
Volume 3 • Issue 1 • 1000121
Curr Synthetic Sys Biol
ISSN: 2332-0737 CSSB, an open access journal 

Research Article Open Access

Runthala, Curr Synthetic Sys Biol 2015, 3:2 
DOI: 10.4172/2332-0737.1000121

Research Article Open Access

Current Synthetic and 
Systems Biology 

ISSN: 2332-0737

Non-Linear and Misleading Template Scoring Criteria: Root Cause of 
Protein Modelling Inaccuracies
Ashish Runthala*
Department of Biological Sciences,Birla, Institute of Technology & Science, Pilani, India

*Corresponding author: Ashish Runthala, Department of Biological Sciences,Birla 
Institute of Technology & Science, Pilani, India, Tel: +91-7597971146; Fax: +91-
1596-244183; E-mail: ashish.runthala@gmail.com

Received April 13, 2015; Accepted May 09, 2015; Published May 11, 2015

Citation: Runthala A (2015) Non-Linear and Misleading Template Scoring Criteria: 
Root Cause of Protein Modelling Inaccuracies. Curr Synthetic Sys Biol 3: 121.  
doi:10.4172/2332-0737.1000121

Copyright: © 2015 Runthala A. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
Template based protein modelling is currently the most accurate as well as trustworthy method for predicting the 

correct protein conformations to bridge the constantly increasing gap between the number of experimentally solved 
protein structures and the count of protein sequences. Our best knowledge based prediction algorithms employing the 
templates are not highly proficient of consistently selecting the best scoring template(s) to construct a highly accurate 
protein model. Mutually contrary nature of generic and currently employed template assessment and selection scores 
further makes this essential modelling step a very tricky and fluky business. Precisely, the article briefly investigates 
and justifies the impact of fundamentally allowed degree of freedom of a template selection measure on the accuracy 
of constructed protein models. Several logical guidelines, normally overlooked in a protein modelling task, are ana-
lyzed and should be routinely considered. A more reliable and robust scoring measure is thus mandatorily required to 
select the best possible available template for constructing the most accurate target conformation.
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Introduction
Functional study of proteins is based on the highly accurate 

knowledge of their structural details. Structure determination 
methodologies, aimed at constructing accurate conformations, 
face several technical and monetary limitations. Protein modelling 
algorithms hereby come for the rescue to quickly predict highly accurate 
structures [1]. Modelling accuracy of a protein sequence depends on 
the degree of near-native proximity of a predicted model [2]. A highly 
accurate Template Based Modelling (TBM) algorithm [3] employs 
the structural information of solved protein structures (templates), 
available in the Protein Data Bank (PDB), to maximally span the target 
(Considered protein sequence for modelling) [4]. Gapped or unaligned 
segments in such target-template alignments are possibly the results of 
insertions, deletions (INDELs) primarily caused due to evolutionary 
pressure and are modelled through a couple of means. Such segments 
are normally modelled through the physical principle of protein folding 
for building the lowest energy confirmation. Distantly related or 
dissimilar templates are also employed for modelling the target chunk, 
not spanned by the selected templates, to construct an overall model 
[5]. Algorithms employing the correct as well as biologically significant 
templates have been proven to construct fairly accurate models. Major 
steps of a generic TBM algorithm include several steps, amongst which 
template identification and selection step is of paramount importance. 
The selected template(s) are then aligned with the target sequence to 
construct a model [6] and such predictions are normally employed 
for several cellular applications [7]. tools also employ PDB culling [8-
19] at a sequence identity threshold and that is actually the mutual
comparison of templates, which may yield a template as high-scoring
hit, although it is structurally too distant from the structural topology
of the target sequence.

To solve most of the modelling errors caused due to an incorrect 
structure, not functionally or biologically related to the target, a reliable 
set of template(s) is thus normally selected through the following scoring 
measures. However, they are usually antagonistic and they do not 
unanimously select the best template as the top ranked hit consistently. 
The degree of multi-dimensional scoring schemes forces us to follow 
the best possible scoring scheme, which is mostly the consideration of 
the E-value scores. Therefore, false positive and spurious templates with 

significant homoplasic sequence similarity to target sequence are not 
eminently, reliably distinguished and filtered out from the correct set of 
actually relevant templates. This concept is well illustrated in Tables 1 
and 2 which enlist the modelling accuracy of randomly chosen CASP8 
targets T0423 and T0428 through several significant templates searched 
by HHPred. Targets T0423 and T0428 encode a sequence length of 
110 and 267 residues respectively. The near-native accuracy of these 
target models was assessed, as per the structural domain information 
employed by CASP, respectively through 97 (2-98) and 229 (20-248) 
residue lengths. 

Target-template length difference

 An ideal template is expected to encode the same number of 
residues as the target sequence, as expected. It works fairly well against 
a single domain template employed for a short length target sequence. 
However, it is usually quite hard to see such case due to domain 
insertion, duplication or deletion in the templates and so a stretch of 
a structural domain of a template may sometimes provide the best 
structural information for a target sequence. Reliability of a hit to be the 
actually best template for a target sequence thus becomes a dilemma. 

Substitution matrices

Substitution matrices, scoring and justifying feasibility of the 
aligned residue substitutions in a target-template alignment, are 
considered credible. However, it mostly becomes an erroneous case 
when a template residue say Glycine (G) come up in mutation over the 
earlier residue Alanine (A) and on alignment with the target residue G 
at that locus, it would become the false positive sequence identity. Such 
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homoplasy, along with discrete behavior of context specific localization 
of residues at specific sites in a protein, makes the reliability of a selected 
template completely questionable. Therefore, such algorithms have been 
improved several times to consider the structural information along 
with the sequence context information [20-23]. It is well understood 
that sequence similarity is a good score to select reliable templates, 
however it is not always correct and the most similar hit is not always 
the best one. Still, it has been consistently employed in most of the 
modelling algorithms and we are far from utilizing it as the best scoring 
measure for a target sequence. 

Residue composition 

Differences in the proportions of encoded amino acids between 
target and a template sequence form the basis of this scoring scheme. 
Lower is the difference or more closer is the observed residue 
composition proportions in the target and template sequences 
irrespective of their alignment, higher is the affirmed reliability of 
the template being phylogenetically closer and credible for the target. 
CASP8 algorithms including CADCMLAB [24] and COMA [25], 
CASP9 algorithms including DCLAB [24] and FLYPRED [26] and 
CASP10 algorithms including samcha-server [27] and TSAILAB [28] 
employed such a scoring measure to rank the templates against the 
considered target sequence [29]. 

Sequence identity 

This measure, though being considered as a highly reliable scoring 
criterion, is also impaired by homoplasy. Structural and functional 
similarity of templates is thus normally used to select the best template 
amongst the set of redundant hits for a target sequence. This structural 
similarity is also normally employed for phylogenetic study of the 
protein structures [30]. However, when several hits share an almost 
equal sequence identity score with the target, their credibility seems 
to be doubtful and it may become difficult to select the most similar 
one. It was well realized by Jones-UCL in CASP9, and here the template 
culling step, to keep the one most significant template amongst similar 
structures for a target, further complicates the process. Such a template 
culling step further poses a new challenge. It is because template 
selection step is employed to screen them against the target and their 
mutual comparison may exclude the actually closest and reliable hit. 
This scoring scheme was used by several groups including CaspIta [31] 
and COMA [25] in CASP8, ATOME2_CBS [32] and FAMSD [33] in 
CASP9, and ATOME2_CBS [32] and CASPita [31] in CASP10. 

Coverages 

Coverage span, seemingly a reliable measure, is dependent on 
alignment constraints and the employed scoring scheme. A shorter 
and a longer sequence even if aligned together, for an almost complete 
coverage span, make the corresponding template selection lucrative. 
However, comparative analysis of the target against another template 
with same coverage span and a higher sequence identity makes the later 
hit a favorable choice. However in another case, if an actually correct 
template is evolutionarily closer to the target and has lesser coverage 
span, its selection again becomes a questionable dilemma for the 
person. This measure has been used by several algorithms including 
BAKER-GINZU and PRO-SP3-TASSER [34] in CASP8, Firestar [35] 
and GSmetadisorder [36] in CASP9 and CASPita [31] and HHPred 
[10] in CASP10. 

Alignment score, e-value 

These scores depend on the quality of alignment. An Alignment 
score and an E-value, the chance to expect the same template in the PDB 
database, are good scoring factors to correctly discriminate between 
highly correct and worse templates. Through the target-template 
HMM profile comparison, the alignment score of a template hit is also 
computed. However, these measures also fail to precisely select the best 
template from the pretty similar set of almost equally scoring hits and 
so there is still a need to develop other significant assessment measures 
for a target to model a highly accurate protein conformation [37]. In 
CASP8, FAMSD, FAMSSEC, sbtJ, Yuan-Chen-Kihara and ZHOU-
SPARKS-X majorly relied on this scoring scheme. This scoring scheme 
has been used by many algorithms including Distill [38] in CASP8, 
Distill [38] and TASSER [39] in CASP9 and TASSER [39] and Distill 
[38] in CASP10. 

Resolution 

For a protein, it scores the experimental quality of data obtained 
from the crystal. On the basis of structurally similar topology of 
proteins, a crystal results in a diffraction pattern and a perfect highly 
ordered structure shows a resolution score of 1Å. It is normally 
believed that high resolution structures solved by X-Ray experimental 
methodology are the perfect ones. However, it is not always applicable 
for selecting the best set of templates. A template protein, even with 
a lower resolution, may still provide the structural information for 
several target residues, not spanned by the already selected templates, 
and may thus be fairly reliable conformation. 

Template Resolution Length Sequence 
Identity 

Average gap 
length 

BLOSUM 
score 

Mismatch 
residues 

Coverage 
span TM_Score GDT-TS RMSD 

2OTM 1.85 152 33.77 1.3 -799.09 64.94 98.72 0.937 90.068 1.077 
1PF5 2.50 130 26.57 9.79 -873.21 63.64 99.36 0.572 45.377 2.066 
2B33 2.30 127 27.56 10.25 -877.46 62.19 100 0.514 36.815 2.63 
2CVL 1.65 124 30.71 11.43 -886.62 57.86 99.36 0.561 45.377 1.939 
1QD9 1.70 124 29.29 12.14 -894.48 58.57 99.36 0.541 44.178 1.768 
1QU9 1.20 126 29.79 10.64 -881.32 59.57 99.36 0.526 41.781 2.302 
2CWJ 3.60 116 26.47 14.71 -914.58 58.82 98.72 0.52 38.527 2.368 
2DYY 2.60 125 28.47 11.03 -883.74 60.5 99.36 0.506 36.986 2.429 
1XRG 2.20 125 27.76 11.03 -884.47 61.21 99.36 0.496 34.76 2.697 
2IG8 1.90 142 26.85 9.4 -869.94 63.76 96.32 0.458 32.877 2.837 
1X25 2.00 126 30.5 10.64 -880.91 58.87 98.72 0.447 32.363 2.235 
2EWC 2.15 120 17.39 13.77 -906.86 68.84 100 0.109 5.479 2.881 

Table 1: Inconsistent template selection scoring results, showing their non-linear relationship with the most credible GDT-TS and TM_Score measure, for the CASP8 target 
T0423 encoding 110 residues.
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These measures, enlisted in the Tables 1 and 2 ordered as per 
TM_Score [37] accuracy, are quite heterogeneous and their reliability 
varies a lot. Errors due to the selection of seemingly reliable but actually 
evolutionarily distant hit should thus be tackled properly, as recently 
tried by several modelling algorithms [40]. The servers trying to solve 
this issue through computation of multiple sequence profiles are highly 
laborious, time-consuming and still cannot predict highly accurate 
models consistently [41-43].

Suggested Strategy 
The template search and selection step of a routinely employed 

protein modelling algorithm should be properly screened. Several 
knowledge based expert guidelines, as enlisted and explained in 
logistically correct order below, should thus be routinely considered to 
select the best template(s) for a target sequence. 

Maximum informative MSA profile 

Iterative template search rounds are often employed by several 
algorithms including HHPred [10] to search the significantly relevant 
set of templates for a target sequence. Such a maximum allowed iteration 
parameter, although computationally expensive, fairly correlates 
and considers even the distantly related hits for a target sequence 
and should thus be normally employed. It reasonably evaluates the 
evolutionarily consensus probability of residue substitutions across the 
target sequence in the screened list of hits to prioritize and accurately 
rank the scoring of correctly related templates. 

E-value threshold 

A hit with a considerably low E-value score is normally considered 
as a good template for a target sequence. This concept quite reasonably 
selects the best hit with the lowest E-value score for a target sequence. 
However, the same relationship 

can never be extrapolated to other meaningful templates as a hit 

with a very bad E-value score might still be sequentially divergent as 
well as structurally and functionally relevant one for a target sequence. 
Hence, solely discarding templates for their lower E-value scores is not 
normally advised. 

Score secondary structure of target 

A target sequence might share too much sequence divergence with 
the selected functionally similar templates and still be excellent structural 
resource. Hence as per the constructed reasonably correct alignment, 
similarity of predicted secondary structure of target sequence chunks 
and the template segments provides reliable homology information. 
This constraint also assists the construction of a reasonably accurate 
target-template alignment. 

Local as well as global alignment consideration

Protein sequence information is significantly lost through inaccurate 
localization of gaps especially while constructing an optimally scoring 
and biologically meaningful alignment. Hence, gaps must be carefully 
crosschecked in the target-template alignment. Similarly, longer gap 
segments more than 5 gaps should be avoided, especially if they not at 
the periphery, as ab-initio modelling of such chunks might disturb the 
orientation and topology of adjoining residues especially if they encode 
a secondary structure element. Therefore, an alignment optimally 
placing the residues, both in terms of their local and global functional 
significance, should be employed for a logistically correct modelling 
of the target sequence. The best possible biologically meaningful 
alignment might not always be the one with mathematically best score 
and rather it could be a sub-optimal one with a comparatively inferior 
score. 

Functional significance of templates 

A target sequence normally encodes atleast one functional domain, 
although it might be sequentially and structurally continuous or 

Template Resolution Length Sequence 
Identity 

Average gap 
length 

BLOSUM 
score 

Mismatch 
residues 

Coverage 
Span TM_Score GDT-TS RMSD 

1XQ9 2.58 241 60.24 5.12 -829.99 34.65 96.63 0.977 94.932 0.886 
1E59 1.30 239 53.75 5.53 -834.43 40.71 100 0.962 91.376 1.225 
1YJX 2.80 245 48.83 5.47 -833.45 45.7 97.41 0.951 88.537 1.397 
1YFK 2.70 243 48.63 5.88 -836.98 45.49 97.04 0.951 87.882 1.343 
1T8P 2.50 249 45.74 5.81 -836.67 48.45 98.17 0.934 84.607 1.549 
2H4Z 2.00 255 46.74 4.98 -829.54 48.28 99.64 0.909 81.223 1.711 
2A9J 2.00 253 46.54 5 -829.6 48.46 100 0.909 81.004 1.676 
2H4X 1.85 255 46.74 4.98 -829.54 48.28 99.64 0.908 81.223 1.722 
2H52 2.00 255 46.74 4.98 -829.54 48.28 99.64 0.907 81.004 1.663 
2F90 2.00 254 46.45 5.18 -831.24 48.37 99.64 0.907 80.667 1.699 
1FZT NA 211 44.77 11.72 -888.03 43.51 98.13 0.809 69.105 1.687 
2P30 1.85 177 30.18 20.27 -961.17 49.55 98.88 0.603 42.467 2.629 

2OWD 1.65 171 30.14 21.92 -975.3 47.95 97.75 0.602 42.576 2.69 
2P78 1.75 171 29.22 21.92 -975.36 48.86 97.75 0.6 43.122 2.483 
2P75 1.70 171 30.14 21.92 -975.31 47.95 97.75 0.6 41.476 2.675 
1V37 1.40 171 29.22 21.92 -975.3 48.86 97.75 0.599 37.079 2.346 
2PA0 2.30 171 28.31 21.92 -975.43 49.77 98.13 0.598 42.476 2.618 
2EKB 1.70 171 30.14 21.92 -975.29 47.95 97.75 0.597 41.157 2.7 
2P2Z 1.75 171 29.22 21.92 -975.38 48.86 97.75 0.594 42.14 2.48 
2P6O 1.65 171 29.68 21.92 -975.32 48.4 97.75 0.592 42.467 2.596 
2P9Y 1.85 171 29.22 21.92 -975.37 48.86 97.75 0.591 42.467 2.462 
2P6M 1.90 171 29.22 21.92 -975.38 48.86 97.75 0.591 41.266 2.449 

Table 2: Inconsistent template selection scoring results, showing their non-linear relationship with the most credible GDT-TS and TM_Score measure, for the CASP8 target 
T0428 encoding 267 residues.
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discontinuous. Hence, a target sequence must be screened for the 
plausible availability and localization of such domains through several 
databases including PFAM and CDD and then the functionally similar 
Homologues and Orthologoues must be considered as reliable hits 
through other scoring measures. Such a consideration of structurally 
and functionally significant sequence information normally involves 
the exquisite evolutionarily reliable sequence information of templates 
the best possible way and thus assists us to predict highly accurate near-
native protein models for both the conserved local structural segments 
and the complete model altogether. 

Employing all culled PDBs 
Consider all the culled PDB structures along with the selected 

functionally similar and reliable representative hits for selecting the 
best possible set of templates for a target sequence. The culled PDB 
might actually be evolutionarily and structurally closest to the target 
sequence and hence the complete set of related PDB structures must be 
considered for selecting the best set of templates. 

Fixing the best set of templates 

Best possible set of mutually and structurally complementary 
templates is essential to model a highly accurate protein structure. The 
discussed scoring measures and template selection or consideration 
constraints must thus be carefully employed, through correctly 
computed pairwise and multiple sequence alignments, to fix up the 
best possible templates for maximally spanning the target sequence. 
The best hit, scored significantly with majority of the aforementioned 
measures, must be thus employed to seed the construction of a highly 
accurate MSA. This MSA should then be employed for screening the 
hits to maximally span the target. 

Conclusion 
The template search and selection criterion, being the major 

armature to ultimately build the highly reliable models, needs a well 
developed template ranking system. Selecting the reliable templates 
is thus the supreme prerequisite to construct highly accurate protein 
models. CASP Server models are therefore usually pretty poor topology 
predictions and are not highly accurate compared to the well justified 
human models. A robust template selection algorithm, encompassing 
the best of these scoring measures, is thus required to significantly 
distinguish the actually relevant templates from the spurious hits and 
thus solve modelling errors caused due to consideration of incorrect 
template(s). 

Discussion 
Most of the template search and selection criteria seem to be parallel 

or mutually convergent with consideration of their benchmarked 
weights. A robust algorithm with optimally weighed consideration of 
most of these measures is thus required to reliably rank the credibility 
of a template. However, it is obvious that any such template ranking 
algorithm will fail completely when an assigned weight results in a false 
positive ranking of templates. Weighting increases the credibility of a 
selection measure much more than others and the marginal change of 
the weighted factor significantly suppresses the noteworthy weights 
of other template scoring measures. Template scoring results of the 
significant hits searched by HHPred [10] for the CASP8 targets T0423 
and T0428, enlisted in the Tables 1 and 2, clearly prove this discussed 
problem. All the aforementioned template selection measures are 
enlisted in these tables and their scores are not always parallel to the 

TM_Score [37], computed against the actual native conformation. A 
template solely selected on the basis of a single scoring measure may 
not be the best structural hit always and so a more reliable template 
scoring measure, statistically too robust, is mandatorily required 
to definitely pave our way for developing a consistently successful 
modelling algorithm.
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