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Abstract
Cardiac magnetic resonance imaging (CMR) has become an important tool in evaluating congenital heart 

disease (CHD) in children and adults. By learning more about the advantages and limitations of CMR, clinicians 
and surgeons increasingly use the images and data acquired by CMR for the management of patients with CHD. 
MRI technology is evolving fast, and techniques such as 3D-MR angiography, phase contrast flow measurements, 
functional images to quantify cardiac function and stress testing are nowadays integrated parts of clinical care for 
patients with CHD. New technologies involve 4D-Flow measurement, “real-time” MRI or as a more future perspective 
MRI based catheter interventions.

This article intends to give an overview over the role of CMR in CHD, with a special focus on the latest 
development of the past 5 years and an outlook to the techniques on the horizon. 
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Introduction
Patients with congenital heart disease (CHD) are a challenge for 

imagers, since CHD requires a profound knowledge of the morphologic 
and functional characteristics of a broad range of congenital heart 
defects. Moreover, complex congenital heart disease often involves 
complex palliative or corrective surgery that alters the “normal” heart 
anatomy and cardiac function profoundly [1,2]. The number of patients 
reaching adulthood after correction or palliation of complex congenital 
heart disease is increasing significantly, thereby creating a whole new 
group of patients with complex chronic cardiac disorders [3,4]. 

Traditionally, imaging of CHD has been a domain of cardiac 
catheterizations and echocardiography. The last ten years have seen the 
rise of MRI and CT as accepted imaging modalities for congenital heart 
disease. Especially MRI has been the source of important insights into 
individualized pathophysiologic changes in CHD for both morphologic 

and functional aspects [5,6]. However, no single imaging modality 
has been shown to be able to obtain all information necessary for the 
complete evaluation of patients with CHD. Echocardiography is non 
invasive, possesses a high spatial and temporal resolution, but is often 
limited in its usability due to poor acoustic windows [3]. Assessment 
of valvular morphology and function is unmatched by any imaging 
modality in its temporal and spatial resolution [7].

In the cath lab, contrast agent volume and catheter position 
influence the degree of regurgitation, shunt magnitude, thereby 
introducing a bias and decreased stability in the assessment of cardiac 
functional parameters. However, invasive catheterization still remains 
the only reliable way for pressure mapping of the cardiac chambers and 
connected blood vessels as well as the assessment of coronary arteries.

Both modalities - echocardiography as well as invasive 
catheterization – have limitations in the assessment of complex 
anatomic alterations of the cardiac chambers and connected vessels. 
One of the main reasons for the success of MRI in the diagnosis and 
follow up of CHD is its ability to deliver detailed 3D imaging of the 
complex anatomy before as well as after surgical interventions [8]. 

Especially CMR has demonstrated added value of diagnostic 
accuracy in the functional assessment of the right ventricle as well as in 
its ability of imaging function and morphology in any spatial plane [9]. 
Minimal doses of contrast agents if any are needed for 3D angiography 
in CMR. In the recent years some concerns have been issued about 
the safety of MR contrast agents due to reports about nephrogenic 
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fibrosis caused by gadolinium based contrast agents. However, cyclic 
gadolinium based MR contrast agents are now considered safe and 
non-nephrotoxic in the young and grown-up patients. The lack of 
radiation exposure is an important advantage of MRI in comparison to 
multislice-CT or fluoroscopy. 

Spatial resolution of CMR is inferior to multislice-CT or 
echocardiography. Most of the CMR-techniques employed today need 
multiple heart cycles to obtain all data needed. As a result functional 
data displayed are interpolations of multiple heart beats and not real-
time acquisitions as compared to echocardiography. Therefore CMR 
imaging in the newborn and young children usually need intubation 
narcosis for high-resolution imaging. There are quite a number of sites 
that prefer deep sedation of the children up to the age of six limiting 
CMR exams to morphologic questions and accepting rough estimates 
for cardiac function. New developments allow for the synchronization 
of MR imaging with both breathing and cardiac motion. 

MRI is quite sensitive to local disturbances of the magnetic 
field. Especially stainless steel and materials alike do induce severe 
disturbances of the local magnetic field yielding artifacts in the images 
that usually are much larger than the object causing them. These 
susceptibility artifacts are minimal with non-ferromagnetic materials 
like Nitinol. Stainless steel clips, valves, valve prostheses, stentgrafts 
all can cause susceptibility artifacts that can render an MRI exam 
nondiagnostic. 

Techniques/ Imaging Sequences Available in CMR for 
Evaluation of CHD
Spin echo imaging with dark blood preparation

Anatomic imaging with high spatial resolution and suppressed 
blood signal. It helps to show anatomical relations of cardiac and 
extracardiac structures. In its fast variant, this sequence type can be 
used to image the whole chest in one to two breath holds with some 
compromises in image quality. Same sequence class can be used to look 
for myocardial edema. 

Cine imaging
By ECG-triggered gradient-echo (GRE) and steady-state free 

precession (SSFP) sequences, a cardiac cycle can be resolved into 
multiple phases. These cine loops are recorded in defined planes and 
allow for quantification of cardiac function, mass and ventricular 
volumes. Moreover, qualitative assessment of wall motion, valve 
function, and identification of intra-cardiac or inter-vascular shunts is 
possible. Cine GRE measurements are more robust in terms of image 
quality and are better suited for the visualization of flow jets resulting 
from stenosis or insufficiencies. SSFP sequences provide a superb 
and homogenous contrast between blood pool and myocardium. 
SSFP sequences therefore are generally preferred for the visual and 
quantitative analysis of wall motion and cardiac function in general. 

Velocity encoded phase contrast MRI for flow quantification
In- or through-plane measurements of flow velocity and thus 

quantification of cardiac output, stroke volume and calculation of 
shunt volume is possible [6,10]. To localize a high velocity intracardiac 
shunts or in the search of the maximum velocity, in-plane flow maps 
can be helpful. 

3D- angiography with gadolinium enhancement 

This technique is an excellent tool to show arterial and venous 

structures, shunt connections or anomalous vascular morphology 
or connections like aortic ectasia, coarction of the aorta, anomalous 
pulmonary venous drainage, focal or diffuse pulmonary artery stenosis, 
collaterals. It is also very helpful for 3D-visualization of the vascular 
anatomy to surgeons in preparation of complex surgical procedures 
and to exemplify the relationship to other cardiac and extracardiac 
structures [11].

Perfusion and dobutamine/ adenosine stress testing

Evaluation of myocardial ischemia due to coronary stenosis can 
be detected indirectly by perfusion imaging or wall motion analysis 
under pharmacologic stimulation. Perfusion imaging uses adenosine 
(140 µg/kg Bodyweight x min) to induce maximal dilation of the 
coronary arteries. During the dilation a short bolus of contrast agent is 
injected intravenously and the passage of the contrast agents through 
the myocardium is documented in a near-real time imaging. Coronary 
artery stenosis cause the dependent myocardium to remain darker than 
myocardium dependent on healthy coronaries as less contrast media 
finds its way beyond the stenosis. 

Dobutamine stimulation is used in combination with wall motion 
analysis. Dobutamine is infused at increasing rate (5 to 40 µg / kg 
Bodyweight, steps of 10 µg every 5min). During every dobutamine 
level, wall motion is documented in MRI in at least 4 planes. Any new 
wall motion analysis under infusion of dobutamine is regarded as an 
evidence of a stenosis of the coronary artery supplying this myocardial 
wall segment. 

Late gadolinium enhancement (LGE) 

Late Gadolinuim Enhancement (LGE) is an integral part of imaging 
of cardiovascular disease and is found in a variety of cardiac diseases 
[12]. It helps to detect diseased myocardium from scars, fibrosis, 
deposition of material in extracellular space like amyloid, glycosides 
or alike. In congenital heart disease, LGE has been successfully used 
as a predictive indicator for ventricular function in patients after 
repair of TOF [13], TGA after arterial switch [14] or after Fontan 
palliation [15]. It has been found to be associated with increased risk 
of arrhythmias and sudden cardiac death in patients with hypertrophic 
cardiomyopathy [16] or coronary artery disease due to atherosclerosis 
[17] or surgical reimplantation [18]. Technically, late enhancement is 
based on a T1 weighted MR sequence with a special pulse to render 
normal myocardium black. The imaging sequence is done 12 to 15 
min. after the injection of Gadolinium based contrast agent. Normal 
myocardium remains dark whereas diseased myocardium takes up 
various amounts of signal due to retained contrast material. 

Early gadolinium enhancement 

In comparison to Late Enhancement, the idea of Early Enhancement 
indicates a myocardial hyperemia or hyperperfusion as can be found 
in active myocarditis of any cause. Early Gadolinium Enhancement 
therefore is done immediately after the injection of intravenous 
contrast. As it might be difficult to visualize the subtle enhancement 
of hyperperfused myocardium, signal intensities of the myocardium 
are often compared to that of the pectoral muscles or paravertebral 
muscles. 
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Future Outlook/ Techniques on the Verge of Clinical 
Application

3D-/ 4D-Flow

Newer methods allow flow measurements of 3D-volumes thereby 
providing spatial and temporal resolutions of complex flow situations 
[19,20]. Data can be processed after the scan and flow or velocities 
can be measured at different locations within the data set. Especially 
palliated single ventricle anatomies with Fontan circulation have been 
looked at by 4D-Flow quantification [20]. Here, vortex formation and 
flow in the Fontan circulation may help determine prognosis and 
timing for intervention, surgery or heart transplantation [21]. However, 
further studies are needed to evaluate the use of this technique in 
clinical routine. Temporal resolution is inferior to that of 2D flow 
measurements and though quite some advances have been made, time 
required for a 3D flow measurement remains at 5 to 10 minutes. 

Real time MRI 

One of the major drawbacks of MR imaging is the lack of high-
resolution real time image. It would allow MRI examinations not 
affected by arrhythmias and also enabling free breathing whilst 
obtaining high-resolution MR images of function or morphology. 
Several approaches have been proposed to the goal of real-time imaging. 
Echoplanar imaging has been employed but the images are susceptible 
to devastating artefacts and have inferior spatial resolution. Other 
approaches use highly accelerated imaging techniques like massive 
parallel imaging techniques in combination with sampling only a 
minute amount of data normally necessary for traditional MR imaging. 
Though insular solutions have been reported, real-time imaging still is 
in the laboratory phase and only available at specific research sites. It 
has been reported to help in the differentiation of constrictive versus 
restrictive myocardial disease by evaluation of the ventricular septal 
movement during valsalva manoeuvre.

MR based catheterization laboratory

Advances are being made in order to bring the advantages of 
invasive cathertization under fluoroscopy – interventions and invasive 
hemodynamics - to the CMR [22]. Various animal studies have 
demonstrated the feasibility of MR based catheterization techniques 
such as coronary intubation [23], balloon valvuloplasty of the aortic 
valve [24], fusion of x-ray and CMR-roadmaps for device based VSD-
closure [25], intravascular angioplasty and stent placement [26-29] or 
assessment of ventricular function [30]. New CMR methods analogous 
to selective catheter-angiography to visualize flow using virtual dye 
are being developed [31]. Patient safety is the major concern in the 
development of interventional instrumentation. The development of 
CMR suitable catheters, stents, balloons and MR sequences is under 
way, but still not available for routine use in humans [22,31-33]. 
However, some investigators see the practical implementation of the 
MRI based catheterization lab on the horizon [34,35]. One important 
step to implement MRI based angiographies similar to those known 
from the conventional catheter lab using fluoroscopy would be a robust 
spatial as well as temporal real time MRI technique. 

Whole heart sequences, 3 D reconstruction and 3 D hardprints 
for operation planning/ 3D virtual surgery

Virtual reality 3D-reconstruction is a standard tool in CMR. 
Newer techniques apply this for more detailed planning of surgery 
using rasin-based hardprints of the 3D-models so that a surgeon can 

physically put his hands on a and look at the complex anatomy from 
all sides according to the individual needs [36]. To take this even 
further, 3D-sequences are used to create models for virtual surgery, 
so that the surgeon may simulate his operation in a computed model 
before performing the surgery on the actual patient [37,38]. Although 
these are interesting and helpful techniques for a more individualized 
treatment, further steps to implement them in routine clinical practice 
will have to be done.

Special Congenital Malformations 
Tetralogy of fallot (TOF )

Tetralogy of Fallot (TOF) is the most common cyanotic cardiac 
defect accounting for approx. 10% of all CHD. TOF patients have 
been examined by CMR more than any other group of patients with 
CHD. RV function and size, regional dysfunction, scarring, degree of 
pulmonary regurgitation (PR) and pulmonary arterial anatomy can be 
assessed reliably (Figure 1). These data are used increasingly for risk 
stratification and timing of repetitive valve replacements, interventions 
for peripheral pulmonary stenosis or antiarrhythmic therapy with 
drugs or pacemakers/ ICDs. Moreover, CMR is very useful to plan 
operative or interventional steps in the follow-up after TOF repair. 3D 
MR-angiography complements echo and catheterization techniques. 
CMR provides exact three dimensional virtual models of the RV, 
RVOT and the pulmonary arteries. In addition CMR in TOF also yields 
a wealth of functional parameters that have become essential in clinical 
decision making. 

Oosterhof et al. have reported that RV EDV more than 160 mL/m2 
or RV ESV more than 82 mL/m2 in CMR prior to repair of significant 
pulmonary regurgitation is associated with decreased chances of 
normalization of RV volume [39]. RV-Dilation >150-160 ml/m2 with 
decreased RV function is now regarded an important cut-off parameter 
for the timing of pulmonary valve (PV) replacement. Gender specific 
normal CMR values for ventricular volumes and myocardial mass for 
children and adolescents have been published recently [40] as well 
as for patients after repair of TOF [41]. Gender specific percentiles 
of CMR parameters in patients with repaired TOF computed for an 
age range from 8 to 40 years show changes over time in LV volumes 
especially in females and RV volumes in both male and females. Also bi-
ventricular ejection fraction (EF) decreased in male patients, whereas 
in female patients only RV EF decreased. This should be considered 
when defining thresholds for intervention. Gender-specific percentiles 
for the individual patient may help in finding the optimal time point 
for PV replacement [41]. 

The confounding influence of residual right ventricular outflow 
tract (RVOT) obstruction combined with pulmonary regurgitation 
(PR) vs. isolated PR after TOF-repair has also been addressed lately. 
Residual RVOT obstruction was associated with smaller RV-volumes 
and higher RV-EF. Thus, TOF patients with residual RVOT obstruction 
may need, earlier PV replacement, i.e. even when RV-volume is lower 
than 160ml/m2 in CMR, compared to those with no RVOT obstruction 
[42].

Another predictor for RV function and increased risk of sudden 
cardiac death due to ventricular arrhythmia is the extent of ventricular 
fibrosis. This can be assessed by late gadolinium enhancement in CMR 
[13,15,43]. The more fibrosis detected in CMR by LGE, the higher the 
risk for sudden cardiac death and deteriorating RV function. 

Intra-(RV) and inter-ventricular, as well as atrio-ventricular 
dependence has been addressed in recent CMR studies in repaired 
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TOF. Echocardiography parameters such as tricuspid- and mitral 
annular plane systolic excursion (TAPSE, MAPSE), speckle tracking 
and myocardial strain have been related to CMR findings. Their 
potential in routine clinical echo examination and their role as 
predictive parameters for the timing of necessary interventions has 
been evaluated [44-46]: A) The individual components of the RV react 
differently to volume overload [47]. B) Moderate systolic and diastolic 
right ventricular dysfunction appears to be associated with impaired 
right atrial function in TOF patients, which corresponds to decreased 
TAPSE in echocardiography [45]. C) Despite normal EF on CMR 
and echo, TOF patients exhibit a decreased 2D-longitudinal strain, 
suggesting subclinical functional impairment [44].

The accuracy of 3D-echocardiography has also been compared to 
CMR in TOF patients and has been shown to decrease significantly 
with increasing RV-sizes, while CMR values remain relatively robust 
[48].

CMR is also used to plan percutaneous pulmonary valve 
interventional (PPVI) replacement and document ventricular 
improvement in follow up examinations [49]. Of note, MRI based 
evaluation of pulmonary valve function can be limited after stent 
mounted interventional valve replacement, due to the artifacts 
produced by metal stents. 

Coarctation of the aorta (CoA)

The congenital narrowing of the aorta is frequently located in 
close vicinity of the site of ductal insertion (aortic isthmus) [50]. In 
infancy and with critical coarctation the treatment of choice is surgery. 
Elder patients with less severe CoA and subjects with re-coarctation 
after initial surgical repair are eligible for interventional therapy using 
balloon angioplasty or stent implantation [51-53]. Follow up of patients 

after corrective surgery for CoA can be difficult if the patient reaches 
adult age. Echocardiography is very limited, once the patient is grown-
up, and the aortic arch is only poorly visualized. 

Recent studies show that a considerable number (up to 50 
percent) of patients after corrective surgery for CoA develop aortic 
abnormalities. However, a significant number of these patients are 
asymptomatic [54]. A common complication after surgical repair of 
coarctation is the development of re-coarctation or aortic aneurysms. 
Patients with bicuspid aortic valves appear to be at a higher risk for 
developing re-coarctation whereas patients after surgical repair with 
patch plasty rather tend to develop aortic aneurysms [55-57]. It is 
therefore desirable to detect these abnormalities at an early stage in 
order to commence treatment before adverse effects can manifest or 
become irreversible. 

CMR and MR angiography are excellent tools to evaluate left 
ventricular function, associated aortic valve malformation as well as 
aortic arch morphology. Residual coarctation or formation of aortic 
aneurysms can be detected reliably [58-60] (Figure 2). In addition, 
patients with CoA show a high prevalence of associated cardiovascular 
abnormalities which can also be detected using CMR imaging 
techniques like 3D SSFP sequences [58,61].

CMR imaging in patients with CoA also has high prognostic 
value regarding the likelihood of postoperative complications. Late 
systemic hypertension or re-coarctation after surgical repair appear 
to be predictable to some extent using aortic arch morphology and 
flow measurements [59,62-65]. New imaging techniques such as 4D 
flow measurements can be used to evaluate hemodynamic indicators 
like vortex formation, vascular strain and collateral-vessel-flow. These 
CMR techniques employed after surgical repair may help predict 
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Figure 1: Tetralogy of Fallot. 
A: 4 chamber view cine imaging with normal size of RV and LV. B: Enlarged RV and normal sized LV in a patient with pulmonary regurgitation after repair of TOF with 
transanular patch plasty. The apex is formed by the RV (*) while in a normally sized heart, it is formed by the LV. C: Volume change over time from flow measurement 
of the pulmonary trunk showing severe pulmonary regurgitation with 64% regurgitant fraction. D: VR 3D Reconstruction of the right ventricle and pulmonary arteries 
from MR angiography. Valvular and supravalvular stenosis in the homograft (HO) and stenosis of the RPA (+) with aneurysmatic enlargement of the LPA (*) in a patient 
with TOF after corrective surgery with pulmonary valve replacement by homograft. 
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complications and determine the schedule for follow-up screenings or 
interventional therapy [66-68]. 

In patients with CoA after interventional therapy dedicated 
imaging sequences like gradient echo cine sequences using a high flip 
angle can be used to characterize coarctation stents and estimate stent-
associated stenosis using 3D-angiography and phase-contrast flow 
mapping [69,70]. Still, depending on the material of the coarctation-
stent used, there are limitations for the assessment of in-stent-stenosis 
and morphology using CMR, which may necessitate the alternative use 
of cardiovascular CT [71-73].

An interesting future prospect for the use of CMR in patients 
with CoA may be personalized 3D hemodanymic simulations based 
on CMR data. Possibly, this could help to determine whether a patient 
would benefit more from either surgery or interventional therapy. 
Using computer-generated hemodynamic simulations it would be 
possible to compare the changes in simulated hemodynamics after 
either procedure [68,74]. 

Transposition of the great arteries (TGA)

Transposition of the great arteries TGA is the second most 
common cyanotic heart defect after TOF. It is subdivided into simple 
and complex TGA. Depending on the position of the aorta, it is also 
subdivided into dextro (D) and levo (L or congenitally corrected (cc)) 
TGA. 

Survival of patients with dTGA is dependent on sufficient mixing 
of oxygen saturated and depleted blood on the atrial level. This mixing 

is augmented by additional shunt connections that increase pulmonary 
vascular perfusion and thereby left atrial pressure (i.e. VSD, PDA). 
Surgically, patients with dTGA are nowadays corrected by the arterial 
switch operation (ASO). The procedure involves reposition of the 
great arteries to their corresponding ventricle (LeCompte maneuver), 
accompanied by excision and reimplantation of the coronary arteries, 
early in life. 

The different forms of repair/ palliation present a challenge for 
the CMR examiner. For post operative follow up CMR can be most 
valuable. 

TGA after anatomical correction by arterial switch operation 
(Jatene procedure): The arterial switch operation (ASO) can be 
associated with stenosis of the pulmonary artery due to the LeCompte 
maneuver, supravalvular stenosis of the aorta or pulmonary artery, 
aortic root dilatation, aortic valve regurgitation or coronary problems. 

Vascular anatomy and valve patency are evaluated using cine 
imaging, MR-angiography with 3-D reconstruction and velocity 
encoded phase contrast techniques (Figure 3). Coronary morphology 
at least in the proximal part can be assessed by MR-angiography, too. 
The effect of coronary stenosis on myocardial perfusion can be seen 
in sequences involving perfusion stress imaging with adenosine or 
dobutamine. 

Echocardiography and CMR have been compared in patients 
after arterial switch operation. Echocardiography underestimated RV 
function, image quality and visualization of the baffles was superior in 
CMR [75]. Unbalanced distribution of pulmonary blood flow due to 
pulmonary arterial branch stenosis after ASO appears to be associated 
with reduced exercise capacity and increased ventilator drive. CMR can 
help in differentiating the pulmonary artery lesions that are functionally 
important [76].

Figure 2: Aortic Coarctation.
A: MR angiography of native coarctation of the aorta in a 9 year old boy with 
subtotal stenosis at the level of the aortic isthmus (*) and multiple subclavian 
and intercostal collaterals (+) inserting into the descending aorta (DAO) distal 
to stenosis (AO= aorta). B: Virtual reality (VR) 3D reconstruction from MR 
angiograpy in a 6 year old girl with aortic coarctation (*) and collaterals (+). C: 
VR 3D reconstruction from MR angiography after surgical resection of aortic 
coarctation and end-to-end anastomosis. Only very slight residual narrowing 
at the site of the former stenosis (*). D: VR 3D reconstruction form MR 
angiography of re-stenosis (*) after surgical resection of aortic coarction and 
end-to-end-anastomosis. AAO = ascending aorta, DAO= descending aorta.

Figure 3: TGA.
TGA after arterial switch operation (ASO) and LeCompte maneuver . The 
pulmonary artery (PA) is brought anterior of the ascending aorta (AAO) and the 
LPA and RPA “flow” around the AAO. DAO=descending aorta, SVC=superior 
caval vein.
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TGA after atrial switch procedure (Mustard or Senning 
procedure): Since the 1960’s, patients have been or - if additional 
cardiac malformations exsist that make the arterial switch correction 
impossible - still are palliated by the atrial switch operation techniques 
such as Mustard or Senning procedures. These involve the creation 
of an intraatrial artificial tunnel that shunts desaturated blood from 
the caval veins to the left sided AV-valve and via the left ventricle to 
the pulmonary artery. Saturated blood from the pulmonary veins is 
shunted to the right sided AV-valve and via the right ventricle to the 
aorta. 

The very unusual cardiac anatomy after atrial switch procedures 
can be assessed by cine and 3D-imaging in CMR. The venous baffle, 
RV- (systemic ventricle) and LV- (sub-pulmonary ventricle) function, 
baffle leaks or obstructions can be detected by CMR using cine imaging 
and inplane flow maps (Figure 4). 

For patients late after Mustard/ Senning procedures, a correlation 
between CMR derived RV systolic and diastolic volumes, NT-proBNP 
and QRS duration on ECG has been shown [77]. Moreover, compared to 
congenitally corrected TGA (ccTGA), dTGA patients after atrial switch 
procedures cannot increase stroke volume during stress [78]. They also 
exhibit impaired ventricular filling as well as decreased contractility in 
dobutamine stress CMR [79]. The RV EF, QRS duration and incidence 
of arrhythmia have been shown to correlate with LGE detectable scar in 
patients after arterial switch operation and with congenitally corrected 
TGA (ccTGA) [14,80]. Function of the pressure unloaded LV (i.e. 
sub-pulmonary ventricle) after atrial switch has also been looked at by 
CMR: Decreased ventricular torsion and diastolic abnormalities have 
been implied to be measures of subclinical ventricular dysfunction [81]. 
Aortic function appears to be compromised in patients with TGA and 
atrial switch with significant dilatation of the aortic annulus and the 
sinus of Valsalva. The ascending aorta exhibits reduced distensibility in 
these patients. No correlation with RV size, function and mass in the 
young sample group could be demonstrated [82].

identify stenosis at the anastomosis sites (usually right PA with SVC 
and IVC), assess ventricular function and valve patency and evaluate 
fibrosis as a predictive parameter (Figure 5A). 

Reduced venous flow in CMR has been linked to suboptimal 
Fontan hemodynamics and failing Fontan circulation [83]. Venous 
flow and especially its pulsatility has been compared in atrio pulmonary 
anastomosis (APA), lateral intracardiac tunnel (LIT) and extracardiac 
tunnel (ET) Fontan modifications. As could be expected, APA was 
associated with more pulsatile flow, but also with increased backflow, 
atrial enlargement and occurrence of arrhythmia compared to LIT and 
ET [84]. Moreover, collateral flow has been identified as a contributor 
to enhanced pulmonary flow during stress, while decreased diastolic 
compliance is one cause of ventricular dysfunction [85]. Recently, 
4D-Flow maps of Fontan circulation have been acquired (see picture 
5 B-D) and different modifications such as the lateral tunnel and the 
extracardiac conduit have been compared with this technique. The 
different modifications exhibit different flow patterns and formation 
of vortices depending on the preceding operative steps (i.e. Glenn or 
Hemifontan) [86]. These studies may help to determine the effect of 
flow dynamics - seen also in conventional angiography and evaluated 
subjectively – on the long term function of Fontan circulation. 
However, further studies are necessary to implement these findings 
into clinical practice. Exercise capacity of Fontan patients is usually 
lower than that of healthy children or adults in the corresponding age 
group. However, CMR derived myocardial mass and functions do not 
correlate very well with BNP levels, patient status, physical exercise 
capacity or prognosis [87].

Figure 5: Fontan/ TCPC.
A: Reconstructed MR angiography of a patient with tricuspid atresia after 
completion of a total cavo pulmonary connection (TCPC). An extracardiac 
conduit (CO) connects the IVC to the right pulmonary artery (RPA), while the 
SVC is anastomosed directly to the RPA (Glenn anastomosis). B-D: 4D-Flow 
measurement of the Fontan tunnel and Glenn anstomosis (anterior (B), lateral 
(C) and posterior (D) views). Blood flow dynamics are visualized by vectors and 
blood from the IVC flows preferentially into the RPA (yellow), while the SVC 
drains into the LPA (blue). AO= aorta; LPA= left pulmonary artery, SVC/ IVC= 
superior/ inferior caval vein.
(B to D: courtesy of Prof. Michael Markl, Director Cardiovascular MR Research, 
Northwestern University, Chicago, IL, USA).

Figure 4: TGA.
TGA after atrial switch operation with Mustard procedure. A: The aorta (AO) is 
positioned anteriorly and arises from the hypertrophied, morphologically RV. 
The pulmonary artery (PA) is positioned posteriorly and arises from the LV, 
which is smaller and has less myocardial mass. The septum (*) is pertrudes 
into the LV due to increased RV pressure. B: Baffle view in TGA after Mustard 
procedure with a baffle from the SVC and IVC to the mitral valve (MV), with 
the superior (+) and inferior (*) baffle. C: In plane flow map of the same view.

Fontan circulation/ total cavo pulmonary connection (TCPC)

After univentricular palliation following the modified Fontan 
principle (TCPC), patients usually have to live with one ventricle 
that supplies the systemic circulation. The pulmonary circulation 
is maintained passively and aided by a suctioning component of the 
ventricle and by the varying intrathoracic pressure during in- and 
exspiration. CMR is very helpful in imaging the TCPC anatomy, 
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Miscellaneous lesions

Anomalous pulmonary venous return: Total and partial 
anomalous pulmonary venous return (APVR) can be diagnosed by 
CMR. Anatomic details and vessel aberrancy can be shown by MR 
angiography and dedicated 3D multiplanar reconstructions (Figure 6). 
The magnitude of the shunt volume can be assessed by velocity encoded 
flow measurements to quantify pulmonary and systemic blood flow 
(Qp and Qs) [88-90].

Recently, attempts have been undertaken to use 4D-velocity 
encoded cine MR imaging to improve diagnosis of APVR [91]. As with 
other 4D-flow studies, further data is needed to validate the use of this 
modality in the clinical setting.

Arrhythmogenic right ventricular cardiomyopathy (ARVC): 
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a 
rare, but important cause for ventricular tachychardia and sudden 
cardiac death in children and young adults [95,96]. ARVC has 
been identified as agenetically determined disorder resulting in a 
progressing fibrofatty replacement of right ventricular cardiomyocytes 
[97]. The morphological correlate of ARVC is the development of 
wall aneurysms and segmental dilatation of the RV. The three typical 
sites of dysplasia are the RV apex, the inflow portion and the outflow 
tract (“triangle of dysplasia”) whereas left ventricular involvement is 
possible but rare [98]. Due to the progressing nature of the disease, 
severity and clinical presentation may vary from unspecific symptoms 
like dizziness, palpitation and premature ventricular contractions 
(PVCs) to more severe findings like syncope, right ventricular heart 
failure, cardiomegaly and ventricular tachycardia [99]. It is not 
uncommon that in a previously healthy young adult the first and 
only documented symptom of ARVC is sudden cardiac death due to 
ventricular fibrillation [100]. 

CMR is an important diagnostic tool in the diagnosis of ARVC. It 
can reliably and noninvasively visualize abnormalities of the ventricular 
morphology including increased trabecularization, dilatation or 
aneurysm formation [101,102]. Using SSFP cine-sequences with high 
spatial and temporal resolution ventricular function and regional 
abnormalities in ventricular wall motion, such as akinesia, dyskinesia 
or dyssynchronous contraction can be assessed reliably [103,104].

The aforementioned pathological correlates of ARVC in CMR 
imaging are essential parts of the Revised Task Force Criteria for 
the diagnosis of ARVC that should be analyzed in any patient being 
suspected of ARVC [105]. Major CMR imaging criteria are regional 
right ventricular akinesia, dyskinesia or aneurysm formation in 
combination with either a pathological ratio of RV EDV to BSA (> 
110 ml/m2 in males and >100 ml/m2 in females) or a reduced RV EF 
<40% [106,107]. Additionally myocardial LGE can be utilized for 
tissue characterization. However late enhancement analysis of the 
right ventricle can be more difficult than in the left ventricle due to its 
thinner walls and possible signal confusion with fat [108]. 

Hypertrophic cardiomyopathy (HCM)/ Hypertrophyic 
obstructive cardiomyopathy (HOCM): For the latest progress in MR 

Figure 6: Total anomalous pulmonary venous return.
VR 3D reconstruction from MR angiography. Complex malformation with single 
ventricle and total anomalous pulmonary venous return. Drainage of the left 
pulmonary veins (PV) into the left SVC (LSVC) and the right PVs into the SVC. 
Both right and left SVC are connected by an enlarged anonymous vein (AV). A: 
anterior view, B: posterior view.

Figure 7: Ebstein’s Anomaly.
SSFP-Image of an atrialised RV in Ebstein’s anomaly. The very large right 
atrium (RA) is connected to the RV by a dysplastic tricuspid valve (TV) that is 
displaced towards the apex of the heart (*).

Ebstein’s anomaly: Ebstein’s Anomaly is a combination of an 
atrialized portion of the RV, tricuspid valve dysplasia with displacement 
of the septal origin of the valve towards the apex of more than 25mm 
and RV dysfunction (Figure 7). Few studies have addressed Ebstein’s 
Anomaly by CMR and patient numbers are small. CMR is reliably used 
for verifying the initial diagnosis as well as follow up of RV function 
[92]. In a recent study, CMR derived ventricular and atrial measures 
were related to exercise capacity data. Ebstein patients exhibit increased 
RV sizes, atrialized portions of 25+/-24 ml/m2 and decreased peak 
oxygen uptake (VO2) of 65+/-20% of normal values. The atrialized RV 
volume from CMR was related to aerobic capacity and the volume of 
the atrialized RV can be used as a measure for the severity of the disease 
[93]. Attempts have been undertaken to classify severity of Ebstein’s 
Anomaly prenatally by combination of fetal echocardiography and 
fetal MRI [94], but further steps are needed to implement this in 
clinical routine.

Cardiomyopathy: CMR is increasingly used to identify and 
asses risks in patients threatened by sudden cardiac death due to 
cardiomyopathies such as hypertrophic obstructive cardiomyopathy 
(HOCM) or arrhythmogenic rightventricular cardiomyoapthy 
(ARVC).
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and HCM/ HOCM, we would like to refer the interested reader to 
recent and comprehensive review articles.

Summary
CMR is a very useful tool in the diagnosis, evaluation and 

management of patients with congenital heart disease (CHD). For 
CHD patients, the whole spectrum of CMR techniques is employed 
and delivers valuable information concerning ventricular and valve 
function, anatomy of malformed, surgically or interventionally 
corrected or palliated hearts and great vessel defects. It helps to correlate 
exercise capacity and prognostic factors such as scar formation, 
fibrosis or ventricle size. Depending on the individual defect, CMR 
complements other imaging modalities such as echocardiography and 
heart catheterization. 

New MR techniques are being developed that in future might help 
to increase the role of CMR in the clinician’s decision making. Among 
these are real time MRI, 3-/4D-Flow measurements, virtual surgery 
based on CMR data and the MRI heart catheterization laboratory. 
MRI based catheter interventions and measurements are possible in 
experimental settings. A future aim is the use of the advantages of CMR 
(high resolution, 3 dimensionality, non-x-ray) and combine them with 
those of the catheterization laboratory (measurement of pressures, 
oxygen saturation, interventions).

Overall, CMR already does play an ever increasing role in the 
management of CHD patients. 
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