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Abstract

An influenza virus is an important pathogen causing disease in the birds and further transmits to humans

globally. The genome of Influenza virus encodes highly conserved non structural gene (NS1), which is thermody-

namically stable in the evolution. Total 32 NS1 nucleotide sequences of Influenza A virus H5N1 strain varied

from 831 to 875 bp were used to construct the phylogeny and nine major clades were obtained. The computa-

tional tool was used to model the RNA secondary structure of nine different strains of Influenza A virus. The

thermodynamic free energy ranges between -222.90 to -251.10 Kcal/mol of the NS which may provide new in-

sight to understand the evolutionary stability and pathogenesis of Influenza virus.
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Introduction

An outbreak of avian influenza A virus of the H5N1

subtype was spread to poultry in Asian countries. The trans-

mission of influenza virus from birds to humans in Hong

Kong with outbreaks H5N1 strains of avian influenza A

virus Hiorrimoton and Kawaoka (2005) and highly pathogenic influ-

enza A virus H5N1 was identified among the poultry in re-

public of Korea Fouchier et al. (2005). An outbreak of highly

pathogenic avian influenza (HPAI) H5N1 virus was reported

from India in 2006. Phylogenetic analyses revealed that

Indian isolates were grouped in the mixed-migratory bird

sub-lineage of the Eurasian lineage. In the phylogeny analysis

viruses were probably introduced to India from China via

Europe because they share a direct ancestral relationship

with the Indian isolates Kamal et al. (2007).

Influenza viruses are pleomorphic RNA viruses belong-

ing to the Orthomyxoviridae family. The genome of influ-

enza virus is segmented and consists of single stranded nega-

tive sense RNA; it encodes the 8 structural proteins and

non structural gene (NS1). The Influenza virus proteins such

as two surface proteins hemagglutinin (HA) and neuramini-

dase (NA) Fouchier et al. (2005) and other proteins like

three RNA polymerase (PA, PB1 and PB2). Nucleoprotein

(NP) and matrix protein (M1 and M2) also play role in the

cell cycle. The non structural gene (NS1) provides evolu-

tionary stability and replication of Influenza virus Wan et al.

(2007).

Several reports are available on the role of NS of the

Influenza virus. The avian influenza virus NS encoding pro-

tein induces the apoptosis in the human Lam et al. (2008).

The NS protein contributes in the pathogenesis and small

fragment have deleted from the NS gene that have been

reported as the attenuated vaccine for the chickens Zhu et
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al. (2008). The influenza virus subtype H5N1 has raised

concerns of a possible human pandemic threat because of

its high virulence and mutation rate Landon et al. (2008).

Highly pathogenic H5N1 influenza viruses have become

endemic in poultry populations throughout Southeast Asia

and continue to infect humans with a greater than 50% case

fatality rate Neumann et al. (2007).

The phylogenetic and proteome analysis of influenza A

virus subtype H5N1 have been earlier reported. The study

furnish a understanding of the whole proteome function, gene

regulation and may be also supportive to vaccine and antivi-

ral drug target to inhibit the functioning of influenza at the

specific position of predicted motifs Somvanshi et al. 

(2008a). The antigenic epitopes were also reported in two

highly virulence surface proteins HA and NA of influenza A

virus. The host specific epitopes and conserved epitopes

have been identified. These results could help in develop-

ment of immunodiagnostic kit and also designing of vaccine

candidate Somvanshi et al. (2008b).

There are limited reports available on RNA secondary

structure of the NS in influenza virus. This conformational

shift may consequences for splicing regulation of segment

mRNA. This study suggest that besides changes at the pro-

tein level, changes in RNA secondary structure should be

seriously considered when attempting to explain influenza

virus evolution Gultyaev et al.  (2007).

A varied number of bioinformatics tools were reported

to generate the RNA secondary structure of viral gene like

RNAdraw, RNAfold, Mfold etc. MFold uses the nearest

neighbor energy rules to calculate the energy of the RNA

secondary structure. RNA structure plays an important role

in the life cycle of RNA viruses. Many functional viral RNA

structure are known and evolution of virus RNA genome is

subjected to various structure constrains Simmonds et al.

(2004). In the present study, we have predicted the second-

ary structure of non structural gene of Influenza A virus

subtype H5N1. The free energy of the module of non struc-

tural gene may predict the evolutionary stability of different

host specific strains of Influenza A virus.

Material and Methods

Selection of Sequence Data Set

The complete nucleotide sequences of non-structural

proteins from different goose, chicken, turkey, swine, swan

and duck of Influenza A virus H5N1 strains were retrieved

from the biological database such as National Centre for

Biotechnology Information NCBI) cited at http://

www.ncbi.nlm.nih.gov

Construction and Analysis of Phylogenetic Tree

All the sequences were aligned with Clustal X2. The

computed alignment was manually checked and corrected.

Pair-wise evolutionary distances were computed using the

Jukes and Cantor equation implemented in the MEGA 3.1

program and a phylogenetic tree was constructed by neigh-

bor-joining method which comprise DNA weight matrix for

nucleotide. Bootstrapped values of 100 were sampled to

determine a measure of support for each node on the con-

sensus tree.

RNA Secondary Structure Prediction

Prediction of the possible folding of the non structural

protein of influenza virus was done with the online MFold

package. The most widely used algorithms for RNA sec-

ondary structure prediction, which are based on a search

for the minimal free energy state Zuker (1989).The genetic

algorithm (GA) simulates the natural folding pathway which

takes place during RNA synthesis. This is not only enables

new stems added to growing RNA chain but also allows

structures to be removed at later stages of the simulation if

other pairings are found to be more favourable. The GA

also allows the prediction of certain tertiary interactions,

including RNA pseudoknots. The minimum free energy was

obtained from the secondary structure of RNA.

Results and Discussion

The size of non structural gene diverge from 831 to 875

bp was used to construct the phylogenetic relationship. All

the 32 strains of influenza A virus subtype H5N1 were iso-

lated from a diverse series of animal hosts like Goose,

Chicken, Turkey, Swine, Swan and Duck. In this investiga-

tion, nine major clades were obtained from the six host strains

of influenza A virus (Figure 1). The four major clades in the

phylogenetic tree based on the surface HA and NA pro-

teins of influenza A virus H5N1 has been reported Somvanshi

et al. (2008a).

The RNA secondary structure of NS gene of influenza

A virus showed the lowest free energy -251.10 Kcal/mol

from the host swine. The highest free energy in the analysis

of the duck strain was -221.70 Kcal/mol. The free energy

value of all these NS of different strains of influenza A virus

was given (Table 2). The prediction of evolutionarily con-

served RNA structures important for elucidating the poten-

tial functions of RNA sequences and the mechanisms by

which these functions are exerted but it also lies at the core

of RNA gene prediction. An accurate prediction of the con-

served RNA structure needs a high-quality sequence align-

ment and an evolutionary tree relating several evolution-

arily related sequences.
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 D Q 9 9 7 2 65 .1  S w in e

 D Q 0 9 5 7 08 .1  G o o se

 D Q 0 95 7 0 6 .1  C h ic ke n

 D Q 6 7 68 4 2 .1  G o o se

 D Q 2 3 4 07 4 .1  D u ck

 D Q 67 6 8 33 .1  C h ic k e n

 EU 23 3 6 9 5 .1  C h ick e n

 EU 4 01 7 5 5 .1  C h ick e n

 EU 44 1 9 2 6 .1  D u c k

 EU 4 86 8 5 2 .1  D u c k

 D Q 6 50 6 6 7 .1  C h ic ke n

 EU 1 2 2 0 12 .1  G o o se

 E U 1 2 20 1 1 .1  S w a n

 EF 5 2 37 5 5 .1  D u c k

 EF 5 2 37 5 3 .1  D u c k

 D Q 4 6 43 5 8 .1  S w a n

 D Q 4 4 9 63 6 .1  C h ic k e n

 EF 2 0 5 18 5 .1  G o o se

 D Q 0 95 6 9 8 .1  G o o se

 D Q 09 5 6 99 .1  G o o se

 D Q 09 5 7 02 .1  G o o se

 D Q 0 95 7 0 0 .1  G o o se

 D Q 0 95 7 0 3 .1  G o o se

 D Q 3 2 3 67 9 .1  C h ic k e n

 D Q 5 2 9 29 4 .1  C h ic k e n

 EU 1 2 20 0 3 .1 D u ck

 D Q 6 83 0 2 7 .1  T u rke y

 D Q 6 83 0 3 0 .1  T u rke y

 A B 23 9 3 13 .1  S w a n

 A B 2 3 93 2 7 .1  S w a n

 A B 23 9 3 2 0 .1  S w a n

 D Q 4 4 9 6 44 .1  D u c k

0 .0 0 1

Figure 1:  Unrooted phylogenetic tree based on NS1 gene of different strains of Influenza A virus H5N1. 
The bar represents 0.001 base changes per site.
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Table 1: The thermodynamic free gibbs energy (  G) of Influenza A virus H5N1

nonstructural gene (NS1).

Computational tool was used to model the RNA second-

ary structure in coding region of hepatitis C virus (HCV)

includes thermodynamic prediction, calculation of free en-

ergy on folding, and a newly developed method to scan se-

quences for covariant sites and associated secondary struc-

tures using a parsimony-based algorithm. Total six evolu-

tionary conserve stem-loop structures in the NS5B-encod-

ing region and two in the core gene. The virus most closely

relate to HCV, GB virus-B (GBV-B) also showed evidence

for similar internal base pairing in its coding region, although

predictions of secondary structures were limited by the ab-

sence of comparative sequence data for this virus Tuplin et

al. (2002).

The secondary structure RNA non structural gene of

influenza A virus provides stability of the genome during

evolution and adaptation in the infection to various hosts.

This gene is highly conserved in the genome of influenza A

virus and slight variation in the size. The confirmation of

secondary structure was assorted due to mutation in the

NS gene. The mutation of the NS region possibly will be

reducing the pathogenesis of influenza virus. The second-

ary structure of RNA of NS of influenza A virus was given

(Figure 2A-2I). In 2001 and 2003, two influenza A virus H5N1,

A/swine/Fujian/1/01 (SW/FJ/01) and A/swine/Fujian/1/03

(SW/FJ/03) isolated from pigs in Fujian Province, southern

China was studied. Both the virus were genetically similar,

although the NS gene of the SW/FJ/03 virus has a 15-nucle-

otide deletion at coding positions 612 to 626. The small frag-

ment deleted from the NS gene that have used as the at-

tenuated vaccine for the chickens Zhu et al. (2008). Sec- 

ondary structure models exhibited three pairs of small sub-

unit ribosomal RNA molecules. These are the 16S rRNA

from E. coli cytoplasmic and Z. mays chloroplast ribosomes,

the 18S rRNA from S. cerevisiae and X. laevis cytoplas-

mic ribosomes, and the 12S rRNA from human and mouse

mitochondrial ribosomes. The model supports the concept

that secondary structure of ribosomal RNA has been ex-

tensively conserved throughout the evolution Zwieb et al.

(1981).

The 5S rRNA gene from Sphingobium chungbukense

DJ77 was identified. The secondary structure of the 199-

base-long RNA was proposed. The two-base-long D loop

was the shortest among all of the known 5S rRNAs. The

U19-U64 non-canonical pair in the helix II region was

uniquely found in strain DJ77 among all of the

sphingomonads Kwon and Kim (2007). The nucleotide se-

quence of Pinus silvestyris 5S rRNA was determined us-

ing two independent methods and compared with other plant

5S rRNAs. It shows more than 90% sequence homology

with gymnosperm 5S RNAs. The free energy (delta G)

analysis of 5S rRNAs from gymnosperms, angiosperms and

the other higher plants revealed that the free energy of this

ribosomal RNA decreases with evolution Mashkova et al.

(1990).

S. No. Host Accession no. Base δ G value 

(kcal/mol) 

A Goose DQ095699 831 -222.90

B Swan EF523757 833 -226.00

C Chicken EU401755 850 -231.10

D Turkey DQ683027 867 -234.20

E Duck DQ449644 850 -231.90

F Chicken DQ095706 833 -225.50

G Goose DQ095708 830 -222.40

H Duck DQ321138 831 -221.70

I Swine DQ997265 875 -251.10

δ
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Goose (A) (C) Chicken

 Swan (B)
(D) Turkey
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(E) Duck  Goose (G) 

(F) Chicken  Duck (H) 

 Swine (I)

RNA secondary structure of Influenza A virus H5N1 strains from different animals.Figure 2: 
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Hepatitis C virus (HCV) possesses extensive RNA sec-

ondary structure in the core and NS5B-encoding regions of

the genome. A program was developed

(STRUCTUR_DIST) that analyses multiple RNA-folding

patterns predicted by MFOLD to determine the evolution-

ary conservation of predicted stem–loop structures by a new

method, to analyze frequencies of covariant sites in pre-

dicted RNA folding between HCV genotypes Tuplin et al.

(2004).

RNA secondary structure prediction was combined with

comparative sequence analysis to construct models of fold-

ing for the distal 380 nucleotides of the 3‘-untranslated re-

gion (3‘-UTR) of yellow fever virus (YFV). A number of

structural elements that are thermodynamically stable, con-

served in shape, and confirmed by compensatory mutations

were revealed. At the same time structural polymorphisms

were observed among strains of YFV. The observation of a

strong association between secondary structure of the 3‘-

UTR and virulence of YFV may help elucidate the molecu-

lar mechanisms of virus attenuation and lead to new strate-

gies of vaccine development directed towards rational modi-

fication of secondary structure of the 3‘-UTR. In this study,

the free energy value of pathogenic YFV was higher and

non pathogenic YFV was lower Proutski et al. (1997).

In conclusion, this study was carried out for the model-

ing of RNA secondary structure and phylogenetic analysis

of influenza A virus H5N1. The prediction of RNA struc-

ture in conjunction with structure known to exist within the

virus untranslated region may facilitate further understand-

ing of virus translation, replication and packaging. The free

energy of the conserved NS gene may help to understand

the stability of influenza A virus through out the evolution.
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