: Comparison of the synthetic (data), the inverted model with no noise, and the inverted model with different levels of added noise, case 2.

Type Input Output for case without noise Output for case with 5% noise Output for case with 20% noise

ρ [Ω·m] 1000, 2000, 200, 500 999, 2017, 173, 789 1,00,32,03,51,63,850 1,00,02,00,71,65,970

Thickness[m] 10, 20, 30, ∞ 10, 19.8, 29.6, ∞ 10, 19.7, 29.5, ∞ 10, 20.2, 29.2, ∞

Data RMSE  - 0.05% 0.08% 0.20%

Table 4: Comparison between input parameters, inverted parameters without noise and with added noise.

no noise, and the inverted parameter with a different percentage 
of added Gaussian noise. The final inverted resistivity models are 
better match to the synthetic model at the shallow part than it 
is with the deeper portion. This results from a reduction in the 
recovering power of resistivity sounding data with increasing depth 
[20,27,31]. While a higher contrast between the resistivity values 
(from 2000 Ω·m to 200 Ω·m between layer 2 and layer 3) is easy 
to detect, it becomes more difficult to recover accurately [20]. As it 

explains that the recovering power of the resistivity can only recover 
the resistivity-thickness product (resistive layer) or conductivity-
thickness product (conductive layer) [31]. The combination of 
covering deeper layers and a more complex model (higher contrast 
of resistivity values between layers) lower the resolving power and 
that is reflected by the model error, especially at the last two layers 
as shown in Figure 15. The output of the inversion (resistivity 
model) with 5% and 20% added Gaussian noise is relatively good 
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Figure 15: Elevation map with sounding locations along the Roseau 10 line (Morgan et al., 2013).

with calculated data RMSE less than 1%. Even though the added 
Gaussian noise to the apparent resistivity points is 5%, the lower 
RMSE is an indication of how the inversion results are more a 
function of how unique the solution rather than how much noise 
it has [20]. Simms and Morgan (1992) go on to explain how in 
1D resistivity, problems with equivalence are so dominant that the 
errors in parameters are due mainly to uniqueness and resolution 
aspects (which are controlled mainly by depth and contrast between 
resistivity values as explained in the previous sections), and not to 
the random noise in the data.

Field data example: Roseau (vanard) watershed, saint lucia

The data used in this section is part of fieldwork jointly performed 
by Frank Dale Morgan (MIT) and members of the Water Resources 
Management Agency (WRMA) in Saint Lucia in 2014. The 
primary motivation for this work is to search for a productive 
groundwater aquifer in Saint Lucia to meet the growing demand 
for drinking water on the island and to find a reliable water source 
for use in times of emergency. One of the most pressing issues 
affecting Saint Lucia today is a shortage of water. This problem is 
projected to become increasingly severe with further development 
and could limit the growth of the island's economy. The study was 
aimed at conducting geophysical exploration for possible potable 
groundwater resources in one or two watersheds of Saint Lucia. 
Groundwater is very resilient to extreme climate conditions and 
natural disasters such as hurricanes and droughts. The Roseau 
watershed of North West Saint Lucia was thoroughly investigated.

Field Methods 

In order to ascertain the hydrogeology of the Roseau watershed, 
research was conducted on previous studies and geophysical and 
geological data were collated in order to inform the areas for 
focused study. Geophysical methods (1D electrical resistivity and 
induced polarization) were employed for in-field data collection. 
The data was then analyzed using 1D resistivity and induced 
polarization inversion codes. 

Large amounts of clay produce a polarizing effect, which increases 
the chargeability. The chargeability is a measure of the induced 
polarization in the subsurface, which is sensitive to the low-
frequency capacitance of rocks. Normalized chargeability is defined 
as the chargeability divided by the resistivity magnitude [38-40]. 
Using the induced polarization data, a model for the normalized 

chargeability was created. A normalized chargeability value close 
to zero indicates a near clay-free zone [41]. A curious reader is 
referred to the listed citations [39-42]. In this article, however, 
we will only focus on the resistivity data. In order to interpret the 
resistivity data, we use Archie’s law, an empirical formula relating 
measured ground resistivities to the porosity and the resistivities 
of pore water [43]. Archie’s empirical law was used to determine 
the effective electrical conductivity of the groundwater within the 
Roseau watershed. Resistivity values ranging from 200-3000 Ω·m 
were considered to be water-bearing geological material based on 
Archie’s law.

Site selection

Based on analysis of previous surveys taken in 1985, 2012, and 
2013 [44], a decision was made to further explore a site in the 
Roseau Watershed, called Roseau 10 as shown in Figure 15. The 
2014 survey thus aimed to locate regions of relatively high resistivity 
using geophysical sounding methods in this area. To survey what 
rock types were underneath the road at Roseau 10 and whether the 
rocks contained water, a succession of six Schlumberger arrays 1D 
VES at about 150 m intervals were completed for a total of 900 m 
(between 10-100 VES to 10-900 VES) as shown in Figure 15. 

RESULT

Originally, the data was processed using inverse methods to 
determine the 1D resistivity structure that best matched the 
measured resistivities and minimized the data RMSE. Two 1D 
inversion software programs were used to generate two separate 
models of resistivity. The two inversion techniques were: a fixed-
thickness inversion with resistivity measurements and a variable-
thickness inversion with resistivity measurements. Both the variable-
thickness and fixed-thickness inversions assume fundamental 
homogenous layers. Each technique was tried a number of 
times to reach the optimum parameters, such as damping factor 
and number of layers. Here we will reprocess one of the surveys 
“Roseau 10-600 VES” using the two-step approach explained in 
this article. The survey was chosen specifically because it is the 
closest to the recommended drilling site and it reveals a potential 
site for a groundwater aquifer. The Roseau 10-600 VES was 
reprocessed using the two-step approach explained in this article 
is shown in Figures 16-20. The algorithm succeeded in recovering 
the number of layers (four layers and a half space) and inverting for 
their thicknesses and resistivity values that are essential for water 
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Figure 16: Plot of current electrode spacing (AB/2) and the apparent resistivity for Roseau10-600 VES survey in Saint Lucia with 20 measurements. Note 
that it is hard here, even harder than the synthetic-data shown before in Figure 3, to detect the number of layers and their depths with any accuracy from 
the apparent resistivity VS depth plot in Figure 16.

Figure 18: The integrated resistivity for Roseau10-600 VES. Visually, four layers can be detected following the sharp changes in the curve, which is exactly 
what the algorithm detects.

Figure 17: Fixed-thickness inversion for Roseau10-600 VES survey in Saint Lucia.
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Figure 19: The result of the variable-thickness inversion for Roseau10-600 VES in Saint Lucia.

Figure 20: The inverted resistivity model for the Roseau 10-600 VES.

Figure 21: Variable-thickness resistivity model for Roseau 10-600. The data was processed using a MATLAB code developed at the Earth Resources 
Laboratory at MIT. The inversion was run many times with a varying number of layers.
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explorations in that area. Our two-step self-consistent approach can 
be deployed to process the data immediately in the field. 

The final inverted model is based on four layers and a half space 
with data RMSE of 4.58%. From the resistivity data presented in 
Figure 20, there appears to be four layers of sediments that extend 
to a depth of 113 m. The first layer has a low resistivity of 8.6 
Ω·m, then the resistivity increases in the second layer to 65.9 Ω·m, 
and drops after that to 28.03 Ω·m. These low resistivity values 
can be interpreted to indicate a high proportion of clay. Below 
113 m, andesite bedrock, the resistivity jumps to 400 Ω·m, which 
is within our interest area of resistivity. In order to interpret the 
resistivity model we use Archie’s law to estimate the porosity of 
the rock. The layer of rock below 113 m depth has a resistivity of 
400Ω·m. In the absence of clay deposits in this layer (confirmed 
by the low normalized chargeability), a resistivity value of 400 Ω·m 
corresponds to porosity values between 30% and 36% according 
to Archie’s law with the resistivity of water equal to 40-50 Ω·m. 
Therefore, the layer below 113 m might be a productive aquifer. 
So, the site with the highest potential for groundwater is at 550 
meters along the road (which is by the location of the Roseau10-600 
VES) and a depth below 113 meters. It is worth mentioning that 
no borehole data exists close this area at this time to confirm any 
of the interpretations. 

This site location agrees with the final recommendation of the work 
done by the group in 2014. Although both approaches resulted in 
similar conclusions, the proposed approach is better in practice as 
it yields the final result in one run which consists of two steps (less 

than one minute), compared to several runs needed to reach the 
final model otherwise, like it was done originally when the data was 
acquired. (Figure 21) Because the inversion produces a non-unique 
solution, we will attempt additional analysis to support my findings 
from the inversion we ran using a four-layer model. The inversion 
was run several times using different numbers of layers ranging 
from 1 to 6. Figure 22 shows a comparison among the inverted 
models, the apparent resistivity curves and fits, and the associated 
data RMSE. The result shows a significant drop in the data RMSE 
between the one-layer and the two-layer model. It further shows 
that the data RMSE continues to drop slightly as the number of 
layers increases until it reaches the lowest data RMSE of 4.58% 
at the four- and five-layer models. However, the four-layer model 
represents the least number of layers with the lowest data RMSE. 
This finding confirms the previous choice of four as the optimum 
number of layers for the inversion.

DISCUSSION

The problem of equivalence in resistivity inversion is well known. 
The ability to invert resistivity data successfully depends on the 
uniqueness of the model. One of the main factors that increase 
the uniqueness of the model is determining the optimum number 
of layers represented by the apparent resistivity curve. There 
exist different methods used in selecting the number of layers in 
electrical resistivity inversion. One of the common methods is 
running an inversion many times using different parameters and 
different numbers of layers, then comparing the results, where the 
model with the least number of layers and the lowest data RMSE 

Figure 22: Inversion models (top), data and fit (middle) and data RMSE (bottom) for models from 1 to 6 layers. Apparent resistivity data are for the Roseau 
10-600 VES. The data RMSE drops significantly from one-layer to two-layer. The data RMSE continues to drop slightly until it reaches the lowest RMSE 
for four-layers and five-layers models, then it increases slightly (0.01%) for the six-layer model.
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is assumed to be the optimal one [20]. However, this method is 
computationally expensive and can yield conflicting results due to 
changes in other parameters, such as the damping factor, in the 
inversion. Another method is the modified F-test following the 
Bayesian approach which incorporates a penalty with increasing 
number of layers in order to solve the inverse problem and solves 
for the number of layers with accumulated error and penalty 
[20,30]. Yet another method to determine the optimum number 
of layers is trans-dimensional model parameterization [27]. This 
approach is an extension of Bayesian parameter estimation that 
accounts for the posterior probability of how complex an earth 
model is (specifically, how many layers it contains). Although these 
methods are creative approaches, they are time-consuming and 
painstaking in practice. For example, with trans-dimensional model 
parameterization, it takes an average of three hours to select the 
optimum number of layers represented by the apparent resistivity 
curve, making it computationally expensive [27].

We propose a two-step approach that systematically determines 
the number of layers in a single run. This method takes the field 
data (apparent resistivity) as an input and runs a fixed-thickness 
inversion, where the thickness of each layer is set and fixed a priori. 
The resulting resistivity model is then integrated. The integrated 
curve is used to select the number of layers based on the changed 
slope in the curve. The change of the slope indicates a new region 
with different true resistivity, which signifies a layer boundary [32]. 
This Based on the number of layer boundaries, the number of 
layers is selected. The number of layers is then used in a variable-
thickness inversion that outputs the inverted resistivity values 
and layer thicknesses. This approach is better in practice to select 
the optimum number of layers. The method is done in one-run 
and integrated to take the data from the fixed-thickness inversion 
to the variable-thickness inversion. While one can be tempted 
to determine the number of layers from the apparent resistivity 
profile, in practice, it is hard to preciously determine the number 
of layers and their depths with accuracy just from the apparent 
resistivity as can be seen in a synthetic-data Figure 3, and in the 
field-data Figure 16. Another factor in support of the ability to 
invert resistivity data successfully is the robustness of the inversion 
algorithm. Here, we use the Ridge Trace algorithm in damped-
least square inversion, which provides stability in convergence, and 
self-consistence in selecting the optimal damping factor for each 
parameter individually per iteration.

CONCLUSION

The solution for the electrical resistivity profile with depth from 
apparent resistivity is non-unique. The work of Simms and Morgan 
(1992) showed that the “variable parameter scheme,” where layer 
thicknesses and resistivities are inversion parameters, yields the 
most accurate inversion results. The variable parameter scheme 
requires selecting the number of layers a priori [20]. Also, most 
inversion algorithms require input parameters, which can be 
arbitrary and increase the uncertainty of the result like the stopping 
criteria and the damping value. Here, we have provided a robust 
approach that chooses the inversion parameters and determines 
an optimum number of layers. This approach is at least a hundred 
times faster than currently used methods. The damped least squares 
inversion algorithm uses correlation rescaling of the Jacobian and 
Ridge Trace regression to ensure robustness of the algorithm and 
avoidance of singularity [35]. We have selected a  of 0.4 
as the default value that can achieve a smooth convergence. The 
method is computationally faster than other methods, and yields a 
high degree of accuracy.
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