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Introduction
A space-based sensor is used to collect many types of data, more 

specifically there are numerous uses for sensors with high pointing 
accuracy. The U.S. Department of Defence (DoD) touts the need for 
highly precise space-based tracking sensors in some recent DoD articles 
such as studied in [1,2]. They go on to state that this is one of key elements 
to the modernization of the military’s missile defence strategy. Tracking 
an object from space requires a small error tolerance. As an example, 
an arc-minute error from an average low-earth orbiting sensor at an 
altitude of 800 km [3] can translate to a physical tracking error over 230 
meters. When tracking an object much smaller than the size of a football 
field the object can easily be lost within this error by the space based 
tracker. Couple the need for precise pointing with the threat of colliding 
with space debris and other space objects, the possibility of mechanical 
shifting and settling during a space launch, or the potential mechanical 
failure, then there is a potential risk of something happening during the 
life of the sensor such that the physically designed characteristics are no 
longer as what was designed.

The governing equations for a rotating body such as a satellite are 
the highly non-linear Newton-Euler equations [4]. Rotation about each 
major axis affects the others due to cross coupled terms in the mass 
moment of inertia and cross products of angular velocity. A simple 
feedback controller is not robust enough against disturbances, or noise, 
to achieve continuous sub arcminute level performance for attitude 
control, especially when a fraction of a degree of error causes a vital 
sensor to be far off-target. Therefore, the full architecture of a non-linear 
controller is suitable to perform accurate and efficient attitude control 
at the sub arcminute performance level.

This paper presents a series of simulations using Matlab’s Simulink 
of a model representative of an actual satellite to include limiting 
factors such as the control moment gyroscopes (CMGs). The general 
architecture of the non-linear control approach is discussed first in non-
linear control architecture. In this section three versions of quarter wave 

sinusoidal trajectories of a constant period are generated and a baseline 
trajectory is introduced as the base of comparison. 

An arbitrarily tough maneuver of a 30° yaw motion was selected to in 
order to highlight performance differences between the control schemes.

From here the three feedforward control schemes are presented. 
Feedforward adaptation using proportional-derivative (PD), Recursive 
Least Square (RLS), and Extended Least Squares (ELS) are presented 
next. From here a modified PID feedback controller, an Enhanced 
Luenberger Observer, and a Kalman Filter are presented to complete 
the description of the overarching simulation. The last component, and 
arguably most important, to be presented is the route that was taken 
to show stability in the system. It was decided that showing stability 
through the use of phase portraits was a necessary first step which is 
illustrated in results and discussion.

The methodology section presents the methodology of the 
simulations under test. It goes on to then illustrates the simulation 
assumptions and limitations. From here the paper then jumps into the 
results of the simulation experiments in results and discussion which 
visualize the key benefit of this study: The comparison of the “optimal” 
RLS error estimator to the ELS error estimator developed in this paper. 
To perform this unique contribution a progression of six simulations 
for each trajectory plan are stepped through starting with the results of 
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Abstract
Three adaptive approaches for a non-linear feed-forward controller are combined with two physics-inspired 

sinusoidal trajectory planners in a spacecraft attitude control model for large slew maneuvers. The basis of the model 
is a space based satellite sensor which has suffered an unwanted collision where the inertial matrix of the craft is no 
longer similar to the originally measured inertial matrix. This causes a large inherent error in the feedforward control 
needed for system maneuvers due to the mismatch of expected dynamics. Trajectory generation, feedforward 
control, feedback control, filters, observers, and system stability are discussed in relation to the non-linear dynamics 
under simulation. The adaptive feed-forward controllers discussed include a proportional-derivative (PD) adaptive 
controller, a Recursive Least Square (RLS) Method, and an Extended Least Squares (ELS) Method. Mean control 
effort stayed relatively constant between configurations. The controller configuration with ELS feedforward, PID 
feed-back, and an extended sinusoidal trajectory outperformed the baseline adaptive controller. Mean error was 
decreased by 23.4%, error standard deviation by 34.0%, and maximum error by 33.0% from a similar case using 
RLS adaptation. This improvement is entirely based on a need to correct for un-modeled or mis-modeled dynamics. 
This scenario occurs in actual operation during spacecraft launch, collisions with debris, or can be caused by fuel 
slosh or loose components.
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Trajectory planning

The first task of this controller is to convert a step-input from 
the user into an achievable trajectory. Given a desired final state and 
known initial state, many possible trajectories may be found. One item 
of note is an additional limitation involved in the trajectory planning 
is of the CMGs within the simulation. This limitation represents a 
physical limitation by physical hardware in the control system. If the 
commanded control torque is too high, then the CMGs will reach 
their operational limit and the system will not react as expected. This 
issue is illustrated within the feedback control shown in Section 6. Two 
methods for trajectory generation were implemented and compared for 
this controller, both utilizing sinusoidal functions to smoothly rotate 
to the desired attitudes. The initial method uses a quarter cycle sine 
function for θ, and the function’s derivative and second derivatives 
for ω and ω  respectively. However, this results in discontinuities in 
the angular velocity and angular acceleration trajectories displayed in 
Figure 2 in red, which is a 5 second maneuver.

An alternative trajectory was found which is continuous for angular 
acceleration, and continuously differentiable for angular velocity and 
position. The closed form equation for a maneuver beginning at time Ti 
and of duration TDur from a zero state to a desired final state, [φf, θf, ψf ]

T, 
is shown in Eq. (2) and plotted in yellow (a 5 second maneuver) and in 
blue (a 15 second maneuver) in Figure 2. 
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the feed-forward controller using PD adaptation, then the RLS optimal 
estimator, then to the ELS estimator. Each case is performed once 
using a standard proportional-integral-derivative (PID) controller, 
and then the modified PID controller presented in non-linear control 
architecture. The phase portrait for the case with the minimum of 
maximum error is presented in results and discussion. It will be shown 
that a progressive benefit will arise from implementing a RLS error 
estimator over PD adaption, and then another increase in performance 
will be seen by using an ELS estimator over an RLS optimal estimator.

Non-Linear Control Architecture
The simulated satellite controller is designed to take input from 

the user, in this case a 30° change in yaw (ψ), and perform a safe and 
stable maneuver. First, a trajectory generator converts the user step-
input to a physically possible maneuver. A physics-based feed-forward 
controller [5] calculates the precise control required to perform the 
desired maneuver. A feedback controller handles unmodeled dynamics, 
disturbances, and small discontinuities in the trajectory. The dynamics 
block shown in Figure 1 represents the actual system and its response to 
disturbances and inputs. For this research, the governing Newton-Euler 
equation, shown in Eq. (1), is implemented within the dynamics block 
and simulated using MATLAB’s Simulink.

, ,n n nT J h Jω ω ω×= + × ∈ ∈∑                                                         (1)

A disturbance block represents external inputs to the dynamics 
such as gravity gradient torques due to a centre of gravity offset. Finally, 
sensors are used to measure the state of the system and filters are used 
to smooth out the sensor noise. This smoothed data is utilized by the 
feedback controller and any implemented adaptation in the feed 
forward controllers. The top-level system architecture of Figure 1 shows 
the arrangement of the aforementioned components.

Figure 1: The top level architecture of the non-linear control system.

Figure 2: Continuous and discontinuous trajectories for a 30° yaw maneuver.
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Because the angular velocity is zero at the beginning and end of the 
maneuvers and is continuous during the maneuver, the trajectory is 
fully achievable given sufficient actuators. The maximum acceleration 
required can be scaled by changing TDur, the duration of the maneuver. 
These generated trajectories for, ω, and ω  are passed to the feed-
forward controller.

Feed forward control

The next task is to select an appropriate feedforward control scheme. 
The feedforward controller converts the desired trajectories to the 
corresponding torque inputs for the system actuators. This is achieved 
by using the non-linear dynamics of the system as described as T= [Φ] 
{Θ} [6,7] in Eqs. (3) to (5) showcasing the coupling of cross terms and 
is the matrix representation of the system dynamics which propagates 
the commanded trajectory as a torque command in the corresponding 
moment in time.

PD adaptation

 Equation (3) represents the original feed-forward control equation 
presented by Slotine [8], Fossen [9], Sands [10], Byeon [6], and Lavretski 
[11] for control in an idealized system. In this instance the “adaptation” 
is gained by using an internal feedback loop using a PD control scheme 
from error between the commanded dω  and ωd. This idealized approach 
performs well when the full dynamics of the system are identified and 
no outside disturbances are felt. However, if this is not the case, then an 
adaptive feedforward approach should be taken.

( ) ( )d d dT K ω ω ω ω=ΦΘ− − − −  		                                         (3)
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RLS adaptation

This research utilizes the Recursive Least Squares (RLS) [12,13] and 
Extended Least Squares (ELS) [14] methodology to achieve adaptation 
based on the error between the commanded trajectory and the output 
trajectory of the system dynamics block as shown in Figures 3 and 4 

with the assumption of perfect full state feedback. RLS error adaptation 
is based on the traditional optimal estimator bounded by the brackets 
within Eq. (6). The expected increased performance in adaptation is due 
to the fact that the error between commanded and measured angular 
acceleration and velocity values are propagated forward using the 
predicted dynamics of the plant to estimate the error in the next time 
step. The best “fit” in the least squares sense is then estimated.

( ) 1
ˆTT
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	 		                    (6)

ELS adaptation

Another method for adaptation in the feed forward controller extends 
the implementation of RLS from the original RLS implementation in Eqs. 
(6) and (7) by adding α, β and ε to the original Φ matrix. This creates the 
feed forward model as seen in Figure 4. Furthermore, the vector is extended 
as seen in Eq. (8) by adding several extra terms in the adaptive algorithm. 
The extra degrees of freedom introduced by ε via Eq. (10) does not directly 
change the adaptation pattern but allow for extra degrees of freedom to 
establish a best fit in the least squares sense in order to converge more 
quickly to values of	 ∆ Θ̂  in Eq. (8). In the specific case of this research, 
and are sub-matrices of zeros as seen in Eq. (9).

1 ˆT
T

α α α θ
β ε β ε β ε εε

 −    Φ Φ Φ        ∆ Θ  =ΦΘ −            ∆           

                              (7)

1

1

1

ˆ

1 1 1
2 2
3 3

xxd xxm xx

xyd xym xy

xzd xzm xz

yyd yym yy

yzd yzm yz

zzd zzm zz

xxd xxm xx

yyd yym yy

zzd zzm zz

t t

t t

t t

J J J
J J J
J J J
J J J
J J J
J J J
H H H
H H H
H H H

ε

ε ε ε
ε ε
ε ε

−

−

−

− ∆ 
 − ∆ 
 − ∆ 

− ∆ 
 

− ∆ 
   −∆Θ ∆ = − 
 ∆ − ∆ 
 

− ∆ 
 − ∆ 
 − ∆
 

− 
 − 

2
3

ε
ε

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ∆ 
 ∆ 

			                       (8)

0 0 0 0 0 0 0 0 00 0 0
0 0 0 , 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

α β
  
  = =   

   
   

 			                   (9)

( )
( )

( )

2 2

2 2

2 2

0 0

0 0

0 0

x x

y y

z z

ω ω

ε ω ω

ω ω

 + 
 

= + 
 
 +
 

	                                       (10)

Figure 3: Architecture of feed-forward controller using recursive least squares.
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Feedback control
When unmodeled system dynamics are present or when the 

generated trajectory is unachievable, feedback control is required to 
eliminate the resulting error [15,16]. An unachievable trajectory can 
be caused by commanding a high magnitude or discontinuous control 
signal that overdrives the actuators, CMGs, or thrusters of a space 
vehicle. A traditional feedback controller may not be able to handle a 
non-linear plant such as a Van der Pol oscillator as shown in controlling 
chaos forced van der pol equation [17] but when coupled with a well-
functioning feed-forward controller a linear feedback controller 
can suffice. A well-functioning feed-forward controller removes the 
significant nonlinearities from the system and allows a linear feedback 
controller to increase the control authority of the system. The modified 
PID feedback controller shown in Figure 5 uses the error between the 
ideal trajectory and the observed angular rates and positions to calculate 
the necessary control. The controller makes use of the full-state feedback 
from the observers and filters to avoid differentiating a noisy signal [18]. 
This allows the derivative gain to be much higher than traditional PID 
controller. The equation for the controller output is shown in Eq. (11).

( ) ( ) i
d p

Ku K q q K
s

ω ω  = − + − + 
 

		             (11)

Observer design

Feedback controllers require a measurement of the actual state of 

the system [19]. Without noise one can just use a copy of the original 
system to form full state feedback but an observer is used to calculate 
the angular accelerations, rates, and positions given the input of a noisy 
sensor [20]. Equation (12) expresses the general state-space form of a 
discretized Luenberger observer [21]. Note that in Eqs. (12) and (13),  
x(k)= {θ (k), ω (k)T}

( ) ( ) ( ) ( )( )ˆ ˆ1x k A LC x k x k+ = − − 		                                           (12)

The Luenberger Observer architecture uses proportional, derivative, 
and integral gains represented by L (similar to a PID controller) to 
minimize the error between the measured and calculated angular 
positions [5]. To avoid differentiating a noisy signal, the “derivative” 
signal is evaluated by dividing the angular momentum, ˆ

dM , by the 
moment of inertia, Jp as in Figure 6. ˆ

dM is based on the PI observer 
loop and is akin to the prediction step in a Kalman filter [18] and when 
the total control signal is fed in to this inner loop it forms an ideal 
prediction step and reduces observer lag as stated in the state space 
representation in Eq. (13). This method can allow for better observer 
performance when dealing with non-linearities.

( ) ( ) ( ) ( )( ) ( )ˆ ˆ1 totalx k A LC x k x k Bu k+ = − − + 	                   (13)

Filter design

A Kalman Filter is implemented to smooth the measurements 
found through direct full-state feedback or from the Enhanced 

the error between the commanded trajectory and the output

expected increased performance in adaptation is due to the Figure 4: Architecture of feed-forward controller using extended recursive least squares.

Figure 5: The modified PID feedback controller uses both θ and ω from the observer to calculate the error signals.

Figure 6: Architecture of enhanced Luenberger observer.
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Luenberger Observer. The Kalman Filter (KF) [22] in this system is an 
optimal recursive estimator which uses an identity matrix to represent 
system dynamics, effectively tracking the system states only through 
sensor updates. The KF can traditionally be described as an algorithm 
with two steps: predict and correct [23,24]. The filter is implemented 
using Eqs. (14) and (18).

Prediction steps

1|k |ˆ ˆk k k k k kx F x G u+ = + 			                                       (14)

1|k |
T

k k k k k kP F P F Q+ = + 			                                      (15)

Update steps

1 |ˆ,k k k k k k k k k xx F x G u v with x x ε+ = + + = + 	                                           (16)

( )1| 1 1 1 1|k k k k k kP I K H P+ + + + += −  		                                          (17)

Kalman gain equation

( ) ( )1
1 ˆT

kK I KH PH R z I KH x−
+ = − + − 	                                       (18)

Stability

The most important property of a control system is that it stabilizes 
the desired system. If the system and controller are unstable, then 
no other attribute will hold any meaning as the system spins out of 
control. It is typical to use Lyapunov’s work to prove that a system is 
stable [25,26]. His work can be broken up into two different methods to 

prove stability; the indirect and direct methods [27]. For the case where 
the direct method has no solution an additional concept is introduced, 
Barbalat’s Lemma [5]. Barbalat’s lemma is called to help show 
asymptotic stability of a time-varying system. It makes the assumption 
that if f(t) is differentiable with a finite limit as time goes to infinity, and 
if f_(t) is continuous, then f_(t) goes to zero as time goes to infinity. We 
will discuss the indirect method (Figures 7 and 8) [28]. For a non-linear 
system such as the rotating spacecraft, system stability can be proven 
by linearizing the system around all points of interest. If the system is 
stable in these localized regions of interest, then the system is proven 
stable in a finite range near the equilibrium points [9,28]. For a non-
linear system with many points of interest about which to linearize, this 
method may be unreasonable. The next viable option in this indirect 
method of proving stability is through the use of phase portraits. Phase 
portraits visually represent the relationship between the output and its 
derivative. In a stable system this representation will show that there 
exists some finite boundary that all points in the representation will 
fit into. Figure 9 in the results section shows a phase portrait the final 
test case scenario. This shows the relationship between θ and ω relative 
to the yaw control from a representative selection of initial conditions 
which illustrates the stability of the system as it settles.

Methodology
The goal in this research is to take the Spacecraft Attitude Control 

model with predetermined system characteristics and improve the 
performance by modifying some of the functional areas. The two main 
components chosen to be modified include the trajectory planning and 
the feedforward sections. Each test case required the feedback controller 
gains to be manipulated manually to find the best performance in each 
of the simulation scenarios. The baseline tests utilize the adaptive 
feedforward control scheme as presented by Slotine [28] using both 
a PID feedback controller and the modified PDI feedback controller 
[18] using a discontinuous trajectory planner. A continuous trajectory 
planner was implemented to determine if the prior discontinuities 
caused worse performance. The RLS and ELS feedforward adaptation 
methods were implemented to investigate if an improvement can be 
made over the baseline. Both PID and “PDI” feedback controllers 
were compared against in each feedforward test case. Considering the 
different variations there are 12 total variations split fewer than three 
test cases: Slotine adaptive control, RLS adaptive control, and ELS 
adaptive control.

The following list presents assumptions made to run MATLAB’s 

Figure 7: Tracking error in yaw position.

Figure 8: Feedback and feed-forward control signal in yaw.

Figure 9: Representative phase portrait of yaw using extended least squares 
feedforward adaptive control with PID feedback control and a 15 second 
continuous maneuver.



Citation: Cooper MA, Heidlauf PT (2018) Nonlinear Feed Forward Control of a Perturbed Satellite using Extended Least Squares Adaptation and a 
Luenberger Observer. J Aeronaut Aerospace Eng 7: 205. doi: 10.4172/2168-9792.1000205

Page 6 of 7

Volume 7 • Issue 1 • 1000205
J Aeronaut Aerospace Eng, an open access journal
ISSN: 2168-9792 

Simulink simulations along with some limitations to the results of the 
simulations.

Simulation assumptions

1. Sample time is of finite length.

2. No noise was injected into the system during simulations.

3. Gravity gradient disturbances were introduced.

4. The estimated system dynamics in feedforward controller are 
close enough to actual dynamics for the system to recover.

5. Full-state feedback is given directly to the feedback controllers.

Simulation limitations

1. The system dynamics are calculated with respect to the body frame 
and not the rotated frame, so errors will grow as the time step increases and 
causes a perpetual error in the dynamics for the system to adapt to.

2. Feed forward control only functions when a trajectory is 
currently being pushed to it, otherwise the feedforward control block 
implements no additional control command.

3. The estimated inertial matrix as seen in Eq. (19) is not equal to 
the true inertial matrix as shown in Eq. (20) which forces the adaptation 
algorithm to be used.

4. The feedforward control relies upon 9 parameters to be 
estimated, but the input signal is only comprised of one sine wave. 
Thus, the algorithm is not experiencing enough excitation for full 
system identification. These results in the adaptive algorithm to only 
estimate the parameters that are needed to find the best feedforward 
control and not the true parameters in the inertial matrix in Eq. (20).
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ˆ ˆ ˆ 15.768 150.662 22.316
ˆ ˆ ˆ 6.549 22.316 106.029
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Results and Discussion
Twelve separate cases were simulated to show the differences 

between the adaptive control presented by Slotine [28], the use of 
a recursive least squares algorithm based on some theorems in least 
squares [12], which utilized statistical digital signal processing and 
modeling [13].  Additionally, an implementation of the extended least 
squares algorithm to adapt the feedforward control to miss-modeled 
dynamics was molded and evaluated. The two different trajectory 
planners were also compared.

Upon seeing the first simulation runs using the adaptive 
feedforward control described by Slotine [28], it seemed difficult to find 
an area to improve. But, as shown in Figure 7, improved performance 
was possible. Due to the interest in space, Figures 7 and 8 illustrate only 
the simulations under the continuous trajectory defined in Section 4 
and only displays the yaw angle. Similar results were obtained using 
a discontinuous trajectory but the magnitudes of scale were greater 
which can be seen in Table 1.

Additionally, all cases proved to only allow for a small variance in 
error under the roll and pitch commands which are primarily due to 
the cross-coupling terms in the system dynamics Equation 2. These 
errors were negligible when compared to the error in yaw angle and 
generally converged to zero when the error in yaw converged to zero. 
Table 2 will show the best results using a continuous trajectory spread 
across 15 seconds. The test case using ELS Feedforward control with a 
PID feedback controller shows the smallest standard deviation in error 
from the commanded trajectory. This can also be seen as the black line 
in Figure 7. It is interesting to note that all cases using a PID controller 
outperformed the cases using the modified PDI controller. This is likely 
due to the exclusion of sensor noise in the simulations.

To prove stability, simulations were run for initial condition 

combinations of { }deg deg1 , 1
sec sec

ψ ψ ψ= >− <   and { }3 , 3ψ ψ ψ= >− ° < °  

Selected simulations of the best controller tested (ERLS-PDI) are 
plotted in Figure 9. All of the simulations run within the range tested 
followed the same trends as those shown in the Figure 9. The controlled 
system is stable. For all initial conditions within ε (a magnitude of 3:1), 
the state and derivative are zero as t →∞ and never exceed (a magnitude 
of 3:2).

The ELS-PID controller configuration with the 15 second 
continuous trajectory had the highest performance. Compared to 
the recursive least squares optimal error estimator, mean error was 
decreased by 23.4%, error standard deviation by 34.0%, and max error 
with reduced by 33.0%. Mean control effort stayed relatively constant. 
The control effort for all trials was similar mostly due to the extended 
simulation time averaging out the control.

Stability for other selected cases

As a comparison, additional phase portraits were made for 
the baseline controller (discontinuous 5-second trajectory, ELS 
feedforward, PID feedback) and for an intermediate controller 
(continuous 15-second trajectory, ELS feed forward, PDI feedback). 
Simulations were run for initial condition combinations of 

{ }deg deg1 , 1
sec sec

ψ ψ ψ= >− <   and { }3 , 3ψ ψ ψ= >− ° < ° .

Selected simulations of the baseline controller are plotted in Figure 
10. All simulations run within the range shown followed the same 
trends as those plotted below. The controlled system is shown to be 
stable as, for all initial conditions within ε (a magnitude of 3:1), the 
state and derivative are zero as t → ∞ and never exceed (a magnitude 
of 9:6). Selected simulations of the intermediate controller are plotted 
in Figure 11. 

Variables Mean-Error STD Error Max Error Mean-Control
Base-PID 0.69546° 1.3422° 3.686° 2.418 Nm
RLS-PID 0.15596° 0.2591° 0.379° 2.819 Nm
ELS-PID 0.29760° 0.5508° 1.729° 2.781 Nm
Base-PDI 0.43338° 0.8761° 2.794° 12.60 Nm
RLS-PDI 0.36381° 0.9318° 2.973° 3.685 Nm
ELS-PDI 0.32679° 1.1735° 3.432° 3.109 Nm

Table 1: Table comparing simulations results of six control scenarios using a 5 sec 
discontinuous trajectory.

Variables Mean-Error STD Error Max Error Mean-Control
Base-PID 0.0033441° 0.01059° -0.0258° 0.33372 Nm
RLS-PID -0.002019° 0.00885° -0.0205° 0.33395 Nm
ELS-PID -0.002560° 0.00699° -0.0173° 0.33384 Nm
Base-PDI 0.0014662° 0.02613° 0.05764° 0.33189 Nm
RLS-PDI 0.0010740° 0.02239° 0.04943° 0.33384 Nm
ELS-PDI -6.93e-05° 0.01492° 0.03193° 0.33352 Nm

Table 2: Table comparing simulations results of six control scenarios using a 15 
sec continuous trajectory.
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Conclusion
All simulations run within the range shown followed the same 

trends as those plotted below. The controlled system is shown to be 
stable as, for all initial conditions within " (a magnitude of 3:1), the state 
and derivative are zero as t → ∞ and never exceed a magnitude of 9.6.

Acknowledgments

The authors would like to thank Col. Timothy Sands (Ph.D.) for his instructions 
and assistance in understanding the architecture of non-linear control.

Disclaimer

The views expressed in this paper are those of the authors, and do not reflect 
the official policy or position of the United States Air Force, Department of Defense, 
or U.S. Government.

References
1.	 Rome BO (2017) Experts tout space-based sensors, lasers for missile defence. 

2.	 Gruss M (2016) Mdas syring: Space-based sensors are a must.

3.	 Riebeek H (2009) Catalog of earth satellite orbits, NASA Photograph 
S126-E-014918. 

4.	 Tsai LW (1999) Robot analysis, ISBN: 978-0-471-32593-2.

5.	 Sands TA (2012) Advances in spacecraft systems and orbit determination. 
Intech Publishers pp: 36-37.

6.	 Byeon SY, Lee H (2016) Estimator for spacecraft mass property and momentum 
actuator alignment under influence of external torque, American Institute of 
Aeronautics and Astronautics, VA, USA.  

7.	 Bryson AE (1994) Control of spacecraft and aircraft. Princeton University 
Press, USA.

8.	 Slotine JJE, Benedetto MDD (1990) Hamiltonian adaptive control on spacecraft. 
In IEEE Transactions on Automatic Control 35: 848-852.

9.	 Fossen TI (1993) IEEE Transactions on automatic control 38: 671-672.

10.	Sands T, Kim JJ, B Agrawal N (2009) Improved Hamiltonian adaptive control of 
spacecraft. IEEE Aerospace conference: 1–10.

11.	Lavretsky KWE (2013) Robust and adaptive control with aerospace applications. 
Springer-Verlag, Berlin, Germany.

12.	Plackett RL (1950) Some theorems in least squares. Biometrika 37: 149-157.

13.	Hayes MH (1996) Statistical digital signal processing and modeling (1st edn). 
John Wiley & Sons, NY, USA. 

14.	Strejc V (1980) Least squares parameter estimation. Automatica: Special 
section system identification tutorial 16: 535-550.

15.	Franklin PEN (2010) Feedback control of dynamic systems, (6th edn) Pearson, USA.

16.	Ogata K (2010) Modern control engineering. (5th edn), Prentice Hall, USA. 

17.	Heidlauf P, Cooper M (2017) Controlling chaos forced van der pol equation. 
Mathematics 5: 70.

18.	Nakatani S, Sands T (2016) Autonomous damage recovery in space. Int J 
Automation, Control and Intelligent Systems 2: 23-36.

19.	Burl JB (1999) Linear optimal control: H2 and H infinity methods. Addison-
Wesley, Boston, Massachusetts, USA. 

20.	Luenberger DG (1979) Introduction to dynamic systems: Theory, models and 
applications. John Wiley & Sons, NY, USA.

21.	Alessandri A, Coletta P (2001) Design of Luenberger observers for a class 
of hybrid linear systems. Int Workshop on Hybrid Systems: Computation and 
Control. Springer, Berlin, Germany. pp: 7–18.

22.	Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. 
J Basic Eng pp: 95-108.

23.	Brown RG, Hwang PYC (2012) Introduction to random signals and applied 
kalman filtering with Matlab exercises. (4th edn). John Wiley & Sons, NY, USA.

24.	Kalman RE (1962) Conical structure of linear dynamical systems. In 
Proceedings of the National Academy of Sciences 48: 596-600.

25.	Lyapunov AM (1892) The general problem of the stability of motion.  

26.	Parks PC (1992) AM lyapunov’s stability theory 100 years on.  IMA J Math 
Control & Infor 9: 275-303.

27.	Ioannou JSPA (1995) Robust adaptive control.  Prentice-Hall, USA.

28.	Slotine JJE, Li W (1991) Applied nonlinear control. Prentice-Hall Englewood 
Cliffs, NJ, USA.

Figure 10: Representative phase portrait of yaw using extended least squares 
feedforward adaptive control with PID feedback control and a 5 second 
discontinuous trajectory.

Figure 11: Representative phase portrait of yaw using extended least squares 
feedforward adaptive control with PDI feedback control and a 15 second 
continuous maneuver.

https://earthobservatory.nasa.gov/Features/OrbitsCatalog/
https://earthobservatory.nasa.gov/Features/OrbitsCatalog/
https://www.wiley.com/en-us/Robot+Analysis%3A+The+Mechanics+of+Serial+and+Parallel+Manipulators-p-9780471325932
http://dx.doi.org/10.5772/2408
http://dx.doi.org/10.5772/2408
https://doi.org/10.2514/6.2016-2601
https://doi.org/10.2514/6.2016-2601
https://doi.org/10.2514/6.2016-2601
https://press.princeton.edu/titles/5266.html
https://press.princeton.edu/titles/5266.html
http://ieeexplore.ieee.org/document/57028/
http://ieeexplore.ieee.org/document/57028/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9
http://ieeexplore.ieee.org/document/4839565/
http://ieeexplore.ieee.org/document/4839565/
http://www.springer.com/in/book/9781447143956
http://www.springer.com/in/book/9781447143956
http://dx.doi.org/10.2307/2332158
https://www.amazon.com/Statistical-Digital-Signal-Processing-Modeling/dp/0471594318
https://www.amazon.com/Statistical-Digital-Signal-Processing-Modeling/dp/0471594318
https://in.mathworks.com/matlabcentral/fileexchange/26412-feedback-control-of-dynamic-systems--6th-edition--prentice-hall--2010?requestedDomain=true
http://dx.doi.org/10.3390/math5040070
http://dx.doi.org/10.3390/math5040070
https://www.mathworks.com/support/books/book47854.html
https://www.mathworks.com/support/books/book47854.html
http://home.deib.polimi.it/guariso/BAC/Texts/Luenberger.pdf
http://home.deib.polimi.it/guariso/BAC/Texts/Luenberger.pdf
https://pdfs.semanticscholar.org/ac52/b7ce30b181041bb33a7f6c11eb24e3f6e4fc.pdf
https://pdfs.semanticscholar.org/ac52/b7ce30b181041bb33a7f6c11eb24e3f6e4fc.pdf
https://pdfs.semanticscholar.org/ac52/b7ce30b181041bb33a7f6c11eb24e3f6e4fc.pdf
http://dx.doi.org/10.1115/1.3658902
http://dx.doi.org/10.1115/1.3658902
https://www.wiley.com/en-us/Introduction+to+Random+Signals+and+Applied+Kalman+Filtering+with+Matlab+Exercises%2C+4th+Edition-p-9780470609699
https://www.wiley.com/en-us/Introduction+to+Random+Signals+and+Applied+Kalman+Filtering+with+Matlab+Exercises%2C+4th+Edition-p-9780470609699
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC220821/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC220821/
https://books.google.co.in/books/about/General_Problem_of_the_Stability_Of_Moti.html?id=4tmAvU3_SCoC&redir_esc=y
https://doi.org/10.1093/imamci/9.4.275
https://doi.org/10.1093/imamci/9.4.275
https://dl.acm.org/citation.cfm?id=211527
https://pdfs.semanticscholar.org/c128/b8a178be40df5179833bb5afb3023d668ea6.pdf
https://pdfs.semanticscholar.org/c128/b8a178be40df5179833bb5afb3023d668ea6.pdf

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Non-Linear Control Architecture
	Trajectory planning
	Feed forward control
	PD adaptation
	RLS adaptation
	ELS adaptation
	Feedback control
	Observer design
	Filter design
	Prediction steps
	Update steps
	Kalman gain equation
	Stability

	Methodology
	Simulation assumptions
	Simulation limitations

	Results and Discussion
	Stability for other selected cases

	Conclusion
	Acknowledgments
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Table 1
	Table 2
	References

