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Abstract
Brake squeal is a manifestation of friction-induced self-excited instability in disc brake systems. This study 

investigated non-smooth bifurcations and chaotic dynamics in disc brake systems and elucidated a chaotic control 
system. Decreasing squeal noise which is dependent on chaos, increases passengers comfort; consequently, 
suppressing chaos is crucial. First, synchronization was used to estimate the largest Lyapunov exponent to identify 
periodic and chaotic motions. Next, complex nonlinear behaviors were thoroughly observed for a range of parameter 
values in the bifurcation diagram. Rich dynamics of the disc brake system were studied using a bifurcation diagram, 
phase portraits, a Poincaré map, frequency spectra, and Lyapunov exponents. Finally, the proposed technique was 
applied to a chaotic disc brake system through the addition of an external input that is a dither signal. Simulation 
results demonstrated the feasibility of the proposed approach.
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Introduction
Many practical engineering systems, where dry friction, clearance, 

and impact often cause sudden changes in the vector fields describing 
the dynamic behavior of the mechanical systems. Such systems are not 
smooth and are referred to as non-smooth dynamical systems. Dry 
friction is a typical non-smooth factor that is influential in engineering 
applications. These sources of self-sustained oscillations, which are 
referred to as stick-slip oscillations, often because undesired effects, 
such as the squeaking noise of automotive windshield wipers [1] and 
the squealing noise of brakes. In the automotive industry, brake squeal 
is a critical problem because it reduces customer satisfaction. Because 
vehicle quality standards are setting increasingly low thresholds for 
noise level and vibration, many researchers have intensively studied 
brake squeal, by using various analytical and experimental methods 
[2-7]. For example, after analyzing automotive disc brake squeal, 
Ouyang et al. [2] concludes that chattering behavior is a self-excited 
vibration based on a stick-slip phenomenon and that it is induced only 
in a certain range of friction parameters; this feature of the stick-slip 
phenomenon also occurs in other physical systems [8-11]. 

Despite the progress and insight gained in recent years, brake 
squealing still occures frequently. Dynamic behaviors of the disc brake 
system must be studied to find effective methods of controlling brake 
vibrations and squealing noises. Thus, disc brake noise generation 
and suppression are important considerations when designing and 
manufacturing brake components.

Brake squeal is a nonlinear transient phenomenon, and numerous 
analytical and experimental studies on brake systems have indicated 
that it can be treated as chaotic motion. For example, [12-14] showed 
that a forced two-degree-of-freedom (2-DOF) dry friction model with 
negative velocity gradient develops chaotic pad motion when the pad 
and disc are in close proximity. Numerical features, such as bifurcation 
diagrams, phase portraits, Poincaré maps, frequency spectra, and 
Lyapunov exponents can be used to study periodic and chaotic motions. 

For a broad range of parameters, using Lyapunov exponents is 
the optimal approach for measuring the sensitivity of a dynamical 
system to its initial conditions. Lyapunov exponents can be used to 
determine whether a system is in chaotic motion, and the algorithms 
for computing the Lyapunov exponents of smooth dynamical systems 

are well established [15-18]. However, these algorithms are inapplicable 
to some non-smooth dynamical systems with discontinuities, such as 
those associated with dry friction, backlash, and impact. Although 
several methods for calculating the Lyapunov exponents of non-
smooth dynamical systems have been proposed [19-21], the method 
proposed by Stefanski [21] was applied in this study for estimating the 
largest Lyapunov exponent of a disc brake system.

Although some chaotic behavior is desirable, it is generally unwanted 
because it reduces the performance and operating range of many 
electrical and mechanical devices. Recent studies have considerably 
advanced control of a chaotic stick-slip mechanical system, and various 
new techniques have proposed [22-24]. For example, Galvanetto [22] 
applied adaptive control to unstable periodic orbits embedded in the 
chaotic attractors of some discontinuous mechanical systems, and 
Feeny and Moon [24] used high-frequency excitation, or dither, to 
quench stick-slip chaos.

In this study, chaos was successfully controlled by injecting another 
external input (i.e., a dither signal) into the system just ahead of the 
nonlinearity. The effectiveness of injecting dither signals to improve the 
performance of nonlinear elements is well established. For instance, 
Tsouri and Rootenberg [25] eliminated undesirable limit cycles in 
coupled-core reactor control systems, and Bambini and Stenholm [26], 
applied dither signals to a ring-laser gyroscope to compensate for the 
dead zone phenomenon caused by imperfections in optical glass. 

These studies demonstrate the various practical applications of 
dither, which may be a signal or a mechanism. Because dither is an 
external signal and does not require measurements, its main advantage 
is simplicity. Dither has also been successfully applied in actual 
nonlinear systems [27-30]. For example, Fuh and Tung [27] used dither 
signals to convert chaotic motion to a periodic orbit in circuit systems. 
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Frictional force can be described as
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For numerical analysis, the frictional force is switched according 
to the motion, and a small region 𝜀 of the relative velocity is defined:

rv ε< , where 0vε  . Thus, the equations of motion are

( ) ( )
¨

1 1 1 0p p p f r fm x c x k x F v F v+ + = − ,		                   (3a)

( ) ( )
¨

2 2 2 0d d d f r fm x c x k x F v F v + + = − −  , 	                 (3b)

where xp denotes the displacement variable of the pad and xd 
denotes the displacement variable of the disc, 0r d pv v x x= + −  , and 
the constant, ( ) ( )0 0f sF v N vµ α= − is introduced to compensate 
any offset. Let, 1 2 3, , ,p p dx x x x x x= = = and 4 dx x=  be the state 
variables such that the state equations of the friction model (Eqs. (3)) 
can be written as the following four first-order differential equations:

1 2x x= ,

( ) ( )( )1 1
2 2 1 0

1 1 1

1
f r f

c kx x x F v F v
m m m

= − − + −
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3 4x x= , 

( ) ( )( )2 2
4 4 3 0

2 2 2

1
f r f

c kx x x F v F v
m m m

= − − − − . 	               (4)

Table 1 presents the values of the parameters used in these equations 
[14].

Estimation of the Largest Lyapunov Exponent and 
Results of the Numerical Simulation

An indicator such as the largest Lyapunov exponent is one of the 
most useful diagnostic elements in any chaotic system. All dynamic 
systems have a spectrum of Lyapunov exponents (λ), which can be 

Liaw and Tung [28] used a dither smoothing technique to control 
noisy chaotic systems. Tung and Chen [29] presented an approach for 
identifying a closed-loop DC motor system with unknown parameters 
and nonlinearities; in addition, they investigated why dither signals 
eliminate possible limit cycles in the system. Furthermore, Chang et al. 
[30], used dither signals to suppress a chaotic permanent magnet in the 
synchronous motor of an electric vehicle.

To improve the performance of automotive disc brake systems and 
to eliminate chatter vibration, chaotic motion must be transformed to 
a periodic orbit in a steady state. In this study, chaos was successfully 
controlled by injecting an external input a dither signal into the system, 
which is an efficient method to improve the performance of nonlinear 
systems. Simulation results verified the efficiency and feasibility of the 
proposed method.

Model Description
Figure 1 uses a 2-DOF model to illustrate the basic dynamics 

of brake squeal noise [13,14]. The systems with subscripts 1 and 2 
represent the pad and the disc, respectively, and m, k, and c denote 
mass, stiffness, and damping, respectively. The motion of the first mass 
(m1) represents the tangential motion of the pad and that of the second 
mass (m2) represents the in-plane motion of the disc. The normal force 
acting on the interface is N=P×S where P is the applied pressure and 
S is the surface area of the interface. The resulting frictional force Ff 
depends on the normal force and the dynamic coefficient of friction 
between the two sliding surfaces. Disc motion is the superposition of 
constant imposed velocity v0 and velocity dx , and the velocity of the 
pad motion is px . Stick motion is governed by a static friction force 
and slip motion is governed by a velocity-dependent friction force. In 
stick mode, the stick friction force is limited by the maximum friction 
force ( )s sF Nµ≤  and is balanced by the reaction forces acting on the 
masses. 𝜇s is the static coefficient of friction and (𝑣r) is the dynamic 
coefficient of friction: ( )r s rv vµ µ α= − . The relative velocity between 
the pad and the disc is 𝑣r. The negative gradient of the dynamic friction 
coefficient is α. 

Considering relative motion between two masses, the static 
frictional force is

Figure 1: Schematic diagram of an automotive disc brake system.
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used to determine how length, area, and volume change in the phase 
space. In other words, Lyapunov exponents measure the rate of 
divergence (or convergence) of two initially nearby orbits. Chaos can 
be identified by simply calculating the largest Lyapunov exponent to 
determine whether nearby trajectories generally diverge (λ > 0) or 
converge (λ < 0). Any bounded motion in the system containing at least 
one positive Lyapunov exponent is defined as chaotic, whereas non-
positive Lyapunov exponents indicate periodic motion. Algorithms for 
computing the Lyapunov spectrum of smooth dynamic systems are 
well established [15-18]. However, these algorithms cannot be directly 
applied in discontinuous non-smooth dynamic systems such as dry 
friction, backlash, and stick-slip. In this study, the largest Lyapunov 
exponent was computed to describe chaotic behavior in an automotive 
disc brake system.

Recently, Stefanski [21] has recommended a simple method of 
estimating the largest Lyapunov exponent based on synchronization 
properties. Many recent studies have considered synchronization of 
two distinct systems, which structures may or may not be identical. 
Synchronization controls the response system by controlling the 
output of the drive system, such that the output of the response system 
asymptotically follows that of the drive system.

Stefanski’s method of estimating the largest Lyapunov exponent is 
briefly described herein [21]. 

The dynamic system is decomposed into the following two 
subsystems:

Drive system

)(xfx = , 					                   (5)

Response system

 )(yfy = . 					                    (6)

Consider a dynamic system comprising two identical n-dimensional 
subsystems, where the response system (6) is combined with a coupling 
coefficient d and the drive system (5) remains the same. Such a system 
can be expressed using the first-order differential equations as follows: 

)(xfx = ,

)()( yxdyfy −+= . 			                    (7)

The synchronization condition (Eq. (7)) is

maxλ>d . 					                     (8)

The smallest value of coupling coefficient d in synchronization ds is 
assumed to equal the maximum Lyapunov exponent, as follows:

maxλ=sd . 					                     (9)

Eq. (7) yields the following augmented system based on Eq. (4):
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The next step determines the largest value of the Lyapunov exponent 
for the chosen parametric values according to the aforementioned 
method. Figure 2 presents the results of the numerical calculations 
required when using the described synchronization method to obtain 
the largest Lyapunov exponents. All the largest Lyapunov exponents are 
positive with respect to the damping coefficient (c1, c2) < 0.0168, which 
indicates chaotic motion. These calculations can be used to classify 
brake squeal mechanisms and to further elcuidate friction-related noise 
phenomena.

Disc brake system was characterized by performing numerical 
simulations according to Eq. (4); the simulations presented the dynamic 
behavior of the system over a range of parameter values as a bifurcation 
diagram, which is widely used to describe transitions from periodic to 
chaotic motion in dynamic systems. The commercial package DIVPRK 
of IMSL in the FORTRAN subroutine for mathematical applications 
was used to solve these ordinary differential equations [31]. Figure 3 
presents the resulting bifurcation diagram, which clearly shows the 
chaotic motion in region III. Period-2n orbits appear in region II, and 
period-1 orbits occur in region I. A Poincaré map can be constructed by 
viewing the phase space diagram stroboscopically to reveal the periodic 
motion. 

The phase portrait evolves from a set of trajectories emanating 
from various initial conditions in the state space. When the solution 
stabilizes, the asymptotic behavior of the phase trajectories is 

Parameter Value

m1 1.0

m2 1.0

k1 1.0

k2 3.0

𝜇s 0.6

𝑣0 1.0

N 10.0

α 0.03

Table 1: Physical parameters of a disc brake system.
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particularly interesting, and the transient behavior in the system 
can be ignored. Furthermore, a frequency spectrum can be used to 
differentiate between periodic, quasi-periodic, and chaotic motion in 
dynamic systems. A stable period-1 motion was observed in region 
I. Each response is characterized by a phase portrait, a Poincaré 
map (velocity vs. phase angle), and a frequency spectrum. Figure 4 
illustrates that the periodic motion of Eq. (4) remains stable as long 
as the parameter (damping coefficient) falls within region I. When the 
parameter (damping coefficient) falls within region II, period-doubling 
bifurcations appear. Figure 5 presents the bifurcations resulting from 
the new frequency components at Ω/2, 3Ω/2, 5Ω/2, etc., which indicate 
that a cascade of period-doubling bifurcations can cause a series of 
subharmonic components. Figure 3 clearly shows that, when the 
parameter (damping coefficient) continues to decrease into region III, a 
cascade of period-doubling bifurcations causes chaotic motion. Chatter 
vibration and brake squeal can occur under these conditions. 

The Poincaré map and frequency spectrum are two descriptors 
that can be used to characterize chaotic behavior. The Poincaré map 
presents an infinite set of points that are collectively referred to as a 
strange attractor. The frequency spectrum of chaotic motion covers 
a broad band. These two features of the strange attractor and the 
continuous type Fourier spectrum are strong indicators of chaos. 
Figure 3 shows that a period-doubling bifurcation occurring in region 
II eventually causes chaotic motion. The phase portrait, Poincaré map, 
and frequency spectrum in Figure 6 elucidate this behavior.

Chaos Control by the Addition of a Dither Signal
To improve the performance of a dynamic system, a chaotic system 

must be transformed to a periodic motion. This section describes how 
chaotic motion can be controlled by adding an external input, that is, 
a dither signal, to adjust only the nonlinear terms. A dither is a high-
frequency signal introduced to modify system behaviors, mainly 
nonlinearity, in a nonlinear system. Because of its high frequency 
and periodic nature, a dither signal averages the nonlinearity. Dither 
smoothing techniques for stabilizing chaotic systems and widely used 
dither signals have been described [27,28,32]. 

The simplest dither signal is a square-wave dither, in which 
frequency and amplitude are 2000 rad/s and W, respectively, in front of 
the non-linearity f (y ± w). Consequently, the effective value of , the 
output of the nonlinear element, is

Figure 2: Evolutions of the largest Lyapunov exponent. 
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2
1 WyfWyfn −++= . 			                 (12)

Therefore, the system equations are

ny = . 					                (13)

The simulation results have confirmed the effectiveness of the 
suggested method for suppressing chaos in an automotive disc 
brake system. To verify the efficiency of the proposed method, three 
damping coefficients have been selected from region III in Figure 3. 
In the absence of dither control, W = 0, Eq. (4) can be used to describe 
chaotic motion for damping coefficient c1 = c2 = 0.015. The effect of 
adding the square-wave dither control to the system given by Eq. (4) for 
the damping coefficient c1 = c2 = 0.015, have been also considered. By 
increasing the amplitude of the square-wave dither signal from W = 0 to 
0.2 V, the dynamics change from chaotic behavior to periodic motion. 
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Figure 7 shows the evolution of the bifurcation diagram. Consider the 
disc brake system with the frictional force, i.e., the original nonlinearity 
f described by Eq. (2). The next steps are setting W = 0.15 V and plotting 
the effective nonlinearity n and original nonlinearity f in Figure 8. The 
time response of displacement is shown in Figure 9(a) where the square-
wave dither signal is injected after 100 seconds. The chaotic behavior is 
converted into a period-one motion. Figure 9(b) is a phase portrait of 
the controlled system. Notably, the behavior of the system is chaotic but 
starts to be periodic after dither injection.

Conclusions
This study investigated complex nonlinear behaviors and the 

chaos control problem in a nonlinear automotive disc brake system. 
The system was characterized by numerical methods by using time 
responses, Poincaré maps, frequency spectra, and the largest Lyapunov 
exponent. The resulting bifurcation diagram showed many nonlinear 
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Figure 7: Bifurcation diagram of the system with a square-wave dither, where 
W is the amplitude of the dither.

Figure 8: Equivalent nonlinearity (n) (solid line) described by Eq. (12). Original 
nonlinearity (f) (dashed line) denoted in Eq. (2).

dynamics and chaotic phenomena, and revealed that the disc brake 
system exhibited chaotic motion at low damping coefficients. 

Nonlinear analysis by using a 2-DOF model demonstrated the rich 
nonlinear dynamics of the disc brake squeal noise and the importance 
of damping. The largest Lyapunov exponent a powerful tool for 
analyzing chaotic motion of the disc brake system was estimated from 
the properties of its synchronization phenomenon. These analytical 
results helped classify brake squeal mechanisms and further elucidate 
friction-related noise phenomena. Finally, a square-wave dither signal 
was used for efficient conversion of the chaotic system into a periodic 
orbit by injecting dither signals ahead of the nonlinearity of the chaotic 
system. 

The proposed system can be used to model real disc brake systems 
in future studies. Figure 10 is a schema of the instrumentation used in 
the experimental study. The dither signal was supplied by a function 
generator with a frequency of 0-10000 Hz. Waveform analysis was 
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Figure 10: Experimental set-up.

performed using a HP 3562A dynamic signal analyzer. The analog 
signal was amplified by a voltage amplifier and servo amplifier that 
drove the DC motor. Studying the dynamics of automotive disc brake 
systems and controlling chaotic vibrations can enhance performance 
and prevent brake squeal noise.
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