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Abstract

Massively parallel sequencing of cell free fetal DNA (cffDNA) obtained from maternal plasma is used to detect
fetal trisomies and selected sex chromosomal aneuploidies. Different technologies can be used to detect fetal
chromosomopathies noninvasively, such as Next Generation sequencing and microarrays. In this case report, we
show a procedure for detecting chromosomal imbalances as a result of balanced translocations inherited from
parents, using noninvasive prenatal detection of common aneuploidies based protocol. This case study illustrates
the potential power of whole-genome semiconductor sequencing when used to augment the diagnostic spectrum of
noninvasive prenatal testing to detection of copy number variants.

Keywords: Cell-free fetal DNA; Noninvasive prenatal testing;
Chromosomal imbalances; Massively parallel sequencing; Prenatal
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Introduction
Karyotyping of cultured fetal/placental cells obtained by invasive

testing is the gold standard for prenatal diagnosis of
chromosomopathies, its diagnostic accuracy range to 97.5-99.8% [1]. It
allows the detection of fetal aneuploidies, polyploidies, balanced and
unbalanced rearrangements, large microdeletions and duplications [2].
However, it needs fetal tissue obtained through invasive procedures
such as chorionic villous sampling (CVS) or amniocentesis. CVS can
be performed between 10 and 13 weeks of gestation. Amniocentesis is
usually offered after 15 weeks of gestation. Both methods are
associated with higher pregnancy loss rates, quoted by the American
College of Obstetricians and Gynecologists as one miscarriage in every
300-500 procedures for amniocentesis and about the same for
chorionic villus sampling [3].

In 1997, Lo et al. [4], discovered the cell-free fetal DNA circulating
in maternal blood, but at that moment, they did not have the
appropriate technology for its analysis. The introduction of next-
generation sequencing has revolutionized prenatal diagnosis, this
technique provides the sensitivity and accuracy required to analyze
cffDNA. Noninvasive prenatal testing (NIPT) of trisomies 13, 18 and
21 have a positive predictive value (PPV) of 98 to 100%, and a false-
positive rate of 0.0 to 0.1% [5]. In comparison, the positive predictive
value for detecting sex chromosome aneuploidies (SCA) has been
reported as 48%, while the false-positive rate for detection of SCAs is
approximately 0.3% [5,6]. This lower accuracy in diagnosis of SCA has
been attributed to confined placental mosaicism or abnormal maternal
karyotype [7].

The actual impact of this becomes clear if the test is assessed in
terms of its positive predictive value. NIPT has a PPV 10 times better

than current first trimester screening in a similar population but this is
still far below the near 100% required for a diagnosis of trisomy [8].
However, if NIPT is offered to pregnant women with a higher a priori
risk, the PPV increases. Thus, different approaches have described to
implement NIPT in prenatal care, as an intermediate step between
serum screening and invasive diagnostic testing [9-12] or as a
replacement for serum screening [8,13,14].

Non-invasive prenatal testing (NIPT) procedures have been recently
expanded to panels that include screening for common microdeletion
syndromes. In this way, sensitivities greater than 85% have been
reported if the deletion might be detected on a G-banded karyotype
and 60- 85% for deletions shorter than 7 Mb, with increasing
sensitivity as fetal fraction increases [15,16]. Depending on the
resolution used for expanded NIPT, more of the recently identified
smaller microdeletion (and duplication) syndromes may also be
detected.

Selected microdeletion syndromes are candidate conditions for
broader NIPT screening scenarios that in the coming years may be
considered.

Case Report
This report concerns a 34 years old patient, gravida 3, parity 0,

abortion 2. In the first pregnancy, the combined risk for trisomy 18 and
21 was higher than 1: 50 because of a nuchal translucency of 3.8 mm
and low levels of biochemical serum markers. In our center the cut- off
value in combined screening for aneuploidy suspicion is higher than 1:
270. So the patient was referred to our department for invasive testing
by amniocentesis.

The fetal karyotype from cultured amniocytes showed the derivative
chromosome 46,XY,der(8)t(4;8)(q21.3p23.1). Subsequent parental
studies showed a normal karyotype in the mother and a balanced
translocation between chromosomes 4 and 8 in the father. The second
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pregnancy resulted in a spontaneous first trimester abortion. No
genetic study was performed in fetal tissues.

In the present pregnancy, the nuchal translucency´s (NT) measure
was 6.3 mm, which behaved as a generalized subcutaneous edema
covering head, thorax and abdomen. It is well established that using a
cutoff value of NT ≥ 3.5 mm, the detection rate of chromosomal
abnormalities is 48.8% [17]. Because of sonographical markers and her
past medical history, the patient was referred to our department and it
was decided to carry out a CVS at 12 weeks gestation. Before the

invasive procedure, the woman accepted to participate in a blinded
study for NIPT, and a blood sample was collected. Ethics committee
approval and informant consent from the patient was obtained for this
test.

Both QF-PCR and karyotyping were performed according to our
standard protocol [18]. QF- PCR showed normal results for
chromosomes 13, 18, 21, X e Y. Fetal karyotype from trophoblastic
cells showed the same derivative chromosome, involving chromosomes
4 and 8, detected in her first pregnancy (Figure 1).

Figure 1: Fetal karyotype from trophoblastic cells showed a
karyotype 46,XY,der(8)t(4;8)(q21.3p23.1).

Whole genome sequencing was used for the NIPT. Cell-free fetal
DNA obtained from maternal plasma was extracted using QIAamp
DSP Virus Kit® using a manufacturer´s modified protocol. The library
for sequencing was prepared using Ion Plus Fragment Library Kit®

according a homemade protocol. The sample was sequenced in the Ion
Proton platform® in an 8-plex run using counting-technology for the
analysis. We obtained 47,801,931 reads after filtering of which,
6,723,356 reads were from the target sample. The medium read length
was 153 nucleotides.

Sequencing data was processed following a bioinformatics
algorithm based on LifeTechnologies® pipeline, TMAP. For each
sequencing run, the multiplexed sequence reads were subject to a
classification step, in which barcoded 5´adapters were identified and
matched against a predefined set, in order to split the multiplex into

individual samples. In a subsequent filtering step, very short reads were
discarded. Thus, the chromosomal origin of each sequenced read was
identified by comparison with the reference human genome hg19,
GRCh37 (UCSC Genome Browser). Finally, duplicated reads were
removed and unique aligned reads were counted by autosome.

Z-score was calculated for each autosomal chromosome in the case
and control samples by subtracting the mean percentage autosomal
chromosome of a reference set of two euploid pregnancies from the
percentage autosomal chromosome of the test case and divided by the
standard deviation of the value for percentage autosomal chromosome
among the reference sample set [19].%�ℎ��   = Unique count for chrNTotal unique count
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�ℎ��   � − �����   ���   ����   ������= %chrNsample – mean % chrNreference  SD % chrNreference
A subset of 78 samples from singleton pregnancies were analyzed in

order to establish reference data from euploid pregnancies.

Simultaneously, read counts in window bins were used to detect fetal
CNVs. Fetal aneuploidy was defined by an absolute Z-score above 3.
Partial trisomy 4 was detected due to a Z-score of 6.76 obtained for
chromosome 4 after the analysis described above (Figure 2).

Figure 2: Z-score obtained for chromosome 4 on the set of samples analyzed. Partial trisomy 4 detected after the analysis of the sample
46,XY,der(8)t(4;8)(q21.3p23.1) is pointed by an arrow.

Discussion
Noninvasive prenatal testing of common fetal aneuploidies such as

Down syndrome, trisomy 18 and 13 by sequencing of cffDNA present
in maternal plasma has been clinically implemented since 2011 in both
the USA and China and its implementation is spreading in Europe.
Recent advances in noninvasive prenatal diagnosis have enabled the
detection of structural and functional abnormalities associated with
deletion/duplication syndromes such as Cri du Chat, Di George and
Angelman syndrome [16].

Theoretically, unbalanced translocations should be identifiable by
NIPT. In this kind of chromosomal abnormality, a partial trisomy or
monosomy is present [20]. A case of a parental inherited unbalanced
translocation detected by NIPT is described in this paper, using a basic
reads counting strategy for each chromosome and simple statistics
such as Z-score.

The major advantage of this approach is the reduction in the
required invasive tests to detecting these kinds of chromosomal
abnormalities. There are some limitations, until now only segmental
imbalances larger than 5 Mb can be identified [21]. On the other hand,
in order to decrease false positive results, the detection of unbalanced

translocations should only be applied when the carrier status of a
parent is previously known.

Even if cffDNA testing is designed to ascertain risk of chromosomal
abnormality in the fetus, maternal imbalances are more readily
detected than fetal. Although this might seem a disadvantage,
identification of these maternal events is clinically relevant, because
women who carry a microdeletion have a 50% chance of passing on
the chromosomal abnormality to the fetus [15]. The routine detection
of de-novo rearrangements using cffDNA in all pregnant women
would not seem to be cost-effective at this time, although it is
technically possible.

Although scientific, medical, and ethical issues should be evaluated
carefully, this strategy, can detect genomic alterations that may change
the obstetrical course and outcome, providing a basis for decisions
regarding termination, fetal therapy, mode of delivery, and postnatal
referral to a tertiary-care centre with advanced expertise in
management.

To our knowledge, only one paper has shown the use of next
generation sequencing based on semiconductor technology for
detection of unbalanced chromosome translocations for
preimplantational genetic diagnosis application [22]. There are no
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studies that use this technology for a noninvasive detection of copy
number variants in cell-free fetal DNA.

Conclusion
Our study suggests that innovations in genome sequencing aimed

specifically at detecting structural variations can offer a rapid adjunct
to cytogenetic techniques. Sequencing enables precise definition of
individual disrupted genes, thereby adding to the information available
for outcome prediction, medical planning, and genetic counselling. We
have demonstrated that employing the same approach for detect Down
syndrome, a basic reads counting, is possible to detect large
unbalanced translocations. More studies are needed to determine the
minimum size of the translocation detectable using this basic strategy.
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