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INTRODUCTION

Antimicrobial resistance has markedly gained international 
attention and recently been tiered by the World Health 
Organization as one of the three most critical threats to public 
health in the 21st century [1]. It has thwarted efforts to treat 
infectious diseases and has subsequently led to increasing health 
care costs. About $55 billion is estimated to be the associated 
annual cost of antibiotic resistance [2]. Aside from the economic 
and clinical burden it impinges, estimated annual deaths causally 
linked with antimicrobial resistance infection in both the United 
State and Europe is more than 35,000 [3]. With unfavorable 
projections pointing to about 10 million deaths in the next thirty 
years [2]. The advent of this adaptive mechanism developed by 
bacteria to counter toxic effects from their environments has 
also presented a persistent challenge to the development of 
new antibiotics due to the potential economic losses involved 

in developing new antibiotics [4]. The conventional approach 
to detecting antimicrobial susceptibility in bacteria has been 
culturing bacteria from an infected patient in the lab. However, 
this process for non-fastidious bacteria may require 16 to 18 
hours whereas as others may take more than 24 hours to obtain 
results, leading to high mortality rate for infections resulting from 
antibiotic resistance [5]. Recent developments in whole genome 
sequencing rendering them inexpensive and widely used have 
furnished best-hit tools such as Basic Local Alignment Search 
Tool (BLAST) to be used in identifying antimicrobial resistance 
genes in databases [6-7]. However, best-hit and sequence-similarity 
tools are fraught with difficulty in identifying novel ARGs, thus, 
producing unacceptable numbers of false negatives [8-10]. Word 
embeddings have been used as representations of words and 
have applications in recommender system, semantic, similarity, 
analogy, etc. tasks in natural language processing [11-14]. The 
application of word embedding techniques in bioinformatics and 
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medical-related classification problems such as classification of 
antimicrobial peptides, named entity recognition, chromatin 
accessibility predictions has yielded satisfactory results [10,15,16]. 
The two versions of Word2vec, SG and CBOW with GloVe 
are the commonly used word embedding techniques. However, 
since the inception of these neural word-embedding models, 
scholarly discourse has wobbled on the definitive superiority in 
performance. Evidently, word embedding models have performed 
at variance in different tasks and downstream processing tasks. 
In a work involving the identification of substrate specificities of 
transporters comparing both word2vec models, SG outstripped 
CBOW [17]. Also, it was found that the SG model yield better 
results in semantic similarities of health care words than GloVe 
[18]. However, no study has comparatively exploited the use of 
these popular word vectors for the identification of ARGs. In this 
paper, we first developed vectors of trigrams generated from protein 
sequences using SG, CBOW and GloVe word embedding. In this 
paper, we generated vectors of protein sequences using CBOW, 
SG and GloVe vectorization models. We further comparatively 
assessed the quality of these vector by visualizing the vectors in 
space and also by measuring the similarity of pairs of trigrams. 
The vectors were used as embedding layers in a bidirectional 
Recurrent Neural Network (RNN) to classify ARGs. After the 
implementation, three RNN models for identifying ARGs were 
developed, namely, GloVe-based Antibiotic Resistance Neural 
Network (GARNN), CBOW-based Antibiotic Resistance Neural 
Network embedding layer (CARNN), SG-based Antibiotic 
Resistance Neural Network embedding layer (SGARNN). By 
employing these embedding models, the unique properties of 
each the models are explored and leveraged to identify ARGs and 
enabling a comparative analysis of their performance in ARGs 
prediction as well.

MATERIALS AND METHODS

Word2vec and global vector neural embedding models 

Word2vec model for learning the vectors of words is a shallow 
(one-hidden layer) neural network. This shallow neural 
embedding can be implemented in two different ways, namely 
SG and CBOW. The Skip-gram model seeks to predict context 
words (surrounding words) given a target word with a predefined 
context window, whereas CBOW does the opposite by attempting 
to predict the target word based on given context words. The 
word vector distribution in space is such that, words that are 
contextually common in the corpus are closely represented 
together in the vector space. For a given sequence of target words, 
w1, w2, …wT, the objective function of skip-gram is represented 
in equation 1 as:
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where c is the size of the context window. The aim of skip-gram 
is to maximize the log probability of the above function. CBOWs 
on the other hand, predicts the target word based on the context 
words with objective function as shown below:
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be predicted and ℇ is the training corpus. In the GloVe word 
embedding development, first, word-word co-occurrence matrix 

say X is created from a training corpus, whose Xij indicates the 
number of times word j occurs in the context of word, i, in the 
corpus. Also, let X
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context of word i, demonstrated that the relatedness of any word 
k to word i or to word j is distinctively represented by the ratios of 
the co-occurrence probabilities, rather than the raw probabilities 
[19]. The resulting model is summarized in the equation below:
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Where wi and wj are word vectors and  is the context word 
vectors. P

ik
=X

ik
/X

i
 is the probability of the word k appearing in 

the context of the word, i.

The developers of the GloVe word embedding techniques 
capitalized on two frequently used techniques, global factorization 
method and local context window method (word2vec). The 
intuition behind GloVe word embedding is that word vectors are 
better learnt with the ratios of co-occurrence probabilities rather 
than the co-occurrence probabilities themselves.

Sequence pre-processing 

Protein sequences from UniProt databases were merged to build 
the word corpus [20]. Overlapping trigrams of the sequences were 
produced from the corpus and vectorized using SG, CBOW and 
GloVe models, separately. The three different vectorized corpora; 
skip-gram, continuous-bag-of-words and Global vectors were 
saved. A vector dimension for each trigram was set at 200 for the 
training of each of the three corpora. The context window size 
and vector dimensions are hyper-parameters that can be tuned 
in SG, CBOW and GloVe neural word embedding to produce 
optimal results. Window sizes of ± 3, ± 4, ± 5, were trialed and 
window size of ± 5 was found apt for all the models and chosen, 
after their performances on the test dataset (Figure 1).

Figure 1: Prediction mechanisms of the word2vec models. (A): Skip-
gram as demonstrated, predicts the context trigrams given the target 
trigram. The target trigram, MSK used as input as one-hot encoding 
and the output KSV is predicted also as one-hot encoding; (B): 
Continuous-bag-words model predicts the target trigram given context 
trigrams. The input trigrams each are input as one-hot, and the 
output trigram predicted also as one-hot encoding; Note: ( ): Context 
trigrams; ( ): Target trigram.
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Figure 2:
vectors from the inner LSTM are used as input into the outer LSTM.

vector, it is the input gate, ft is the forget gate, ot is the output 
gate, gt is the input modulation gate, ct is the memory cell state, 
m is the state of the function at time t, ⨀ is the element-wise 
multiplication (Figure 2).

Models training and evaluation

We explored the context of protein sequences from both 
backwards and forward states simultaneously by incorporating 
bidirectional network in the RNN architecture for estimation of 
the output vector. Summarily, the RNN architecture was made 
up of two hidden layers of LSTM each fused with 32 LSTM units. 
The dropout technique was used to randomly remove 50% hidden 
neurons in both layers. This was done to avoid the problem of 
overfitting. Adaptive moment estimation optimizer was used in 
backpropagation to train the rest of the weights. The dataset was 
trained at 100 epochs and batch size of 32. Both training sequences 
were padded to lengths of 450. These parameters and techniques 
were used in training and tuning the hyper-parameters of the 
models to identify ARGs. Cross-validation approach, where k 
was set to 10 folds was used in training the models. K-1 folds were 
used in training and tuning hyper-parameters of the GARNN, 
SGARNN and CARNN models whereas the remaining fold was 
used in evaluating the model. The performances of GARNN 
and SGARNN and CARNN models were evaluated on accuracy, 
precision, recall and Matthew Correlation Coefficient (MCC). 
After 10-fold cross validation, the mean values were reported as 
results ± Standard Deviation (SD). Analysis of Variance ANOVA 
(SAS, version 16.0, SAS Institute Cary, North Carolina) was used 
to determine differences in performance at a significance level of 
p<0.05. The mean differences among the models’ performances 
were compared using Tukey’s test. Accuracy=(TP+TN)/
(TP+TN+FP+FN), Precision=TP/(TP+FP), Recall=TP/(TP+FN), 
F1=2*(Precision*Recall)/(Precision+Recall), MCC=(TP × TN-FP 

FP=False Positives, TN=True Negatives, FN=False Negatives, 
MCC= Matthew Correlation Coefficient. The performances of 
our three models on independent test dataset were compared to 
four bioinformatic baseline models, namely, BLAST, Resistance 
Gene Identifier (RGI) and HMMER and fARGene. We also 
experimented the performance of BLAST using three different 
percent identity cut-offs of 35%, 50% and 80% (Figure 3). 

Experimentally verified protein sequences of ARGs were 
obtained from the Comprehensive Antibiotic Resistance 
Database (CARD) and non-ARGs protein sequences considered 
as negative dataset were obtained from PathoSystems Resource 
Integration Center (PATRIC) database [21,22]. Also, Cluster 
Database at High Identity with Tolerance (CD-HIT) with 90% 
and 50% identity was used to reduce redundancy in the positive 
and negative training datasets, respectively [23]. Both ARGs and 
non-ARGs sequences whose sequence lengths were less than 
30 amino acids were also discarded. After the preprocessing, a 
training set was created consisting of 1000 sequences of ARGs 
and 1000 Non-ARGs. Protein sequences were sliced as trigrams 
(3-mers) and each overlapping trigram is considered a word. The 
vector representations of each resulting trigram were generated 
separately from the three vectorized corpora using SG, CBOW 
and GloVe neural embedding models. 

Bidirectional long short-term memory recurrent neural 
network 

The embedded-vector representation of each of the trigrams 
present in the protein sequences considered as a “word” was fed 
into an RNN as input. To curb the issue of gradient vanishing 
in recurrent neural networks’ inability to store information over 
extended temporal distance, we employed nested Long Short-
Term Memory (LSTM) in the RNN architecture [24,25]. LSTM 
RNNs use in genomics has produced good results due to their 
ability to memorize long sequence information [26]. Nested 
LSTM cells functions are characterized similarly as of LSTM 
cells except that the addition operation used in computing the 
memory cell state, ct is replaced with a learned, stateful function 
[24].

1( )t i t xi t hi ii x W h W bσ −= + +  
1( )t t xf t hf ff x W h W bσ −= + +  

........................ (5)

 
........................ (6)

 ........................ (7)

  ........................ (8)

 A two-layer bidirectional nested Long Short-Term Memory (LSTM) showing the inner and outer LSTM. Note: The output embedding 

× FN)/√((TP+FP)(TP+FN)(TN+FP)(TN+FN)), TP=True Positives,

........................ (4)

where t is the time step, h is the hidden state vector, xt is the input Preparation of training dataset
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was used to assign a sequence as ARG. HMMER program uses 
sequences to build profile hidden Markov models to identify 
sequence homology. With HMMER, we constructed a database 
from ARGS sequences obtained from the CARD database and 
subsequently used the pHmmer program to search the database 
using out test data set as query sequences. An e-value of 0.001 
cut-off was used to ascribe a sequence as ARG. We evaluated the 
performance of all models on the test data set. 

RESULTS

Training sequence distribution 

The sequence length distribution of both negative and positive 
training dataset sets is displayed. Protein sequences were sliced 
as trigrams (3-mers) and each overlapping trigram is considered a 
word. The vector representations of each resulting trigram were 
obtained separately from the three vectorized corpora using SG, 
CBOW and GloVe neural embedding models (Figure 4). 

Testing our models and baseline models on independent 
test set

Known antimicrobial resistance and susceptible genes were 
obtained from AMRFinder database and PATRIC database, 
respectively and were used as independent test data set [22,27]. 
The sequences were aligned against the training samples to make 
sure the test samples were independent from the training samples 
using CD-HIT with 90% identity [23]. After processing these 
sequences, 910 were used as test samples (455 ARGs and 455 
non-ARGs). Four baseline models, RGI, HMMER, fARGene 
and BLAST (BlAST+2.9.0, database version 5) were used as 
references for the performances of our developed models [21,28-
29]. Antibiotic resistance genes from the CARD database were 
used to build a local BLAST database and we experimented with 
three different percent identity cut-offs, 35% (BLAST 35%), 50% 
(BLAST 50%) and 80% (BLAST 80%) to assign a sequence as 
an ARG. RGI was also implemented locally and a cut-off of 80% 

Figure 3: Diagrammatic illustration of the complete methodology using Bidirectional Long Short-Term Memory (BiLSTM) Recurrent Neural 

genes and non-antibiotic resistance genes were created and each trigram was considered as a word. The RNN consists of two layers of bidirectional 
LSTM each with 32 neurons. Sigmoid activation function was used to predict whether a sequence is a resistance gene or not.

Network (RNN) for the prediction of antibiotic resistance genes. Note: Overlapping trigrams of protein sequences of both antibiotic resistance 
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model and its performance was significantly lower than GARNN 
and SGARNN models on all metrics, except in precision (Figure 
6). We further evaluated the performance of our developed 
models against four baseline models, namely, HMMER, RGI, 
fARGene and BLAST on the independent test dataset (Table 2). 
All our developed models outperformed the baseline models, 
Blast and RGI. Out of the 455 antimicrobial resistance genes, 
GARNN model was able to identify all except 1 (sensitivity 
of 99.78%), achieving a probability more than 0.99 on 450 
samples. SGARNN was also able to identify 452 (sensitivity of 
99.34%) out of the 455. CARNN on the other hand, identified 
all antimicrobial resistance genes with probabilities more than 
0.99, achieving a perfect sensitivity on the test data set. BLAST 
achieved the lowest sensitivity score among all the models. As 
the percent identity cut-off decreases, the sensitivity increases, at 
the expense of precision. At 35% identity cut-off, BLAST could 
manage 80% sensitivity (364 out of 455) with 70 precisions. At 
35% identity cut-off, high false positive rate results were produced 
by BLAST. BLAST was able to identity all the non-antimicrobial 
resistance genes at 80% identity cut-off; however, it could only 
identify less than half of the antimicrobial resistance genes. At 
the universal cut-off, 50% cut-off, BLAST was able to identify 
only 54% (246 out of 455) of the resistance genes. RGI was also 
able to identify about 99% of the non-resistance genes, however, it 
misclassified about 45 of the antimicrobial resistance genes (10% 
false negatives). Comparatively, RGI outperformed BLAST on all 
the metrics. The fARGene model was able to correctly identify 
all non-antimicrobial resistance genes, i.e., 100% precision [30]. 
It was able to identify 421 non-antimicrobial resistance genes 
out of the 455 (recall of 92.53%), which was lower than the 
recall score of all our models, in terms of recall. It attained an 
accuracy of 96.26%, only higher than one of our three models, 
SGARNN model which attained an accuracy of 95.27%. Three 
different percent identity cut-offs (35, 50, and 80%) in BLAST 
were experimented with. RGI model was also used at cut-off 
threshold of 80%, less than the recommended cut-off for clinical 
surveillance (90%). HMMER with e-value of 0.001 was used to 
assign a sequence as an antimicrobial resistant. Highest values are 
in bold for ease of recognition (Table 2).

Intrinsic comparison of SG, CBOW and GloVe word 
embeddings of protein sequences

The quality of word embeddings is often assessed intrinsically 
and extrinsically. Word representations are evaluated intrinsically 
by measuring the semantic or syntactic similarity among words 
independent of any downstream tasks of the embeddings. 
Extrinsic evaluation on the other hand tests the quality of the 
representations using downstream tasks such as sentiment 
analysis, relation extraction, etc. Here, we intrinsically test the 
quality of word embeddings developed in this study by measuring 
the similarity that exists between the vector representations of 
two trigrams using cosine similarity function. Averagely, trigrams 
generated by GloVe model exhibited the highest similarity 
between pairs of trigrams, followed by vectors generated by SG 
model. The cosine function gives information about the position 
of the amino acid trigrams in space and was calculated as, 

cos
|| |||| trigramB ||

trigramA trigramB
trigramA

θ ×
=

The higher the cosine value, the higher the similarity, and 
the lower the angle that is between the two trigrams (Table 
1). We computationally analyzed the three embeddings using 
t-distributed Stochastic Neighbor Embedding (t-SNE) [29]. The 
trigrams of 200 dimensions were projected unto a 2-dimensional 
space using t-SNE (Figure 5). 

Comparison of developed models with baseline models 

We compared the performance of the three models we developed 
on accuracy, recall, precision, F-1 score, MCC scores after 10-
fold cross-validation (Figure 6). Among our developed models, 
GARNN model achieved the highest accuracy, precision, recall, 
F-1 score, Mathew Correlation Score (MCC). For instance, 
GARNN achieved an accuracy of 98.55%, followed by SGARNN 
with an accuracy of 97.8%. It is worth noting that the difference 
in performance between GARNN and SGARNN is about 1% 
on all the metrics. Even though GARNN achieved highest 
performance on all metrics than SGARNN, no significant 
performance difference (p<0.05) exists among these two models 
on all metrics, however. CARNN model was the least performing 

Figure 4: Sequence length distribution of training set. (a): The sequences of the positive training set have a mean, median, mode of 82.28 aa, 295 
aa, 210 aa respectively; (b): The negative training set has 82.28 aa, 60 aa, 49 aa as its mean, median and mode respectively.



6J Proteomics Bioinform, Vol. 16 Iss. 04 No: 1000654

Obiri DA, et al. OPEN ACCESS Freely available online

Figure 5: T-distributed stochastic neighbor embedding visualization of trigram vectors training set of all three models. (A): Global vectors; (B): 
 ): Class; (  ): Anti-microbial resistance; (  ): Non anti-microbial resistance.

Figure 6: The mean scores of Global vector-based Antibiotic Resistance Neural Network (GARNN), Continuous bag of words--based Antibiotic 
Resistance Neural Network embedding layer (CARNN) and Skip-gram based Antibiotic Resistance Neural Network embedding layer (SGARNN). 

Gram embedding layer (SGARNN) among the models. (  ):GARNN; (  ): SGARNN; (  ): CARNN.

Skip-gram; (C): Continuous bag of words. Note: ( 

Note: The Recurrent Neural Network (RNN) with GloVe embedding layer (GARNN) produced the highest accuracy, followed by RNN with Skip-

Trigrams (words) Word2vec CBOW GloVe

LLA, LAE 0.34 0.34 0.67

DDL, DLL -0.02 -0.01 0.66

LLA, LLL 0.51 0.52 0.74

AED, EDD 0.29 0.27 0.53

MRI, RIL 0.19 0.16 0.44

ILL, LLL 0.57 0.56 0.71

LAE, DLL 0.31 0.27 0.38

Table 1: Comparison of the cosine similarity of pairs of words from Global Vectors (GloVe), Skip-Gram (SG), Continuous Bag of Words (CBOW) 
vectors.
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DISCUSSION

Literature does not contain a comparative study of these word 
vectors as an embedding layer in a recurrent neural network for the 
prediction of antimicrobial resistance genes. In this paper, three 
commonly word embedding techniques which are used in diverse 
areas such as recommender systems, sentimental classifications, 
etc. were employed as first layers in recurrent neural networks 
to identify antimicrobial resistance genes. We assessed the 
quality of the vectors generated by each of the word embedding 
models, hitherto, using them for the downstream classification 
of the antimicrobial resistance genes. The quality of the word 
vectors which were used in the neural network influenced the 
performance of the models. Also, the embedding models’ 
hyperparameters such as size of the corpus being trained, vector 
dimension, context window size in turn influenced the quality of 
the generated vectors. Contrary to the sterling performance of our 
three models, the four baseline models performed poorly in their 
ability to identify antimicrobial resistance gene. Comparatively, 
the fARGene tool was able to identify antimicrobial resistance 
genes the most among the baseline models. On the contrary, 
BLAST produced the worst performance in its ability to predict 
antimicrobial resistance genes and this result corroborates with 

Table 2: The performance of our models and the four baseline models on independent test vectors. 

Accuracy Recall Precision F1-score
Matthew correlation 

score

Models

GARNN 0.9769 0.9978 0.9578 0.9774 0.9547

SGARNN 0.9527 0.9934 0.915 0.9526 0.9044

CARNN 0.9637 1 0.9324 0.965 0.9299

BLAST (35%) 0.73186 0.8 0.7 0.7467 0.4681

BLAST (50%) 0.723 0.5429 0.8487 0.66 0.4783

BLAST (80%) 0.711 0.42 1 0.5815 0.5171

RGI 0.901 0.901 0.99452 0.8903 0.8176

HMMER 0.8945 0.7956 0.99178 0.882927 0.8049

fARGene 0.9626 0.9253 1 0.9612 0.9279

an already known evidence [7]. A percent identity cut-off of 80-95 
as proposed is appropriate and commonly acceptable to ensure 
stringency when using best-hit methods [31]. It is important to note 
that BLAST with 80% identity cut-off and fARGene were able to 
identify all non-antimicrobial resistance genes (100% precision). 
CARD’s RGI tool was able to identify more resistance genes than 
BLAST, but it could not identify as much as our deep learning 
models. RGI uses homology and single nucleotide polymorphism 
to predict resistance genes. HMMER like the other baseline 
models, produced little false positive results (high precision), but 
could not identify antimicrobial resistance genes much. These 
models are homology-based models and they are known to 
misidentify antimicrobial resistance genes and in certain instance 

produce high false positive rates [27]. It is also hard to build an 
all-encompassing database since new resistant genes emerge all 
the time. This may have contributed to the many false negative 
results produced by all the sequence-similarity models. The three 
models we developed in this paper were able to correctly identify 
almost all antimicrobial resistance genes obtained from the 
AMRFinder database [27]. The performance of the models can 
be attributed to the use of the embedding layers obtained from 
vectorization of the protein sequences. Even though all the three 
models demonstrated comparable performance, deep neural 
network with Global vectors as an embedding layer produced 
slightly higher performance on average than the two remaining 
models. Despite the effort to build a comprehensive corpus, there 
is the possibility of missing rare vocabularies which could impact 
the models’ performance on diverse dataset. Additionally, while 
the bioinformatic tools developed in this paper can contribute 
to the antimicrobial resistance research, they cannot be used as 
replacements for formalized laboratory methods. However, they 
can serve as valuable complementary tools to the traditional 
methods. The Natural Language Processing Antimicrobial 
Resistance Gene (NLPARG) tool is a valuable tool addition to 
the already existing bioinformatics tools for efficiently identifying 
antimicrobial resistance genes. NLPARG incorporates three 
diverse models to assist users to compare and evaluate their 
performance in ARGs prediction. Overall, NLPARG is an 
easy-to-use tool which can aid in the identification of diverse 
antimicrobial resistance genes and consequently contribute to 
the advancement of antimicrobial resistance research.

CONCLUSION

This paper illustrates the effectiveness of machine learning 
in identifying ARGs in bacterial sequences. We explored 
various word embedding techniques to demonstrate the utility 
and expanding the scope of the usefulness of state-of-the-art 
technologies in the field bioinformatics. Our findings reveal that 
our models outperformed the baseline homology-based models 
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k-mer embedding. Bioinformatics. 2017;33(14):92-101.   

17. Nguyen TTD, Le NQK, Ho QT, Phan DV, Ou YY. Using word 
embedding technique to efficiently represent protein sequences for 
identifying substrate specificities of transporters. Anal Biochem. 
2019;577:73-81.   

18. Dynomant E, Lelong R, Dahamna B, Massonnaud C, Kerdelhué G, 
Grosjean J, et al. Word embedding for the French natural language in 
health care: comparative study. JMIR Med Inform. 2019;7(3):e12310.   

19. Pennington J, Socher R, Manning CD. Glove: Global vectors for word 
representation. InProceedings of the 2014 conference on empirical 
methods in natural language processing (EMNLP). 2014:1532-1543.   

20. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. 
Nucleic Acids Res. 2019;47(D1):D506-515.   

21. Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand 
A, et al. CARD 2020: Antibiotic resistome surveillance with the 
comprehensive antibiotic resistance database. Nucleic Acids Res. 
2020;48(D1):517-525.   

22. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et 
al. PATRIC, the bacterial bioinformatics database and analysis resource. 
Nucleic Acids Res. 2014;42(D1):D581-D591.   

23. Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: A web server 
for clustering and comparing biological sequences. Bioinformatics. 
2010;26(5):680-682.   

24. Moniz JRA, Krueger D. Nested LSTMs. Proceedings of the Ninth Asian 
Conference on Machine Learning, PMLR. 2017;77:530-544. 

25. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 
1997;9(8):1735-1780.   

used in this paper, even when applied to previously unseen data. 
The diverse embedding models explored in this study displayed 
varying levels of performance, with certain of them excelling in 
specific metrics with some outperforming others some metrics. 
In particular, the deep learning model with Global vectors 
embedding layer demonstrated superior overall performance. 
Among the baseline models, fARGene tool emerged as the 
best performing method. The result of this study pushed the 
frontiers of the role that machine learning can play in healthcare, 
specifically in diagnostics. We also created a user-friendly and 
publicly available tools for predicting antimicrobial resistance 
genes based on the three embedding techniques presented in this 
paper. The tools are intended for academic use and to augment 
diagnostic processes, not to replace.
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