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Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease in the 

United States. Non-alcoholic steatohepatitis (NASH), the most severe form of NAFLD, has an increased risk for 
progression to cirrhosis and associated comorbidities such as cardiovascular disease. Metabolic syndrome (MS) 
including insulin resistance and obesity is central to the development of NASH. It is now estimated to affect 30% of 
adults and about 10% of children in the U.S. Hispanics are disproportionably affected with not only higher rates of 

originating from the liver as well as from the adipose tissue, the gut and the gastrointestinal tract. Thus, dysfunction 
of the adipose tissue through enhanced flow of free fatty acids and release of adipocytokines, and alterations in 
the gut microbiome generate pro-inflammatory signals that increase NASH progression. Additional ‘extrahepatic 
hits’ include dietary factors and gastrointestinal hormones. Within the liver, hepatocyte apoptosis, ER stress and 
oxidative stress are key contributors to hepatocellular injury. In addition, lipotoxic mediators and danger signals 
activate Kupffer cells which initiate and perpetuate the inflammatory response by releasing inflammatory mediators 
that contribute to inflammatory cell recruitment and development of fibrosis. Inflammatory and fibrogenic mediators 
include chemokines, the inflammasome and activation of pattern-recognition receptors.
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Definition
NAFLD is an inflammatory chronic liver disease which includes a 

spectrum of diseases ranging from the simple accumulation of fat or 
fatty liver to later stages of disease such as cirrhosis, passing through 
non-alcoholic steatohepatitis (NASH) and liver fibrosis [1-3]. This 
disease has been recognized in the medical literature in recent decades 
and is even now considered the hepatic manifestation of metabolic 
syndrome [4]. In 1980, Ludwig et al. [5] reported a number of patients 
with this condition who had a liver histology characterized by fat 
accumulation and the presence of hepatic necroinflammation, also in 
most of the cases presenting with fibrosis in the absence of a history of 
excessive alcohol intake. Therefore, he coined the term “non-alcoholic 
steatohepatitis”.

This condition is defined by the following characteristics: a) 
accumulation of pathological amounts of fat in the liver which is 
characterized histologically by macrovesicular steatosis, b) ethanol 
consumption in amounts less than those likely to cause liver damage 
(considering usually <20 gm of alcohol/day for women and for men 30 
gm/day) [6]. 

The liver histology in patients with NAFLD can be very variable. The 
common denominator across the spectrum of disease is the presence 
predominantly of macrovesicular steatosis in the liver. Even this feature 
is not uniformly observed in those that develop cirrhosis due to this 
condition. The spectrum of findings includes four major phenotypes:

1) isolated hepatic steatosis (non-alcoholic fatty liver [NAFL]),
2) hepatic steatosis with mild mixed inflammatory infiltrate, 3)
hepatic steatosis with ballooning of hepatocyte and various degrees
of inflammation, 4) hepatic steatosis, ballooning, Mallory bodies and
inflammation [6].

Epidemiology
Epidemiological studies are difficult to perform because there is no 

evidence in blood, imaging or histological parameter with a sensibility 
and specificity of 100% for the diagnosis of NASH. The prevalence 
in Europe and Japan range from 14% to 21% [7,8]. The incidence of 
NAFLD is underreported and varies widely. In Japan, non-alcoholic 
hypertransaminasemia has been reported in 31 cases per 1000 person-
years.  

A recent study by a hepatology outpatient clinic in England 
reported an incidence rate of 29 cases per 100,000 person-years. 
However, the overall incidence rates for NAFLD require further study. 
The prevalence in the general population has been evaluated with a 
variety of diagnostic tools [9]. The NAFLD has become one of the most 
common causes of chronic liver disease and impaired liver function 
in industrialized countries [10-12], where it is estimated between 
10 and 23% in the adult population [13]. In the United States, liver 
biopsies performed to potential donors revealed that 20% of donors 
were ineligible for organ donation based on the degree of steatosis 
(>30%) [14]. In Mexico population studies have reported an estimated 
prevalence of 17% in asymptomatic patients [15].

Furthermore, it was established that NAFLD represents the hepatic 
manifestation of the metabolic syndrome. Thus it is worth mentioning 
that in the USA it is estimated that 47 million individuals have metabolic 
syndrome and about 80% have NAFLD and on the other hand, 90% of 
patients with NASH have characteristics of metabolic syndrome [6].
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NAFLD but also more severe disease. Emerging data indicate that NASH progression results from parallel events 
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In summary, it can be concluded that most studies have reported 
a 10-35% prevalence of NAFLD, and about 2-5% have non-alcoholic 
steatohepatitis (NASH) [9].

Pathogenesis
NASH pathogenesis: a ‘two-hit’ model

The pathogenesis of NASH is thought to involve a two-step process 
in which the first ‘hit’ is excessive triglyceride accumulation in the 
liver that leads to NAFLD. The second ‘hit’, which results in NASH, is 
thought to involve additional pathogenic factors that can eventually 
induce liver damage, such as inflammatory cytokines, oxidative stress, 
mitochondrial dysfunction and/or endoplasmic reticulum (ER) stress 
[16].

Origin of Inflammation: Role of Cytokines
Visceral adipose tissue coexists with other cell types such as 

macrophages, endothelial cells and other cells involved in immune 
response. The cytokines secreted by these cells, but primarily by 
adipocytes, are called adipocytokines and usually in the state of 
persistent low-grade inflammation present in obese patients with 
insulin resistance, the total mass of adipose tissue correlates with the 
amount of cytokines secreted, since weight gain intensifies macrophage 
infiltration in adipose tissue. The research available on the subject is 
extensive and every day we provide new related substances, as is the 
case of visfatin and apelin, two new adipocytokines increased in insulin 
resistance and related with inflammation and angiogenesis respectively 
[17-19].

IL-6, a proinflammatory cytokine, has been linked in the 
development of insulin resistance and type 2 diabetes [22]. Serum levels 
of IL-6 are elevated in animal models and in patients with NASH and 
alcoholic liver disease [20]. In a study of Nieto et al. IL-6 was found as 
an important mediator of fibrogenic response in hepatic stellate cells 
[23]. Leptin causes insulin resistance in hepatocytes. Leptin efficient 
animal models have massive obesity and do not develop liver fibrosis 
secondary to necroinflammatory stimuli [24]. In patients with NAFLD 
and fibrosis, elevated leptin levels exist, but there is not a statistically 
significant relationship between the degree of fibrosis and leptin levels, 
ruling out confounding factors such as age, gender, and body mass 
index, diabetes and insulin resistance [25]. The patients with NASH 
have high levels of leptin and low soluble leptin receptors, suggesting 
leptin resistance [26]. Resistin is a protein synthesized in adipose 

tissue and macrophages that has been linked to insulin resistance and 
exacerbation of inflammatory response. This is elevated in patients with 
NAFLD and its levels correlate with histological grade of steatohepatitis 
[27]. Semba T et al. describe in a recent study the overexpression of 
the adipokine LCN2 and two chemokines CXCL1 and CXCL9 in the 
liver of fatty liver Shionogi (FLS) mice as a NASH model, suggesting 
significant roles of these proteins in the pathogenesis of NASH. This 
study found that hepatocytes expressing LCN2 were localized around 
almost all inflammatory cell clusters. Furthermore, there was a positive 
correlation between the number of LCN2-positive hepatocytes in the 
specimen and the number of inflammatory foci [28].

Pro-inflammatory Signals
Inflammation is a crucial response to tissue damage or infection 

in which secreted mediators such as cytokines, chemokines and 
eicosanoids coordinate cellular defenses and tissue repair. Since this is 
a systemic body response, it is possible that inflammation affecting the 
liver in non-alcoholic steatohepatitis (NASH) may originate outside the 
liver. One of the most sites of interest is the visceral adipose which is 
expanded in non-alcoholic fatty liver disease (NAFLD) [29,30].

Visceral adipose tissue is inherently pro-inflammatory, but 
inflammatory also occurred in stressed, de-differentiated subcutaneous 
adipose tissue in obesity [31]. Inflammation and de-differentiation 
of adipose also alters release of the key insulin-sensitizing and anti-
inflammatory adipokine, adiponectin. Adiponectin blocks elaboration 
and release of TNF-α. Serum adiponectin levels fall in metabolic 
syndrome and type 2 diabetes, while low serum adiponectin levels in 
NAFLD are inversely related to steatosis severity and in some studies 
to the presence of NASH. Key signaling pathways that explain some of 
the connections between hepatic inflammation and insulin resistance 
include IκB kinases (IKK), nuclear factor-kappaB (NF-κB) and JNK 
[32,33]. In a recent study Van der Poorten et al. suggest that serum 
adiponectin levels in advance NASH is independently associated with 
hepatic fat loss and they speculate that adiponectin may in part be 
responsible for reduction in hepatic fat to the point of complete fat loss 
(burn-out NASH) [34].

Activation of the endoplasmic reticulum (ER) by stress has 
been reported in most models of hepatic steatosis in rodents, with 
lipogenesis being the main metabolic pathway affected. ER stress-
related activation, observed in adipose tissue of obese humans [35], 
could have metabolic consequences and participate in fat deposition 
in the liver. Activation of ER could directly induce an insulin-resistant 
state. Indeed, it has been shown that activation of the ER stress sensor 
kinase/endonuclease inositol-requiring protein 1 (IRE1), a component 
of the unfolded protein response (UPR) could stimulate c-Jun amino-
terminal kinase (JNKs) or SAPKs (stress-activated protein kinases), 
which, by phosphorylating serine residues of insulin receptor 1, is 
a key player in the development of insulin resistance [36]. The ER is 
a crucial organelle for cellular homeostasis; however the ER quality 
control system can be compromised under a variety of conditions 
such as accumulation of unfolded proteins, alteration of calcium 
balance or disturbance of the redox state. The contribution of adipose 
tissue to metabolic homeostasis has become a focal point of interest. 
Adipose tissue secrets free fatty acids (FFAs) and hormones, known as 
adipokines, and thus seems to play a major role in the development 
of non-alcoholic fatty liver disease (NALFD). Apoptotic cell death is 
a prominent feature in non alcoholic steatohepatitis; toxic FFAs can 
activate the intrinsic apoptosis pathway in hepatocytes via c-JNK. JNK 
activates the proapoptotic protein Bim, resulting in Bax activation and 
enhanced apoptosis, called “lipoapoptosis” [36].

Growing evidence supports a central role for TNFα and other 
inflammatory cytokines in the progression of NASH [20]. TNFα is an 
important inflammatory adipocytokine produced by macrophages and 
other cells including adipocytes and hepatocytes. TNFα is a pleiotropic 
cytokine that activates signaling mechanisms that can lead to the 
apoptosis of hepatocytes and in the activation of hepatic stellate cells 
[21]. An imbalance of cytokine, in particular an increase in the ratio 
of TNFα/adiponectin can play an important role in the development 
of NASH [20]. Elevated levels of TNFα have been detected in obese 
patients with insulin resistance and in patients with NASH [21]. Several 
groups have investigated circulating levels of these cytokines in liver 
in patients with NASH and its correlation with disease severity. Gene 
expression of TNFα receptors and of TNFα is increased in the liver 
of patients with NASH. Circulating adiponectin levels are significantly 
lower and TNFα is significantly increased in patients with NAFLD 
compared to controls. However, the measurement of these cytokines 
does not appear to have the sensitivity or specificity to distinguish 
patients with hepatic steatosis vs. those with NASH [20].
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NF-κB
NF-κB is a transcription factor comprised of five peptides: p50/

p105 (NF-jB1), p52/p100 (NF-jB2), p65 (ReIA), ReIB, and c-Rel; the 
members proteins form homodimeric or heterodimeric complexes; 
p65 and p50 are highly expressed in liver. NF-κB p65:p50 heterodimers 
regulate the canonical transcription of several hundred pro-
inflammatory molecules, including cytokines, chemokines, adhesion 
molecules, nitric oxide and cyclooxygenase 2. In resting hepatocytes, 
NF-κB is sequestered in the cytosol bound to inhibitory proteins (IκB) 
[37].

NF-κB activation begins with the activation of an IκB kinase (IKK) 
complex that consist of catalytic subunits IKK-α and IKK-β and the 
scaffolding subunit IKK-β. Several mitogen-acivated protein (MAP) 
kinases that also include NF-κB-inducing kinase (NIK) activate IKK 
through the phosphorylation of IKK-α and IKK-β. IKK-β has higher 
activity than IKK-α. In the canonical pathway of NF-κB activation, 
IκB-α is phosphorylated at serine residue (Ser) 32, 36 and/or Tyr42 and 
separated from the p50/p65 dimer, allowing the dimer to translocation 
to the nucleus and bind to cognate DNA sequences. IKK is activated 
directly by oxidative stress and other cellular stressors, such as ER 
stress, or via liganding of NF-κB- signaling receptors [38].

NF-κB activation is uniformly found in human NASH and in 
animal models. Aileen de la Peña et al. in an elegant study demonstrated 
the roles of NF-κB and TNF-α as mediator of inflammation in a 
nutritional model of steatohepatitis [37]. They employed Wild-type 
(wt), TNF null and TNF receptor (R)-1 mice, animals were fed with 
a methionine and choline deficient (MCD) diet for up to 5 weeks. 
Irrespective of genotype, MCD diet-fed mice developed hepatic lipid 
peroxidation and serum ALT elevation; at day ten, livers from wt, 
TNF null and TNFR-1 mice showed equivalent steatohepatitis. To 
establish whether NF-κB is a primary mediator of inflammation, they 
overexpressed a mutant, no degradable IκB, delivered by adenovirus 
in vivo. As expected, hepatic mIκB expression reduced NF-κB/DNA 
binding induced by MCD dietary feeding, with resultant abrogation 
of ICAM-1 and TNF synthesis. Such blockade substantially protected 
against development of steatohepatitis, with reductions in liver injury 
and hepatic inflammation. Others have produced conflicting findings. 
The emerging concepts of metabolic stress provide some evidence that 
pro-inflammatory pathways in NASH could originate from stressed 
hepatocytes via activation of NF-κB. Alternatively, TNF-α, IL-1β and 
other cytokines released from NF-κB-activated Kupffer cells could 
activate NF-κB in neighboring hepatocytes [39].

JNK
The c-Jun N-terminal kinases (JNKs) are members of a larger group 

of serine/threonine (Ser/Thr) protein kinases known as the mitogen-
activated protein kinase (MAPK) superfamily, which also includes the 
extracellular signal-regulated kinases (ERKs), or classical MAPKs and 
the p38 MAPK. JNKs bind and phosphorylate c-Jun on Ser63 and Ser73 
within its transcriptional activation domain [40]. MAPK kinase (MKK) 
is responsive to stress stimuli, mainly inflammatory signals, but also to 
a lesser extent, to ultraviolet irradiation, heat and non osmotic shock 
[41]. The mammalian JNKs are encoded by three distinct genes (jnk1, 
jnk2, jnk3). Complexity is generated by splicing, which results in up to 
10 isoforms varying in size from 46 kDa to 56 kDa. JNK1 and JNK are 
found in all cells of every tissue. JNK3 is found mainly in the brain, but 
is also found in the heart and the testis. JNK1 is involved in apoptosis, 
neurodegeneration, cell differentiation and proliferation, inflammatory 
conditions and cytokine production mediated by activation protein-1 

(AP-1) such as regulated upon activation, normal T-cell expressed, 
and secreted cytokine, interleukin-8 and granulocyte-macrophage 
colony-stimulating factor. JNK1 has been found to regulate Jun protein 
turnover by phosphorylation and activation of the ubiquitin ligase Itch 
(polyubiquitination marks proteins for degradation by the proteasome) 
[42]. The JNK proteins lead to varied and seemingly contradictory 
cellular responses; particularly, JNKs have been reported to have 
a role in the induction of apoptosis, but have also been implicated 
in enhancing cell survival and proliferation. These opposing roles 
of JNKs have been attributed to the observation that JNKs activate 
different substrates based on a specific stimulus, cell type or temporal 
aspects [43]. The enzymatic activity of JNK is induced in response to 
diverse stimuli, such as cytokines TNF-α, IL-1, transforming growth 
factor (TGF-β), platelet-derived growth factor (PDGF) and epidermal 
growth factor (EGF), intracellular and extracellular pathogens, 
lipopolysaccharide (LPS), peptidoglycan and bacterial unmethylated 
CpG DNA that activates Toll-like receptors (TLRs), reactive oxygen 
species (ROS), pathologic and environmental stress (ischemia, 
hypoxia and ionizing radiation), toxins, drugs, ER stress and metabolic 
changes, including obesity and hyperlipidemia. JNK appears always 
to be activated in lipotoxicity and in both experimental and human 
forms of NASH. In a classical study Schattenberg et al. demonstrated 
that activation of JNK1 was essential for inflammatory recruitment in 
MCD-induced steatohepatitis model. Saturated fatty acids activate JNK 
in primary hepatocytes and tumor cells of hepatocyte lineage, and this 
was a crucial pathway to cell death by the mitochondrial apoptosis [44]. 
Larter et al. using the foz/foz diabetes/metabolic syndrome mice model 
described that both JNK1 and JNK2 are activated with NASH, but not 
in the controls. Additionally, nutritional or pharmacological actions 
that lowered hepatic free cholesterol virtually abrogated JNK activation 
in association with improvement of liver injury, hepatocyte apoptosis 
and macrophage accumulation; These observations are consistent 
with the suggestion that JNK signaling activation is a key injury and 
inflammatory pathway in metabolic syndrome-related NASH [45,46].

Innate Immunity in NAFLD
In the context of immunity, pattern-recognition is the art of 

discriminating friend or foe and innocuous from noxious. Innate 
immune system can respond to key molecules released by damage 
cells, thus eliminating them. The mechanism by which stressed or dead 
cells trigger inflammation and adaptive immune responses involves 
damage-associated molecular patterns (DAMPS), also named alarmins. 
Intracellular pro-inflammatory DAMPS include high-mobility group 
gel box 1 (HMGB1), heat shock proteins, fibrinogen and fibrinonectin, 
and mitochondrial products such as formyl peptides and mitochondrial 
DNA [47,48]. Although they differ from pathogen-associated 
molecular patterns (PAMPs), some DAMPS can be recognized by 
similar receptors, particularly TLRs (TLR4 responds to both HMGB1 
and lipopolysaccharide). Eight Toll-like receptors (TLRs) are expressed 
in mammalian liver with varying levels of expression on Kupffer cells 
(KCs), hepatocytes, hepatic stellate cells (HSCs), sinusoidal endothelial 
cells (SECs). Most are expressed on the cell surface, but TLRs 3, 7, 8, 9 
and 13 are intracellular (endosomal) proteins. Individual TLRs interact 
with different combinations of adapter proteins (e.g. MD2, Myeloid 
differentiation factor 2) and activate transcription factors such as NF-
κB, AP-1 (via JNK) and interferon responsive factors (IRF) [49,50]. In 
the Figure 1, it is shown that MyD88 is shared by almost all TLRs and 
recruits members of the IL-1 receptor-associated kinase family. When 
released from necrotic cells, HMGB1 stimulates KCs and monocytes 
to produce pro-inflammatory mediators by acting as an endogenous 
ligand for TLR4, although it might do that by forming highly 
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TLR9-deficient mice are protected from steatohepatitis in de CDAA 
(choline-deficient amino acid-defined) diet model.TLR2 expression 
by hepatocytes can be induced by lipopolysaccharide, TNF-α, and IL-
1β via NF-κB activation, while signaling cross-talk between TLR4 and 
TLR9 amplifies the inflammatory response to macrophages [50].

Kupffer Cells
Scavenger receptors comprise a large family of structurally diverse 

inflammatory complexes with other molecules (ssDNA, endotoxin, 
IL-1β, nucleosomes). TLR4 is involved in alcoholic liver injury and 
is also up-regulated in MCD steatohepatitis and fructose-induced 
hepatic steatosis. Interestingly, pathological effect of TLR4 in Kupffer 
cells is achieved by inducing reactive oxygen species (ROS)-dependent 
activation of X-box binding protein-1 (XBP-1) [51]. Saturated FFA can 
also bind to TLR4. TLR9 is located within the cell and is most response 
to unmethylated CpG containing DNA, but it also binds HMGB1. 
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Figure 1: TLR signaling involves JNK and NF-κB-p65 activation. TLR constitute a family of receptors involved in pro-inflammatory signaling in the innate immune 
system, responsible for the recognition of PAMPs and DAMPs.  A detailed knowledge of how mammalian Toll-like receptors (TLRs) signal has developed over the 
past 15 years. TLR5, TLR11, TLR4, and the heterodimers of TLR2–TLR1 or TLR2–TLR6 bind to their respective ligands at the cell surface, whereas TLR3, TLR7–
TLR8, TLR9 and TLR13 localize to the endosomes, where they sense microbial and host-derived nucleic acids. TLR4 localizes at both the plasma membrane and 
the endosomes. TLR signalling is initiated by ligand-induced dimerization of receptors. Following this, the Toll–IL 1 resistence (TIR) domains of TLRs engage TIR 
domain-containing adaptor proteins (either myeloid differentiation primary-response protein 88 (MYD88) and MYD88 adaptor-like protein (MAL), or TIR domain-
containing adaptor protein inducing IFNβ (TRIF) and TRIF-related adaptor molecule (TRAM)). TLR4 moves from the plasma membrane to the endosomes in order 
to switch signalling from MYD88 to TRIF. Engagement of the signalling adap¬tor molecules stimulates downstream signalling pathways that involve interactions 
between IL 1R associated kinases (IRAKs) and the adaptor molecules TNF receptor-associated factors (TRAFs), and that lead to the activation of the mitogen-
activated protein kinases (MAPKs) JUN N-terminal kinase (JNK) and p38, and to the activation of transcription fac¬tors. Two important families of transcription 
factors that are activated downstream of TLR signalling are nuclear factor κB (NF κB) and the interferon-regulatory factors (IRFs), but other transcription factors, 
such as cyclic AMP-responsive element-binding protein (CREB) and activator pro¬tein 1 (AP1), are also important. A major consequence of TLR signalling is the 
induction of pro-inflammatory cytokines, and in the case of the endosomal TLRs, the induction of type I interferon (IFN). 

dsRNA: Double-stranded RNA; IKK: Inhibitor of NF-κB kinase; LPS: Lipopolysaccharide; MKK: MAP kinase kinase; RIP1: Receptor-interacting protein 1; rRNA: 
Ribosomal RNA; ssRNA: Single-stranded RNA; TAB: TAK1 binding protein; TAK: TGFβ-activated kinase; TBK1: TANK-binding kinase 1. 

Modified from O´Neill et al. [48].
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proteins that are involved in many homeostatic functions. They 
recognize a wide range of ligands, from pathogen-associated molecular 
patterns (PAMPs) to endogenous, as well as modified host-derived 
molecules (DAMPs). The liver deals with blood micro-organisms and 
DAMPs released from injured organs, thus performing vital metabolic 
and clearance functions that require the uptake of nutrients and toxins. 
Many liver cell types, including hepatocytes and Kupffer cells, express 
scavenger receptors that play key roles in hepatitis C virus entry, lipid 
uptake, and macrophage activation, among others [52].

KCs are specialized tissue macrophages in the liver. They not only 
contribute to insulin resistance in fatty liver disease but connect the 
inflammatory responses in many liver diseases. KCs are particularly 
sensitive to gut-derived endotoxin, acting trough CD14, TLR2 and 
TLR4 and adapter proteins such as MD2 to activate NF-κB via MyD88. 
In chimeric mice with KCs derived from MyD88-/- bone marrow donors, 
there was amelioration of the inflammation and fibrosis induced in 
the CDAA model of steatoheaptitis compared with Wild type mice, 
demonstrating a key role for KC activation. Ablation of KCs reduces 
severity of liver injury and inflammation in alcohol-related liver injury 
in rodents. Besides, in the HF- fed mouse model, ablation of KC reduce 
severity of steatosis by the releasing hepatocytes from IL-1β and NF-κB-
dependent suppression of peroxisome proliferator-activated receptor-α 
activity [52,53].

Inflammasome
The inflammasome are a group of multimeric protein complexes 

that consist of an inflammasome sensor molecule, the adaptor 
protein ASC and caspase 1. Inflammasome formation is triggered by 
a range of substances that emerge during infections, tissue damage 
or metabolic imbalances. Once the protein complexes have formed, 
the inflammasomes activate caspase 1, which proteolytically activates 
the pro-inflammatory cytokines interleukin 1β (IL 1β) and IL 18. In 
addition, inflammasome activation causes a rapid, pro-inflammatory 
form of cell death called pyroptosis. The nucleotide-binding domain, 
leucine rich repeat containing (NLRP3) inflammasome (also named 
cryopyrin or NALP3) is express by myeloid cells and is up regulated 
by PAMPs. It requires a caspase recruitment domain, and can recruit 
pro-caspase 1 in the presence of the adapter protein ASC (apoptosis-
associated speck-like CRD-domain containing protein). Once all 
components of the NALP3 inflammasome are assembled in the cytosol, 
caspase 1 is released and can promote the cleavage and production of 
pro-inflammatory cytokines to encourage and maintain inflammation. 
NALP3 inflammasome can be activated by several endogenous and 
exogenous agonists. Relevant to NASH, palmitic acid induces activation 
of the NALRP3-ASC inflammasome to activate caspase 1 and cause 
production of IL-1β and IL-18. Other important agonists include uric 
acid crystals, which can precipitate in the extracellular space of dying 
cells, and extracellular DNA [54,55]. Mice genetically deficient in any 
of three inflammasome components Casp1, Nlrp3 (NOD-like receptor 
family, pyrin domain con-taining 3) or Asc (apoptosis-associated speck-
like protein containing a carboxy-terminal CARD; also known as Pycard), 
developed more hepatic inflammation and increased serum levels of 
alanine aminotransferase and aspartate aminotransferase than control, 
wild-type mice when fed a methionine–choline diet, which induces 
fatty liver [56,57].

Lipotoxicity 
The lipotoxicity is a metabolic term coined by Unger 15 years 

ago to describe the toxic effects of the excessive free fatty acids over a 
pancreatic beta cell [20]. However, it now seems likely that the steatotic 

hepatocytes in NASH contain excess of lipid molecules other than 
triacylglycerides (TG), and there is mounting evidence that such non-
TG lipid molecules are implicated in the pathogenesis of NASH by the 
processes of lipotoxicity [55]. Lipotoxicity is the mechanism proposed 
for triggering fibrogenesis in NASH. Hepatocellular damage results 
in the induction of pro-inflammatory and pro-fibrogenic cytokines, 
activation of adjacent HSCs and subsequent deposition of type I 
collagen. In NASH, this typically occurs within the lobules at the site of 
hepatocellular injury resulting in a pericellular sub-sinusoidal fibrosis 
maximal in centrilobular areas [58].

Lipidomic analyses of human fatty livers have identified free 
cholesterol (FC), but not free fatty acids (FFA), diacylglycerides (DAG) 
or ceramide among the potential lipotoxic molecules that accumulate 
selectively in NASH. Evidence for the toxic effects of excess lipid 
in the liver is found in animal models and in human disease. In a 
mouse model of impaired β-oxidation due to lack of mitochondrial 
trifunctional protein, moderate to severe lipid accumulation in the 
liver may lead to cell dysfunction, manifest as failure to appropriately 
carry out gluconeogenesis [59]. In these mice, neonatal hypoglycemia 
contributes to excess early mortality. In humans, triglyceride and FFA 
accumulation in the liver is associated with NASH, characterized by 
an inflammatory response with evidence of hepatocyte damage and 
fibrosis that can progress to cirrhosis [60]. Some potential lipotoxic 
lipid species implicated in NASH have been explored, particularly 
saturated FFA and FC, but also very long chain polyunsaturated fatty 
acids (PUFA), sucrose and fructose. These studies demonstrate the 
unmistakable potential of such lipid molecules to kill cells of hepatocyte 
lineage, by directly or indirectly activating JNK and the mitochondrial/
lysosomal dell death pathway, and also stimulate pro-inflammatory 
signaling via NF-κB and AP-1 (JNK/activator protein-1) [61]. In 
general, saturated long chain fatty acids, such as palmitic and stearic 
acids, are more toxic than mono-unsaturated FFA. The most compelling 
evidence that hepatocyte may be the source of liver inflammation in 
NASH comes from studies in obese rodents with insulin resitance 
that leads to hyperinsulinemia and diabetes. Foz/foz mice exhibit 
hyperphagia with early onset obesity and insulin resistance. Feeding 
them a high carbohydrate, HF (High-fat) diet with 0.2% of cholesterol 
accelerates onset of diabetes with 70% reduction in serum adiponectin. 
The resultant liver pathology shows NASH with fibrosis. By 24 weeks, 
HF-fed foz/foz mice developed severe steatohepatitis (marked steatosis, 
alanine aminotransferase elevation, ballooning, inflammation, fibrosis), 
whereas dietary and genetic controls showed only simple steatosis [62]. 
While steatosis was associated with hepatic lipogenesis, indicated by 
increased fatty acid synthase activity, steatohepatitis was associated 
with significantly higher levels of CD36, indicating active fatty acid 
uptake, possibly under the influence of peroxisome proliferator-
activated receptor-γ. A high fat diet rich in Trans fats combined with 
high-fructose corn syrup equivalent and physical inactivity also caused 
obesity-related steatosis with moderate necro-inflammation changes 
[20,63]. Fructose has a selective hepatic metabolism, and provokes a 
hepatic stress response involving activation of c-Jun N-terminal kinases 
and subsequent reduced hepatic insulin signaling. As high fat diet alone 
produces obesity, insulin resistance, and some degree of fatty liver with 
minimal inflammation and no fibrosis, the fast food diet which includes 
fructose and fats produces a gene expression signature of increased 
hepatic fibrosis, inflammation, endoplasmic reticulum stress and 
lipoapoptosis [64].

Differences in the development of NASH have recently been 
linked to genetic susceptibility. The single nucleotide polymorphism 
(rs738409) in the human patatin-like phospholipase domain containing 
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projected to be the principal etiology for liver transplantation within 
the next decade. The majority of patients with NAFLD only have simple 
steatosis; however, a notable minority of patients with NAFLD progress 
to more advanced disease that is characterized by NASH and subsequent 
fibrosis and cirrhosis or, in some cases, hepatocellular carcinoma. The 
presence of NAFLD per se is associated with an increased risk of all-
cause mortality (OR 1.40, 95% CI 1.23–1.60, P<0.00001), histological 
subgroup analysis indicates that simple steatosis seems to be a fairly 
benign condition and that NASH is more strongly associated with 
excess liver-related morbidity [69,70].

Considerations
Over the past two decades, obesity has become a major public 

health challenge worldwide. It is clear that as-yet-unrecognized factors 
governing energy homeostasis must be uncovered in order to protect 
against the onslaught of metabolic diseases associated with excess 
adiposity. In fact, the benefits gained from current therapies targeting 
obesity-related diseases (e.g. hypertension, coronary heart disease, 
hyperlipidemia and type 2 diabetes) are in danger of being outweighed 
by the negative effects of increased adiposity. Thus, it is urgently 
necessary to develop systematic and comprehensive approaches to 
facilitate the identification of factors that play crucial roles in regulating 
energy homeostasis. Moreover, it is time to consider the utilization 
of novel models of steatohepatitis using fish models such as zebrafish 
(Danio rerio) and medaka (Oryzias latipes). Substantial advances in 
unraveling the molecular pathogenesis of NAFLD have recently been 
achieved through unbiased forward genetic screens using small fish 
models [70,71]. It is of relevance to better understand the underlying 
mechanisms involved in NASH in order to apply new knowledge to 
potential novel therapeutic approaches. The transition from simple 
steatosis towards NASH represents a key step in pathogenesis, as it will 
set the stage for further severe liver damage.

The diagnosis of NASH is challenging, as most affected patients 
are symptom free and the role of routine screening is not clearly 
established. A complete medical history is important to rule out other 
causes of fatty liver disease (alcohol abuse, medications, other). Plasma 
aminotransferase levels and liver ultrasound are helpful in the diagnosis 
of NAFLD/NASH, but a liver biopsy is often required for a definitive 
diagnosis.
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