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Introduction
Decision aids are a promising approach to informed and shared 

decision-making because they circumvent barriers associated with 
performing informed decision-making in clinical practice. Decision 
aids are especially useful when there is low previous patient knowledge, 
when there is scientific uncertainty about the best option, when clinical 
guidelines recommend shared decision making, and when there is a 
need to reduce regional practice variations  [1]. However, there is a 
gap between the theoretical developments of decision-making and 
the current underlying approaches used for decision aids. The usual 
approaches, e.g. weighted sum, ordered weighted average operators 
(OWA)  [2], and other such additive approaches (e.g. probabilistic 
approaches) suffer from an inability to represent dependencies 
effectively  [3]. To prevent these issues, non-additive approaches were 
developed based on the work of Choquet  [4] and Sugeno  [5] in a 
quantitative and qualitative setting respectively. From a computational 
standpoint, an increase in accuracy in the representation of preferences 
comes with an increase cost in terms of complexity. The concept of 
2-additive measures  [6,7] allows us a tradeoff between accuracy and
complexity and therefore, a way to be precise in the decision process yet 
preserve a relatively low complexity. However, this work has remained
mostly theoretical until recently. We have developed interval-based
techniques to deal with both imprecision of the data, and accuracy of
the decision  [8], have applied it to financial real world problems  [9],
and have shown the optimality of such an approach  [10]. The purpose
of this paper is to present these theoretical developments pertaining to
multi-criteria decision-making, and to demonstrate how they can be
applied in a clinical setting to facilitate shared decision-making, and
informed decision-making.

To set ideas, we will focus on colorectal cancer (CRC) screening. 
However, our approach can be used to any clinical problem for which 
there isn’t a clear best recommended decision and where patients’ 
subjective preferences are essential. Such clinical problems include 
back pain and pain management in general, as well as a variety of 
chronic conditions (e.g. asthma, diabetis metillus II, obesity, etc.) To 
facilitate the discussion, and set ideas, we now focus on colorectal 
cancer screening. It is estimated that 142,820 Americans will be 
diagnosed with CRC in 2013, and 50,830 will die from CRC  [11]. 

This makes CRC the second biggest killer among cancers in the US. 
Authoritative guidelines endorse screening for CRC, based on the 
evidence: The United States Preventive Services Task Force (USPSTF) 
currently recommends that all patients between the ages of 50 and 75 
be screened using one of 3 screening methods: Fecal Immunochemical 
Test (FIT), flexible sigmoidoscopy, or colonoscopy, at different 
frequencies  [12]. Nonetheless, only 58.6% (CI=57.3%-59.9%) of the 
population at risk adhere to these guidelines and the rate drops even 
below 40% in some subpopulations, e.g. the uninsured and Hispanics  
[13]. The underutilization of screening is thought to be responsible for 
the number of annual deaths being 3.5 times higher than anticipated 
if the at risk population was to follow the current screening guidelines  
[14]. Poor uptake of screening is multifactorial; patient, system 
and provider barriers to uptake have been reported  [15,16]. Since 
a variety of tests are recommended, with no clear best test and with 
evolving information on the relative effectiveness of the tests,  [17,18] 
authoritative guidelines recommend shared decision making (DM) 
between the patient and provider in selecting a test  [12,19]. However, 
CRC DM is not occurring in clinical  practice, [20-22], patients receive 
little information that is important to them in deciding  [23] and the 
physician often orders a test that is not the stated preference of the 
patient  [20,24]. This contributes to the observed suboptimal completion 
of subsequent screening  [21,25,26]. Data suggest that barriers to 
informed and shared decision making about CRC in clinical practice 
include lack of time, competing priorities, the complexity of the tests, 
low prior patient knowledge, and physician misconceptions about 
patient preferences  [27-30]. Better informed patients and improved 
patient provider communication about CRC screening offers a strategy 
to improve screening rates for this preventable cancer  [15,16,31]. The 
typical primary care physician is limited in time and would need over 
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7 hours every day just to go over the guidelines of USPSTF  [32], while 
having only a little over 4 hours with patients in a 8.5 hour work day  
[33]. A decision aid based on a theoretically sound underlying decision 
algorithm, based on patients’ individual preferences has the potential 
to significantly improve informed and shared decision making. 
Moreover, a computer supported decision aid can be coupled to 
existing educational components, facilitating the understanding of the 
disease, its various tests, treatments, and prognosis. It is in this context 
that we are presenting decision algorithms based on the concepts of 
non-additive measures, Shapley values, and interaction indices, and 
how they can be applied to improve shared decision-making and 
informed decision-making for CRC, thus improving adherence to the 
current guidelines.

Our paper is organized as follows: first we present decision theory, 
and its various paradigms. We then go into a detailed presentation of 
multi-criteria decision-making (MCDM), and introduce CRC testing 
in an MCDM framework. In the next section of the paper, we present 
the essentials of non-additive integration, in particular, non-additive 
measures, the Choquet integral, Shapley values, and interaction indices. 
Next, we explain how these concepts can be used in MCDM, how they 
can be extended to deal with the inherent imprecision and ambiguity 
of the data, and how they can be applied in a CRC testing context, 
although the framework remains valid for a wide variety of clinical 
decision-making problems. Finally, we present how such decision aids 
should be incorporated into an informatics platform.

Decision Theory
Decision theory is a general mathematical framework for 

comparing objects with respect to a preference relation. If the set of 
alternatives or choices is X, and if   is a preference relation of the 
decision maker, i.e. a mathematical operator expressing the decision 
maker’s preferred choices how do we decide for x, y ∈  X if:

 x y or y  x ?   				                     (1)

Decision theory is generally divided into 3 main paradigms: 
decision under uncertainty, decision under risk, and MCDM. Decision 
under uncertainty focuses on answering the following question: if x 
and y are two possible alternatives or choices, that depends on some 
unknown variable s (called the state of the world), how do we decide 
if x or y is the best course of action, or decision. For instance, in an 
emergency medical setting, a physician may have to make a quick 
decision on a treatment without having the time to run all the necessary 
tests. In this case, the state of the world refers to the actual condition of 
the patient, the alternatives x and y refer to the treatments, and x(s) and 
y(s) refer to the outcomes, that is, what happens to the patient given 
treatments x and y for a condition s. Decision under risk is similar to 
decision under uncertainty, except that we know the probability of 
the various states of the world s ∈  S. Finally, in MCDM, we aim at 
comparing multidimensional alternatives, and finding the optimal one, 
e.g. we compare objects of the form (x1,… , xn).

Based on the work of von Neumann and Morenstern  [34] and 
Krantz et al.  [3], decision theory problems can be solved by building 
a real valued function u from a set of alternatives X into R such that 

x, y  X,  x y∀ ∈   if and only if u(x) ≥ u(y).

The function u is often called a utility function, a term that stems 
from economics. Its original interpretation is in terms of monetary 
value associated with an alternative or a decision. Reyna  [35] suggests 
that there are limitations to the utility approach, and the notion of gist 
(i.e. the ’bottom line meaning of information’ along with its cultural, 

educational, emotional, etc. dependent semantics) could be preferred 
in some instances. However, this isn’t the case as it is possible to 
express gist with appropriately defined utility functions [3]. This makes 
gist effectively computable, thus providing a metric to assess optimal 
choices, in an informatics supported clinical decision framework. 
Given the scope of this paper with a focus on CRC screening we now 
turn to a more thorough presentation of MCDM, and present CRC 
screening in an MCDM context.

Multi-Criteria Decision-Making 
MCDM aims at answering the following question: given a set of 

multi-dimensional alternatives, how can one decide which alternative 
is optimal for the decision maker. When formalized mathematically, 
we can represent this problem in the following manner. Let us consider 
a set X⊂  X1×….× Xn. In a multicriteria decision making problem, the 
set X represents the set of alternatives, or the set of choices. We denote 
by I = {1,…,n} the set of criteria or attributes and the set Xi represents 
the set of values for the attribute i, that is the values that an element x 
∈ 2 X can take with respect to the ith dimension. In a CRC screening 
context, previous work  [36] has identified 13 to 15 attributes important 
to patients, such as accuracy, discomfort, frequency of test, etc. for all 
the CRC tests, e.g. FIT, colonoscopy, and flexible sigmoidoscopy. The 
3 tests constitute the set X of alternatives, and each set Xi represents 
the values that each test can take with respect to each attribute. For 
instance, assuming that X1 expresses the frequency of the test, then X1 
= 1 year, 5 years, 10 years for FIT, sigmoidoscopy, and colonoscopy, 
respectively. In general, a decision maker has enough information 
to order values of attributes in a set Xi. When it comes to CRC, this 
means that the patient knows that he/she will prefer a test with a higher 
accuracy, lower frequency, lower discomfort, etc. Mathematically, this 
can be expressed by saying that each set Xi is endowed with is called 
weak order  i, i.e. all the elements in Xi can be effectively compared. 
Under a rather weak assumption called order separability, typically met 
in clinical decision making, we can prove that for all i ∈  I, there exists 
a function ui : Xi ! R such that:	

( ) ( )i i i i i i i ix , yi X ,  x i y , u x u y∀ ∈ ⇔ ≥ 	         	                 (2) 

In MCDM, we aim at finding a weak order   over X that is 
“consistent” with the partial orders, that is, we are looking for an 
aggregation operator Ή : Rn ! R such that:	

( ) ( )x, y X ,  x  y u x u y∀ ∈ ⇔  			                     (3)

with x = (x1,……, xn) ∈  X and u(x)	

		  = Ή (u1(x1), , un(xn)).	

The term consistent indicates that the choice of the aggregation 
operator reflects the preferences of the decision maker This is critical 
for shared decision making since the goal is to make a patient centered 
informed decision, rather than imposing the physician’s preferences, 
e.g. colonoscopy in the case of CRC screening. A very natural and simple 
approach for such a problem is to use a weighted sum where decision 
maker provides weights iα ∈  [0, 1] that express the importance of 
each criterion and such that i1  1= =∑

n

i
α . The global scoring function 

is then defined by 

( ) ( )i i i
1

x  X ,  u x    u x
=

∀ ∈ = ∑
n

i
α    			                 (4)

In CRC testing, it translates into the following: knowing the 
preferences of the patients with respect to each criterion (e.g. FIT is 
generally preferred to colonoscopy when it comes to discomfort, 
and vice versa when it comes to accuracy), and having built 
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monodimensional scoring functions for each of these criteria, find a 
function u such that a test x is preferred to a test y if and only if u(x) ≥ 
u(y), where u(x) = Ή (u1(x1),…., un(xn)). 

This means that we are building a global metric to evaluate the tests, 
based on their monodimensional values. The weighted sum approach 
essentially resorts to assigning weights iα to each of the 13 (to set ideas) 
criteria representing their importance, to some extent, and evaluating 

a test by computing: ( ) ( )
13

i i 1u x  1 u x .=∑
i

α The weights represent the 

importance assigned to each criterion by the patient.

Despite an attractive simplicity and low complexity, this approach 
suffers a major drawback since using an aggregation operator such as 
a weighted sum, or the entire class of additive operators, is equivalent 
to assuming all the attributes independent [3]. In practice, this is 
not realistic, and making such an assumption in practical cases yield 
paradoxical situations where axioms of rationality are not met. These 
issues were also presented in several decision settings: in decision 
under uncertainty [37], in decision under risk [38], and in multicriteria 
decision making [39]. Interestingly all lead to the same strategy, which 
is to loosen up the additivity property, and turn to non-additive 
measures.

Non Additive Integration
Given the scope of this paper, we present a simplified version of 

non-additive integration, e.g. non-additive integration on a finite set. 
However, these definitions can be extended to more general situations 
(see  [4,40] for a detailed presentation of non-additive integration). A 
non-additive integral is a type of very general averaging operator that 
can also be used to represent the concept of importance of a criterion 
and the concept of interaction between criteria that are called veto and 
favor.

Non-additive integrals are defined with respect to non-additive 
measures, which are an extension of the notion of probability, without 
the additivity property. In the following definition, the notation P(I) 
represents the power set of I, that is the set of all subsets of I.

Definition

 Let I be the set of attributes (or any set in a general setting). A set 
function µ : P(I) ! [0, 1] is called a non-additive measure if it satisfies the 
three following axioms:

µ(Ø) = 0 : the empty set has no importance 

µ(I) = 1 : the maximal set has maximal importance 

µ(B) ≤  µ(C) if B, C ⊂ I and B⊂  C: a new criterion added cannot 
make the importance of a coalition (a set of criteria) diminish. 

In a MCDM problem with n criteria we will have card (I) = n and 
need a value for every element of P (I) that is 2n values. Therefore, there 
is clearly a trade-off between complexity and accuracy. Nonetheless, 
this can be addressed and we can reduce the complexity of the problem 
as we will see shortly.

A non-additive integral is a sort of weighted mean taking into 
account the importance of every group of criteria, rather than just 
single criterion, as is the case with an additive approach.

Definition 

Let µ be a non-additive measure on (I, P(I)) and an application f : I 
→  R+. The Choquet integral of f w.r.t µ is defined by:

( )
1

 C  f d   ( ( ( )) ( ( 1))) ( ( ))
=

= − −∑∫
n

iI

f i f i A iµ σ σ µ

where σ  is a permutation of the indices in order to have 
( )( ) ( )( ) ( ) ( )(i)f 1  .....  f n ,  A  { i ,  . . . , n }≤ ≤ =σ σ σ σ and ( )( )f 0   0=σ , 

by convention.

To simplify the notations, we will write (i) for σ s(i).

Non-additive measures are extensions of probabilities. Indeed, if 
non-additive measure satisfies µ (A [ B) = µ (A) + µ(B) when A and 
B are disjoint then it is a probability, and the Choquet integral for a 
probability simply represents the density function.

Representation of Preferences 
We are now able to present how non-additive measures can be used 

in lieu of the weighted sum and other more traditional aggregation 
operators in a multicriteria decision-making framework. It was 
shown in  [41] that under rather general assumptions over the set of 
alternatives X, and over the weak orders 

 i, there exists a unique non-
additive measure m over I such that:

( ) ( )x,  y  X ,  x  y  u x u y∀ ∈ ⇔ ≥  		                   (5)

where

( ) ( ) ( ) ( )(i) (i) (i  1) (i  1) (i)
1

u x   u x  u x A− −
=

 =  ∑
n

i
m  	                  (6) 

which is simply the aggregation of the monodimensional scoring 
functions using the Choquet integral w.r.t. µ.

Besides, we can show that many aggregation operators can be 
represented by a Choquet integral [40]. This makes the Choquet integral 
a very broad and powerful tool to represent preferences in MCDM, 
which provides a strong rationale for using such a mathematical tool 
for colorectal cancer screening decision problems, and other medical 
decision making problems.

Non-additive-additive measures provide a more accurate 
representation of preferences than their additive counterparts. 
However, as we have seen, there is a cost. With n criteria we only need n 
values to apply a weighted sum (a probability). However, a non-additive 
measure actually requires 2n 2 values. Nonetheless, this problem can be 
overcome by making a tradeoff between accuracy and complexity with 
the concept of 2-additive measures, as we are showing now.

The global impact of a criterion is given by evaluating what this 
criterion brings to every group, or coalition to use a game theory term, 
it does not belong to, and averaging this input. This is given by the 
notion of Shapley value or index of importance  [6,7,42].

Definition

Let µ be a non-additive measure over I. The Shapley value of index 
j is defined by:

( )
\{ }

v j   ( )[ ( { }) ( )]
⊂

= ∪ −∑
B I j

I B B j Bγ µ µ

with 
( 1)!. !

( ) ,
!

− −
=

I B B
I B B

I
γ  denotes the cardinal of B.

The Shapley value ranges between 0 and 1. In essence, it measures 
how much a criterion brings, on average, to all the coalitions of criteria. 
For instance, in the framework of CRC screening, and for a given non-
additive measure, the Shapley value of accuracy is a reflection of the 
importance of accuracy when compared to all the other attributes.
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The Shapley value can be extended to degree two, in order to define 
the indices of interactions between attributes  [7].

Definition
Let m be a non-additive measure over I. The interaction index 

between i and j is defined by:

\{ , }
( , ) ( ).( ( { , }) ( { } ( { }) ( ))

⊂

= ∪ − ∪ − ∪ +∑ I
B I i j

I i j B B i j B i B j Bξ µ µ µ µ

With 
( 2)!. !

( )
( 1)!
− −

=
−I

I B B
B

I
ξ

Their interpretation is similar to that of the Shapley value, but 
range between -1 and 1, with

•	 I(i, j) > 0 if the attributes i and j are complementary; 

•	 I(i, j) < 0 if the attributes i and j are redundant; 

•	 I(i, j) = 0 if the attributes i and j are independent. 

Interactions of higher orders can also be defined, however we will 
restrict ourselves to second order interactions which offer a good trade-
off between accuracy and complexity. To do so, we define the notion of 
2-additive measure.

Definition

A non-additive measure m is called 2-additive if all its interaction 
indices of order equal or larger than 3 are null and at least one 
interaction index of degree two is not null.

In this particular case of 2-additive measures, we can show that  
([7]):

Theorem

Let m be a 2-additive measure. Then the Choquet integral can be 
computed by:

1

1
2

( ) 0( ( ) ( ))

0( ( ) ( )) ( )( ).
= ≠

= > ∧

+ < ∨ + −

∑∫

∑ ∑ ∑i

ij ij
I

n
ij ij i j i ij

C fd I f i f j I

I f i f j I f i I I

µ
                (7)

where ∨  denotes the maximum, and ^ the minimum. This 
expression gives an explanation for the above interpretation of 
interaction indices, as a positive interaction index corresponds to a 
conjunction (complementary), as we need both f (i) and f (j) for f (i) 
^ f (j) to have an impact in the summation; and a negative interaction 
index corresponds to a disjunction (redundant) since we need f (i) or f 
(j) for f (i) _ f (j) to have an impact. 

In the weighted sum case, we assume that the decision maker can 
provide us with the weights she/he puts on each criterion. However, 
we know that this model is inaccurate when trying to deal with 
dependencies. If we use a Choquet integral with respect to a non-additive 
measure the complexity is very high. Therefore, in order to combine 
the best of the two worlds, we can restrict ourselves to a Choquet 
integral w.r.t. to a 2-additive measure. We then have a convenient way 
to represent dependencies (at least first order dependencies), yet keep 
a low complexity.

Our last concern for accurate representation is: how can we 
deal with the inherent imprecision of the data? In most practical 
applications, the data provided comes with some confidence interval, 
and we need to make sure that our solution remains stable regardless 
of the actual value in the confidence interval, either the lower bound or 
upper bound.

Interval Extensions
Interval Arithmetic (IA) is an arithmetic over sets of real numbers 

called intervals. It was developed by Moore  [43] in order to model 
imprecision, as well as to address the issue rounding errors in numerical 
computations  [44,45].

Definition

 A closed real interval is a closed and connected set of real numbers. 
The set of closed real intervals is denoted by R. Every x∈ R is denoted 
by [x, x ], where its bounds are defined by x = inf x and = sup x.

For every a ∈ R, the interval point [a, a] is also denoted by a.

In the following, elements of R are simply called real intervals or 
intervals.

The width of a real interval x is the real number w(x) = x - x. Given 
two real intervals x and y, x is said to be tighter than y if w(x) ≤  w(y).

We can extend the concepts of Choquet integral, Shapley values, 
and interaction indices to similar, albeit interval based concepts, which 
allow us to represent the preferences of a decision maker, and yet take 
imprecision into consideration [8]. All the expressions seen previously 
for Choquet integral, Shapley values and interaction indices remain 
similar but are interval-based  [8].

Implications for CRC Screening
CRC screening can be seen as a decision problem with 3 alternatives 

X = fcolonoscopy, sigmoidoscopy, FITg, each evaluated across 13 to 
15 criteria, I = faccuracy, discomfort,…} [36]. The adherence to the 
current screening guidelines set by the USP-STF is poor at best, and 
a concerted effort is needed to increase screening rates, in particular 
among minorities, and low health literacy patients. One way to 
possibly increase screening uptake is by using decision tools that 
support patients’ subjective preferences. A non-additive approach 
is ideally suited. Indeed, we have already shown that the approach is 
optimal  [10], albeit in a different application domain. It takes into 
consideration both dependencies and imprecision (through the use of 
interval computation). However, it is yet to be applied in a practical 
medical setting. Nonetheless, this is not a deterrent since the approach 
is strongly supported by robust and reliable theory.

A patient’s preference elicitation process similar to  [36] in a CRC 
framework, asking for values assigned to each alternative considered, 
with respect to each criterion, is used to collect a patient’s individual 
preferences. For p alternatives and n criteria, we obtain a n×p table of 
values between 0 and 1. We then used a modified version of algorithm 
2. presented in  [46] to build a non-additive measure, consistent with 
the patient’s choices, and the monodimensional preference functions. 
However, instead of initializing the values randomly as seen in  [46], 
we set the values of the non-additive measure for each single criterion 
as the sum of elicited values of the corresponding row in the table, 
weighted by the entire weight of the table. For criterion i, and with 
values xi

1,… , xi
p,

we then have
,

( ) = ∑
∑

j
j i

j
i j i

x
i

x
µ . We then generate the entire non-

additive measure through an iterative process as described in  [46], 
which works well with sparse data. When more data is available, 
through expert knowledge for instance, other data extraction methods 
such as  [47,48] can also be used. Finally, the scores are constructed 
from the patient’s preference elicitation process, and j

ix  corresponds 
to the utility assigned to alternative j with respect to criterion i.
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A second approach in a different framework is to elicit patients’ 
direct criteria importance and interaction, and compute the Choquet 
integral as seen previously in this paper. Although this approach is 
simpler in terms of computations, it is only practical if health literacy 
is sufficient, and should be strongly tied to an educational component.

Finally, it is important to note that based on our previous work  
[10], either approaches proposed above will provide a global ranking 
of the screening methods that better represent the patient’s individual 
preferences than the usual additive approaches.

Given the ubiquitous nature of computing tools, and web-
based applications, our decision-making approach can be naturally 
embedded into a web-based computing platform. Conceptually, the 
system works in the following manner: a patient comes to a clinic for 
a routine visit, and is asked to view an educational tool that explains 
the various CRC screening tests, as well as the criteria, the patient then 
completes some questions eliciting preferences. The data is used to 
build a non-additive measure that is patient specific, and a Choquet 
integral for each alternative (e.g. screening method). The screening 
method ranked the highest, that is, the one with the highest Choquet 
integral score, is then recommended to the patient as her/his optimal 
CRC screening method, based on his/her preferences. The data can 
also be included in the electronic medical record system, allowing the 
physician to have access to the patient’s preferences prior to the visit, 
and thus, facilitating shared decision-making.

Conclusions
In this paper, we have presented a novel approach (interval-based 

non-additive integration) to decision-making in a clinical context, that 
allows us to take a patient preferences into consideration, in a reliable 
manner, and sup-ported by a strong theoretical foundation. The 
approach presented here will be supported by a web-based software, 
developed both in a desk-top and mobile (iOS and Android) version, 
in a colorectal cancer screening framework, which: 1) elicits patients’ 
preferences for each screening method, with respect to each criterion 
defined in  [36]; 2) extracts the non-additive measure  [46] to construct 
the aggregation operator, perform the decision component, and 
facilitate the decision process; and thus will provide a robust solution 
to improve informed and shared decision-making. Although, this 
conceptual paper is focused on colorectal cancer screening, we have 
provided a general framework that can be used for various clinical 
decisions for which there is no clear-cut best course of action, and that 
relies on patients’ preferences.
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