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Introduction
Insect resistance based on Bacillus thuringiensis (Bt) (Berliner) 

endotoxins is the most widely used trait following herbicide tolerance 
in commercial transgenic crops [1]. The deployment of transgenic 
plants resistant to insects offered expectations as a means of pest control 
that led to a reduction in pesticide use in intensive cropping systems.

Although the increased global adoption of transgenic crops [2] 
shows usefulness for many growers and their acceptance in many 
markets, the imposition of moratoria in several countries reflects 
skepticism and public concern about a range of issues around 
transgenics including potential impacts on the environment. Potential 
adverse effects of transgenics on the environment include effects on non-
target species, invasiveness, release or “escape” into the environment, 
and development of resistance to transgenic products [3]. To address 
these concerns, governments have authorized regulatory bodies like the 
U.S. Environmental Protection Agency to regulate the deployment of 
transgenics requiring environmental risk assessment data as part of the 
registration process [4].

Orius insidiosus (insidiosus flower bugs) (Hemiptera: Anthocoridae) 
are generalist predators which are frequently reported in ecological 
studies as important non-target organisms in transgenic maize [5-8]. In 
the Midwest, including Nebraska, O. insidiosus is a common predator in 
maize (Wright 2004) and soybean fields [9].

Orius spp. are important natural enemies of pest insects and mites 
in many cropping systems such as maize, soybeans, vegetables, and 
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fruit crops [10,11]. Nearly all Orius spp. are predaceous as nymphs 
and adults. The primary food of Orius spp. consists of small insects 
and insect eggs, plant pollen, and plant sap [12]. Nymphs and adults of 
O. insidiosus are commonly found on maize silks and serve as natural
enemies of key maize pests such as of Ostrinia nubilalis (Hübner),
Helicoverpa zea (Hübner) [13], Spodoptera frugiperda (J.E. Smith) [14],
Rhopalosiphum maidis (F itch) [9,15,16], Frankliniella spp. [12,17,18],
spider mites, white flies (Bemisia spp.), and eggs of other insects in
the field. O. insidiosus are commercially mass produced and sold as
biocontrol agents against pests of glasshouse- grown vegetables and
ornamental crops [19].

The potential non-target impact of transgenic maize was studied 
using O. insidiosus as a key non-target arthropod [5,8,20]. Effective 
and reliable sampling of O. insidiosus nymphs and adults is important 
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in assessing the impact of transgenic corn on non-target organisms, 
particularly for environmental risk assessments. Previous ecological 
studies have assessed the non-target effects of transgenic maize by 
using visual observations, pitfall traps, sticky cards, sweep nets, and 
beat buckets [7,8,21,22].

Non-destructive (visual observations), yellow sticky card s, 
and destructive sampling techniques have been used to monitor O. 
insidiosus nymphs and adults together with above ground arthropods 
pests for the non-target impact of transgenic plants [5,6,8,22,23]. These 
techniques were used to approach the objective of this study, to evaluate 
the non-target effects of different Bt transgenic maize hybrids on O. 
insidiosus abundance compared to insecticide applications and non-
transgenic maize. 

Materials and Methods
Experimental sites and description 

The experiments were conducted during 2007 and 2008 at three 
geographically different experimental research stations of University 
of Nebraska-Lincoln. The experimental fields were located at the 
Agricultural Research and Development Center, Mead, (N41°1.07’ 
WO96°27.263’ in 2007 and N41°11.09’WO96°27.411’ in 2008), South 
Central Agricultural Laboratory, Clay Center, (N40 °34.216’ WO98 
°07.958’ in 2007 and N40 °34.272’ WO98° 07.822’ in 2008), and the 
Northeast Research and Extension Center, Haskell Agricultural 
Laboratory, Concord, (N42°23.037’ WO96°57.193’ in 2007 and 
N42°23.149’ WO96°57.331’ in 2008) . Soil types were Sharpsburg 
silty clay loam, Kennebec silty clay loam, and Butler/Crete silt loam, 
respectively. The experimental fields at all locations were previously 
planted with soybeans in a no tillage system.

Agronomic practices

Plantings were done in a no-till corn system on 10, 11 and 15 
May in 2007, and during 19, 20 and 21 May in 2008 at Mead, Clay 
Center, and Concord, respectively. Fertilizer management, irrigation, 
and herbicide application were made based on the normal agronomic 
recommendations of each specific site.

Experimental design and treatments

A randomized complete block design with four replications 
was used. The treatments were: a) a Cry1Ab X CP4 EPSPS maize, b) 
CP4 EPSPS maize (isoline), c) CP4 EPSPS maize (isoline) plus an 
insecticide application to control the first generation of O. nubilalis, d) 
Cry1Ab+Cry3Bb1X CP4 EPSPS maize, e) CP4 EPSPS maize (isoline) 
plus an insecticide application to control second generation of O. 
nubilalis, and f) a conventional maize without insecticide application. 
The Cry1Ab Bt transgenic maize is used to control lepidopteran pests 
while Cry3Bb1is used against corn root worms (Diabrotica spp.). The 
CP4 EPSPS is a genetically engineered glyphosate tolerant maize variety 
which allows the use of glyphosate as a postemergence herbicide.

In the case of CP4 EPSPS maize plus an insecticide application 
to control the first generation of O. nubilalis both in 2007 and 2008, 
permethrin (Pounce®  1.5G) (FMC Corporation, PA) was applied at the 
recommended rate of 12 oz. /1000 row ft band using an improvised 
jar shaker applicator at whorl maize stage (V9-V12 growth stages). 
Bifenthrin (Capture®  2 EC) (Bayer, NJ) was sprayed at the rate of 6.66 
ml/ 2 gallons of water using a carbon-gated sprayer for the control of 
second generation O. nubilalis. Individual plots were 60 square meters. 
There were 8 rows in each plot with ~400 plants per plot (~50 plants per 

row). A 3 m spacing between treatments and blocks was planted with 
conventional corn hybrid.

Sampling methods

O. insidiosus nymphs and adults were monitored using visual 
observations, and adults with yellow sticky cards, in 2007 and 2008. 
A destructive sampling technique was added in 2008 to validate the 
actual nymph and adult counts. Visual observations were made on 20 
randomly selected plants from rows 2 and 3 in each plot at reproductive 
stages, R1 (silking) and R2 (blister) i.e. 80 and 90 DAP, respectively. 
Nymphs and adults of O. insidiosus were observed on maize ears, and 
silks were tapped and O. insidiosus falling from the silk were collected 
with a clean sheet of bond paper underneath to quantify the number of 
nymphs and adults. The mean nymph plus adult counts per plant were 
used for the analysis.

Two yellow sticky cards (23 x 28 cm) per plot (sticky on one side 
only) (Pherocon®  AM, Trécé Inc., Adair, OK) [7,8] were used. The 
traps were attached to wooden stakes (2.5 x 2.1 x 244 cm) that were 
placed between rows 5 and 6, 6 and 7 of each plot at the seedling stage 
(V3). The yellow stick cards were attached on the wooden stakes at 30, 
60, 90, and 120 DAP. The cards were folded and clipped with 2 binder 
clips around the wooden stake facing the maize rows at the canopy level 
during the vegetative stage and parallel to the ears in the reproductive 
stages. After 7 days, the yellow sticky cards were collected, sealed in 
ziplock plastic bags, and brought to the laboratory for quantification. O. 
insidiosus adults were counted with the aid of a dissecting microscope. 
The adult counts from the 2 yellow sticky cards were pooled, and mean 
adult counts per card per day were used for the analysis.

Destructive sampling was done on five randomly selected maize 
ears from row 4 of each plot at R2. The randomly sampled maize ears 
were cut from the plant using a knife and kept in a ziplock plastic bag 
separately and brought to the laboratory for counting. Adults and 
nymphs of O. insidiosus were counted using a dissecting microscope. 
Mean number of nymphs and adults of the five ears per plot were 
pooled for the analysis. Voucher specimens of O. insidiosus were kept at 
University of Nebraska-Lincoln, Department of Entomology.

Data analysis

Analysis of variance (ANOVA) was performed using SAS’s PROC 
GLM procedure (SAS, 2003) [24]. The level of significance was set at 
P=0.05. Whenever there was significant interaction among factors 
(treatment, sampling period, location, season), each factor was analyzed 
with respect to the levels of the other factor. In the absence of significant 
interaction, data were pooled. The treatment x site effects generally 
revealed no significant differences, and these were not presented in 
the results and discussion. For parameters that showed significant 
difference among treatments, individual means were separated using 
the Student’s Newman Keuls test (SNK).

Results
There was a significant interaction in 2007 between treatments 

and sampling period for the yellow sticky card data (F=2.29, P=0.0050, 
df=15,216), so treatments were compared at a specific sampling 
period. Abundance of O. insidiosus also significantly varied among 
locations (F=16.72, P<0.0001, df=2,216). Significant differences among 
treatments were observed at 60 DAP (F=3.48, P=0.0076, df=5, 64) and 
90 DAP (F=4.26, P=0.0117, df=5, 64); numbers of O. insidiosus were 
significantly lower on Pounce®  1.5G treated CP4 EPSPS maize (isoline) 
compared to the rest of the treatments including the transgenic hybrids 
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Cry1Ab, and Cry1Ab+Cry3Bb1. Similarly at 90 DAP, lower O. insidiosus 
numbers were recorded from Pounce®  1.5G treated plots compared to 
other treatments; there were no significant differences in abundance of 
O. insidiosus among the rest of the treatments (Table 1). Although there 
were significant differences among locations, and sampling techniques 
in terms of O. insidiosus abundance, the results were not consistent in 
the different sampling techniques. In the season 2007, the sticky card 
sampling recorded higher numbers of O. insidiosus from Clay Center, 
followed by Concord, and Mead, respectively (Table 2). However, in the 
visual observation sampling technique, we found higher numbers of O. 
insidiosus at Concord followed by Mead and Clay Center, respectively 
(Table 2). The visual observation data in 2007 also showed significant 

differences among treatments (F=54.4, P<0.0001, df=5, 54). Similar to 
the sticky card data, O. insidiosus populations were significantly lower 
on Pounce®  1.5G treated plots than the rest of the treatments (Figure 
1). Moreover, data not shown adverse effect of the Bt transgenic hybrids 
compared to the isoline and conventional counterparts (Figure 1).

During the 2008 cropping season, the sticky card data showed 
no significant differences among treatments (F=2.13, P=0.0624, 
df=5,274). However, there was significant differences among 
sampling periods (F=255.56, P<0.0001, df=3,216) and locations 
(F=9.17, P=0.0001, df=2,216). O. insidiosus abundance significantly 
increased with DAP and the highest (1.95 O. insidiosus per sticky card 
per day) was recorded at 120 DAP and no O. insidiosus recorded at 30 
DAP (Figure 2). When we compared the experimental sites sampled 
by sticky card, O. insidiosus populations were higher at Concord 
and there was no significant difference between Clay Center and 
Mead (Table 2). However, in the visual observation and destructive 
sampling techniques, lower numbers of O. insidiosus were recorded 
from Concord compared to the other sites.

Treatment Sampling periods (days after planting)

30 days 60 days 90 days 120 days
Cry1Ab 0.05 ± 0.02 0.88 ± 0.15a 0.81 ± 0.11a 1.14 ± 0.09

CP4 EPSPS maize 0.018 ± 0.01 0.77 ± 0.15ab 0.84 ± 0.12a 1.06 ± 0.16
Pounce®  1.5G 0.05 ± 0.02 0.46 ± 0.09b 0.45 ± 0.07b 1.57 ± 0.18

Cry1Ab x Cry3Bb1 0.018 ± 0.01 0.75 ± 0.13ab 0.77 ± 0.09a 1.28 ± 0.27
Capture®  2 EC 0.036 ± 0.01 0.93 ± 0.19a 0.82 ± 0.12a 1.17 ± 0.18

Conventional corn 0.01 ± 0.01 0.65 ± 0.12ab 0.85 ± 0.08a 1.19 ± 0.16

Means within a column followed by the same letter are not statistically different 
from each other (SNK, P = 0.05). Ns = not significant. Pounce®  1.5G and Capture®  

2 EC was applied on CP4 EPSPS maize
Table 1: Mean number of O. insidiosus (± S E) in BT transgenic maize hybrids 
and non transgenic insecticide treated and non-treated hybrids during the 2007 
cropping season.

Experimental
Site

Season
2007 2008

Sticky card Visual
observation Sticky card Visual

observation
Destructive
sampling

Clay Center 0.84 ± 0.07a 0.25 ± 0.03c 0.66 ± 0.08b 1.74 ± 0.73a 2.93 ± 0.20a
Concord 0.70 ± 0.05b 0.77 ± 0.05a 0.83 ± 0.13a 0.37 ± 0.03b 0.66 ± 0.11c

Mead 0.53 ± 0.05c 0.58 ± 0.04b 0.54 ± 0.06b 1.63 ± 0.16a 1.81 ± 0.13b

Means within a column followed by the different letter are significantly different 
from each other (SNK, P = 0.05)
Table 2: Mean number of O. insidiosus (± S E) in BT transgenic maize hybrids 
and non transgenic insecticide treated and non-treated hybrid s at C lay Center, 
Concord, and Mead in Nebraska during the 2007 and 2008 cropping seasons.
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Figure 1: Mean number of O. insidiosus (± SE) in BT transgenic maize hybrids 
and non-transgenic insecticide treated and non-treated hybrids using a visual 
observation sampling technique during the 2007 cropping season in Nebraska. 
Bars followed by different letter are significantly different from each other (SNK, 
P=0.05). Pounce®  1.5G and Capture®  2 EC was applied on CP4 EPSPS maize.
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Figure 2: Mean number of O. insidiosus (± SE) in BT transgenic maize hybrids 
and non-transgenic insecticide treated and non-treated hybrids at different 
sampling periods using a yellow sticky card trapping method during the 2008 
cropping season in Nebraska. Bars followed by different letter are significantly 
different from each other (SNK, P=0.05).
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Figure 3: Abundance of O. insidiosus (mean ± SE) in BT transgenic maize 
hybrids and non-transgenic insecticide treated and non-treated hybrids during 
the 2008 cropping season in Nebraska using a visual observation sampling 
technique. Bars followed by the same letter are not statistically different from 
each other (SNK, P=0.05). Pounce®  1.5G and Capture®  2 EC was applied on 
CP4 EPSPS maize.
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In the visual observations in 2008, there was a significant three-
way interaction among sampling periods, locations (sites), and 
treatments (F=18.23, P<0.0001, df=12,108). Therefore, treatments were 
compared for each location separately at a specific sampling period. 
At Clay Center, significantly lower numbers of O. insidiosus were 
recorded from Pounce®  1.5G treated transgenic isoline maize hybrid 
(glyphosate resistant) both at 80 and 90 DAP compared to the other 
treatments (Table 3). Similarly, at Concord, abundance of O. insidiosus 
was significantly higher in Cry1Ab and Cry1Ab X Cry1Bb hybrid 
compared to the non-transgenic isoline treated with Pounce®  1.5G to 
control first generation of O. nubilalis. Moreover, at 90 DAP; a higher 
number of O. insidiosus was recorded from Capture®  2 EC treated 
plots compared to Pounce®  1.5G treated plots (Table 3). At Mead, O. 
insidiosus abundance was also significantly lower in Pounce®  1.5G 
treated plots than the other treatments at 80 DAP, and there were no 
significant differences among treatments at 90 DAP (F=0.87, P=0.5263, 
df=5,15). The overall treatment effect in the visual observations of 2008 
season indicated that significantly lower numbers of O. insidiosus were 
recorded from Pounce®  1.5 G treated isoline than other treatments 
including the Bt transgenic hybrids (Figure 3). Moreover, O. insidiosus 
abundance showed a similar trend in the destructive sampling where 
Orius counts were significantly lower in Pounce®  1.5G treated plots 
than the Bt transgenic hybrids, the non-transgenic isoline, conventional 
maize, and Capture®  2 EC sprayed conventional maize (Figure 4).

Discussion
Visual observations, yellow sticky cards and destructive sampling 

techniques revealed the same trend of significantly fewer mean adult 
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Figure 4: Abundance of O. insidiosus (mean ± SE) in BT transgenic maize hybrids and non-transgenic insecticide treated and non-treated hybrids during the 2008 
cropping season in Nebraska using a destructive sampling technique. Bars followed by the same letter are not statistically different from each other (SNK, P=0.05). 
Pounce®  1.5G and Capture®  2 EC was applied on CP4 EPSPS maize.

Treatments
Clay Center Concord Mead

80 days 90 days 80 days 90 days 80 days 90 days
Cry1Ab 2.08 ± 0.19a 1.09 ± 0.16b 0.34 ± 0.03a 0.53 ± 0.13ab 2.18 ± 0.27a 0.78 ± 0.13

CP4 EPSPS Maize 2.00 ± 0.31a 1.88 ± 0.04a 0.19 ± 0.05ab 0.44 ± 0.14ab 2.85 ± 0.44a 0.75 ± 0.19
Pounce®  1.5G 0.85 ± 0.22b 1.00 ± 0.12b 0.09 ± 0.024b 0.23 ± 0.06b 1.29 ± 0.27c 0.51 ± 0.19
Capture®  2 EC 2.54 ± 0.36a 1.88 ± 0.08a 0.30 ± 0.07ab 0.74 ± 0.11a 3.33 ± 0.09a 0.91 ± 0.17

Cry1Ab x Cry3Bb1 2.30 ± 0.15a 1.71 ± 0.04a 0.34 ± 0.07a 0.49 ± 0.12ab 2.70 ± 0.38a 0.74 ± 0.04
Conventional Maize 1.94 ± 0.17a 1.63 ± 0.19a 0.29 ± 0.08ab 0.51 ± 0.04ab 2.84 ± 0.19a 0.73 ± 0.07

Means within a column followed by the same letter are not statistically different from each other (SNK, P = 0.05). Ns = not significant. Pounce®  1.5G and Capture®  2 EC 
was applied on CP4 EPSPS maize.
Table 3: Abundance of O. insidiosus (mean ± S E) in BT transgenic maize hybrids and non transgenic insecticide treated and non-treated hybrid s at C lay Center, Concord, 
and Mead in Nebraska during the 2008 cropping season using a visual observation sampling technique.

counts of O. insidiosus on CP4 EPSPS maize plus Pounce®  1.5G for 
the control of first generation O. nubilalis at R2 (blister) stage. Neither 
Bt transgenic maize hybrids had observable effects on populations of 
O. insidiosus in all sampling techniques used in the study. O. insidiosus 
nymphs and adults were fewer on insecticide treated CP4 EPSPS maize. 
These findings support previous ecological studies on non-target 
predators that transgenic maize does not have a significant negative 
effect on the predator O. insidiosus, but our results differ with those 
previously reported because we obtained significant differences in the 
sampling techniques [7,8,20,22,25,26]. 

The results of our study suggested that visual observation, yellow 
sticky cards, and destructive sampling are effective in monitoring 
abundance of O. insidiosus in non-target studies. These results 
corroborate other ecological field studies on non-target arthropods of 
transgenic maize. Al-deeb et al. [5] used visual counts of O. insidiosus 
in Bt and non-Bt maize fields at three locations in Kansas to show that 
Bt maize does not have significant effects on O. insidiosus. Musser et al. 
[7] also recommended the use of field counts of immature and adults, 
because these counts are accurate, have no associated supply costs, 
and can be made quickly. In a similar study using yellow sticky cards, 
Pilcher et al. [8] showed that significantly higher numbers of adult O. 
insidiosus preferred the early planting date of Bt hybrids during the 
first O. nubilalis generation. The variation in O. insidiosus population 
abundance among the three sites may be due to slight variation in biotic 
and abiotic factors [22]. Moreover, development of O. insidiosus is very 
dependent on temperature [12], and availability of food supply [19,27].

In conclusion, our findings support non-target arthropod ecological 
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field studies that Cry1Ab, and Cry1Ab+Cry3Bb1 maize have no impact 
on O. insidiosus populations. However, the pyrethroid insecticide 
(Pounce®  1.5G) applications to control target pests significantly affected 
non-target natural enemies of the target pests.
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