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The existing data from research using rodent models have 
implicated some drugs as being toxic to the developing brain, even 
causing cognitive deficits in later life. However, there are no data 
providing evidence that the clinical use of these drugs is associated 
with signs of developmental neurotoxicity. This Editorial focuses on 
how use of the developing nonhuman primate, when combined with 
biochemical, pathological, pharmacokinetic, dynamic molecular 
imaging approaches and cognitive assessments, might provide a 
bridging model and, thus, serve to provide the most expeditious 
approach toward decreasing the uncertainty in extrapolating pre-
clinical data to the human condition.

Early-life stress has been shown in both preclinical and clinical 
studies to cause neuroanatomical and biological alterations and 
disruptions in homeostasis. These alterations can lead to dysfunctions 
in critical regulatory systems and concomitant increases in risk for 
the development of pathology. Our goal in writing this Editorial is 
to highlight ways in which preclinical research models can inform 
clinical interventions and vice versa. Because of the complexity 
and temporal features associated with the normal course of brain 
maturation, the developing nervous system is likely to be much 
more susceptible than the mature brain to neurotoxic insults. The 
study of neurodevelopmental toxicology has great potential for 
helping to advance our understanding of brain-related biological 
processes, including neuronal plasticity, degeneration/regeneration, 
differentiation, toxicity and even therapeutic efficacy [1].

Recently described developmental neurotoxic insults involve 
the apoptotic cell death of neurons in the rodent brain following 
developmental exposure to sedatives and general anesthetics, such 
as ketamine and some inhalation anesthetics [2-5]. When these 
compounds are administered to the neonatal rat or mouse, a rapid and 
significant increase in apoptosis occurs in several brain regions [6]. 
Because of obvious concerns, it is not possible to thoroughly explore 
this kind of adverse anesthetic effect on neurons in human infants or 
children, nor is it possible to obtain relevant dose-response or time-
course data about the potential sedative/anesthetic-induced neuronal 
cell death and associated behavioral deficits in humans. 

The nonhuman primate is an animal model that has proved 
invaluable for informing aspects of human physiology, pathology, 
pharmacology, toxicology, and systems biology. No other commonly 
used research animal has a functional fetal-placental unit, a propensity 
for single births and a fetal-to-maternal weight ratio comparable to that 
of humans. Due to the complexity of the primate brain, the monkey is 
often the animal of choice for neurotoxicology experiments and given 
the protracted period of brain development the monkey is arguably 
the very best model for studies of developmental neurotoxicity. The 
phenomenon of interest in the present discussion (anesthetic-induced 
neuronal cell death in the brain) has also been previously observed in 
the nonhuman primate, Macaca mulatta [7,8]. Thus, the relevance 
of the sedative/anesthetic-induced neuronal cell death observed in 
rodent models to children is inferred because similar effects occurs the 
developing nonhuman primate. 

This Editorial discusses several advantages for using the developing 
rhesus monkey in addressing critical issues related to the topic of 

pediatric sedation/anesthesia. These include the relationships between 
drug-induced neurotoxicity and developmental stage at time of 
exposure and how imaging tools might be combined with complex 
behavioral tests to provide opportunities to study the effects of drug 
exposure during development of important brain functions such as 
learning and memory.

Characteristics of Sedative/Anesthetic-Induced Damage 
in the Developing Monkey Brain

One great advantage of monkey models is that the anatomical 
and functional complexity of their CNS facilitates the interpretation 
of data with respect to the extrapolation of findings to humans. The 
first report regarding neuronal cell death in nonhuman primates 
exposed perinatally to anesthetics was published in 2007 [7]. This study 
focused on the representative general anesthetic, ketamine (a non-
competitive NMDA receptor antagonist), which was administered as 
an intravenous infusion at doses sufficient to produce a light surgical 
plane of anesthesia [7]. The neurotoxic effects of these ketamine 
exposures were examined several hours after the end of the infusions, 
based on the hypothesis that ketamine induces an up-regulation of the 
NMDA NR1 receptor subunit, causing neurons to be more vulnerable 
to the excitotoxic effects of endogenous glutamate after ketamine has 
been cleared from the system. A 24 hours ketamine infusion was shown 
to produce a large increase in the number of TUNEL-positive cells in 
PND 5 monkey infants. Numerous darkly stained TUNEL-positive 
cells exhibiting the typical nuclear condensation and fragmentation 
indicative of enhanced apoptotic cell death were observed. The TUNEL 
assay relies on the detection of fragmented DNA strands. Consistent 
with ketamine’s effects [7,8], an 8-hour exposure to a combination of 
inhaled anesthetics [70% nitrous oxide (N2O) + 1% isoflurane (ISO)] 
also induced neuronal cell death in the PND 5 monkey brain that 
was primarily restricted to the cortical brain regions, especially in 
layers II and III of the frontal cortex. In addition to the frontal cortex, 
enhanced neuronal degeneration as evidenced by increased numbers 
of caspase 3-, silver- and Fluoro-Jade C-positive neuronal profiles 
was also observed in the temporal gyrus and hippocampal areas [9]. 
At the electron microscopic (EM) level, direct evidence of increased 
neuronal cell death in infant monkeys treated with anesthetics (either 
ketamine or the combination of inhaled anesthetics) was confirmed by 
the observation of cells exhibiting representative nuclear condensation 
and fragmentation (apoptosis) and necrotic characteristics, including 
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neuronal mitochondrial and cell body swelling [7,9]. It should be 
noted that the cellular pattern or topography and the nature of 
anesthetic-induced neurodegeneration seen in developing monkeys is 
different from that reported for developing rodents [4,5,10]. The data 
demonstrate that anesthesia-induced neuronal cell death in the neonatal 
monkey is both apoptotic and necrotic in nature. However, EM and 
other biochemical and morphological observations in the developing 
rat showed only the typical nuclear condensation and fragmentation 
(in vivo and in vitro) indicative of the advanced stages of apoptosis, not 
necrosis. These observations indicate that the potential toxicological 
consequences of prolonged anesthetic exposure in primates during 
development may be far more serious than that produced in rodents. 

Anesthetic-Induced Neurotoxicity and Developmental 
Stage in Developing Monkey 

The degree to which the nervous system is resistant to neurotoxic 
insults is highly dependent upon the stage of development. Because the 
brain growth spurt in both human and nonhuman primates extends 
over a much longer time period than in the rat, matching the timing 
of a developmental event in humans and nonhuman primates is less 
problematic than matching the same between primates and rodents. In 
addition to PND 5 monkeys, ketamine-induced neuronal degeneration 
was assessed in gestational day (GD) 122 and PND 35 monkeys [7]. As 
seen in the PND 5 monkeys, GD 122 fetuses showed clear ketamine-
induced neuronal cell damage, whereas PND 35 monkeys did not. 
GD 122 fetuses and PND 5 infant monkeys, thus, are more sensitive 
to ketamine-induced cell death than PND 35 monkeys, when less 
synaptogenesis is occurring. Although a complete understanding of 
neuronal cell sensitivity to ketamine in the primate is not possible from 
these few early studies, it is apparent that rhesus monkeys are sensitive 
during the last 25% of gestation (term is 165 days) to sometime before 
PND 35. Equating relative stages of development between human and 
animal models is critical for the extrapolation of safety assessment data. 
It is generally believed that the nonhuman primate fetus (especially that 
of the rhesus monkey) and the human fetus are more similar in stage 
of maturation at birth as compared to rats that are relatively immature 
at birth. For example, both humans and rhesus monkeys are born with 
their eyes open at birth, whereas newborn rat pups are not. At PND 7 
the rat pup is more similar in maturation to a monkey late in gestation 
than to an infant monkey. According to a recent review [11], the GD 
123 monkey fetus is roughly equivalent to a GD 199 human fetus as 
determined by cortical development, and both are in the range of 75–
80% of normal term. Also, NMDA receptor binding sites are present in 
the human fetal brain by GD 115, increase until GD 140–150, and then 
decrease slightly by GD 168–182 [12] and the localization of NMDA 
receptors in monkey cortex is similar to that observed in humans [13].

Anesthetic-Induced Brain Damage and Associated 
Physiological Parameters and Pharmacodynamic 
Outcomes in the Developing Monkey

For any animal model it is essential to monitor and control 
physiological parameters. As expected, these parameters are carefully 
controlled during pediatric sedation and anesthesia but the can be very 
difficult to control in rodent models, primarily because of their small size. 
The nonhuman primate, thus, provides a model that is ideal for these 
types of experiments. During anesthesia, all physiological parameters 
including percent oxygen saturation, exhaled carbon dioxide, body 
temperature, heart rate, blood pressure, glucose, and hematocrit can be 
monitored and maintained within normal ranges in the same manner 
as in the pediatric clinic. Because prolonged hypoperfusion can lead 

to cerebral hypoxia and ischemia-related cell death, it is necessary to 
maintain normal blood pressure and oxygen saturation [7,8,14] and 
this was readily accomplished in our nonhuman primate studies [7,14]. 

As expected, plasma ketamine concentrations are related to 
neuronal cell death in a dose-related fashion with higher doses causing 
more death. In perinatal monkeys, steady-state plasma ketamine 
concentrations of 10-25 µg/ml were achieved during prolonged periods 
(up to 24 hours) of anesthesia. While these plasma levels of ketamine 
are necessary to maintain anesthesia in the rhesus monky model, it is 
important to note that these levels are some 5-7 times higher than those 
required for human infants. It is also of interest to note that monkeys 
at different stages of development require different ketamine plasma 
concentrations to maintain anesthesia. For example, PND 35 monkeys 
required a higher plasma concentration of ketamine to maintain the 
same level of anesthesia as PND 5 monkeys. Another important finding 
was that even though the plasma concentrations of ketamine were 
highest in the PND 35 monkeys, there was no evidence of increased 
neuronal cell death, whereas in PND 5 animal’s neuronal cell loss was 
significant even at lower plasma ketamine concentrations [7,14]. 

The Use of a Nonhuman Primate Model to Decrease the 
Uncertainty in Extrapolating Pre-Clinical Data to the 
Human Condition

Evidence in support of a correlation between surgery and 
subsequent neurophysiological changes has accumulated [15-17]. 
The use of a nonhuman primate model to decrease the uncertainty in 
extrapolating pre-clinical data [7,8,14] to the human condition (e.g. 
peri-operative neurotoxicity) continues to garner considerable interest 
among anesthesiologists and toxicologists, with growing recognition to 
be anticipated from surgeons and neonatologists. A host of mechanistic 
studies have been completed or are underway which have been helpful 
in providing a rationale for the overall concern over anesthetic and 
sedative-induced neurotoxicity. These studies have been and will be 
instrumental in teasing apart the causalities, refining hypotheses, 
developing alternative or protective measures and suggesting clinical 
strategies for assessing the phenomena in children. Such studies have 
ranged from cell culture to histopathology to animal behavioral studies 
– including the nonhuman primate [7,18-20]. To date, data from both 
rodents and nonhuman primates have demonstrated neurotoxic effects 
of anesthetic drugs on the developing brain that are associated with 
later deficits in important cognitive functions including learning, the 
ability to perform simple visual discriminations, motivation and speed 
of psychomotor processing [18]. There are, however, currently no 
clinical data providing evidence that the use of anesthetics during the 
perinatal period is associated with signs of developmental neurotoxicity 
or subsequent cognitive deficits in humans. It is essential to continue 
studies in nonhuman primates in order to obtain valuable information 
on the time course and severity of observed deficits. It will also be 
necessary to determine whether injured brain tissue can recover with 
no or minimal loss of function, or whether injured brain tissue can 
be protected from sedative/anesthetic-induced injury by the co-
administration of anti-oxidants or other agents. Shorter durations of 
anesthesia have been shown to cause less or no cell death in monkeys: 
whether exposures to anesthetics will cause cell death in humans is still 
unknown, but it is likely that shorter exposures will have less impact 
than longer exposures. Although drug combinations are commonly 
used in pediatric procedures, there is a huge data gap concerning the 
neurodegenerative effects associated with sedative/anesthetic and other 
drug combinations. 
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A growing body of data indicates that molecular imaging with 
isotope-labeled biomarkers (radio-tracers) may help to detect 
neurotoxicity in infants, young and adult animals [21,22]. The high-
resolution positron emission tomography scanner (microPET) can 
provide in vivo molecular imaging at a sufficient resolution to resolve 
both major structures and neuronal activities in the nonhuman 
primate brain. To determine whether prolonged sedative/anesthetic 
exposure during development is associated with subsequent long-term 
cognitive deficits, drug-induced neurodegeneration can be explored 
by monitoring changes in the uptake (binding) of radiotracers (e.g., 
[18F]-Peripheral Benzodiazepine Receptor ligand, a biomarker of 
neurotoxicity- and gliosis), in specific regions of interest in the 
monkey brain. In addition, Operant Test Battery tasks [23], including 
those for assessing aspects of learning, motivation, color and position 
discrimination, and memory can be useful tools in longitudinal 
assessments and in delineating the time course of cognitive performance 
deficits and underlying biochemical changes. 

Summary
Information regarding risks associated with pediatric drugs is 

abundant in the animal literature, but philosophical, methodological 
and experimental differences among species, sources and models 
make direct comparison with humans difficult. It has been proposed 
that pediatric sedative/anesthesia-induced neurotoxicity depends on 
the amount (dose) given, the duration of the exposure, the route of 
administration, the receptor subtype activated, and the stage of the 
neural development at the time of exposure. These factors are important 
because they can help identify thresholds of exposure for producing 
neurotoxicity in the developing nervous system. There are yet many 
questions to answer before the findings of pediatric drug-induced 
neurotoxicity observed in animals can be related to effects in humans: 
however, the use of a nonhuman primate model combined with 
molecular imaging tools and dynamic behavioral tests might provide 
the most expeditious approach toward decreasing the uncertainty in 
extrapolating pre-clinical data to the human condition. Thus, further 
research in the nonhuman primate is urgently needed to determine 
which agents and procedures are likely to incur the greatest risk for 
subsequent brain dysfunction for both the very young and the elderly. 
In addition, the threshold doses and exposure durations necessary for 
safe and effective treatment, as well as possible protective strategies 
must be determined.

Disclaimer
The findings and conclusions in this report are those of the author(s) 

and do not necessarily represent the views of the FDA. This document 
has been reviewed in accordance with United States Food and Drug 
Administration (FDA) policy and approved for publication. Approval 
does not signify that the contents necessarily reflect the position or 
opinions of the FDA nor does mention of trade names or commercial 
products constitute endorsement or recommendation for use.
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