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Introduction
Tobacco and alcohol are the most commonly abused drugs by 

humans. Nicotine (NIC) is the major contributor in the continuance 
of tobacco use [1], while ethanol (EtOH) is the intoxicating agent in 
alcoholic drinks that can lead to abuse and dependence [2]. Alcohol 
use has been ascribed both positive and negative effects. While alcohol 
in low doses has been shown to provide cardiovascular protection [3], 
binge drinking is associated with higher incidents of cardiovascular 
disease and associated mortality [4,5]. As with alcohol, tobacco 
smoking has also been associated with cardiovascular problems. It 
has also been linked to coronary heart disease [6,7] and strokes [8,9]. 
Tobacco and alcohol use are leading causes of preventable death in the 
United States [10]. Smoking tobacco, the leading cause of preventable 
death, is accountable for approximately 467,000 deaths per year, while 
alcohol contributes to another 90,000 [10]. The most common type 
of polydrug use is alcohol and tobacco taken in concert [11,12]. The 
magnitude of tobacco smoking is extremely high among alcoholics [13] 
and is drastically higher than the rate in the general population [14,15]. 
Those who smoke are ten times more likely to be alcoholics than 
those who do not [16]. Those who are not alcoholics have been more 
successful than their alcoholic counterparts in quitting smoking, 49% 
to 7% respectively [16]. Although we know that the co-use of tobacco 
and alcohol is prevalent, little is known about the mechanisms of action 
when the two are used collectively. Clarification of these actions would 
be clinically useful in the treatment for the abuse of both tobacco and 
alcohol, as many requiring treatment for one also use the other.

Dopamine Dependent Mechanisms in the Mesolimbic 
System

Projections from the ventral tegmental area (VTA) to the nucleus 
accumbens (NAc), by way of the medial forebrain bundle, make up a 

vital component of the mesolimbic pathway [17-20]. The rewarding 
effects of both NIC and EtOH have been linked to the mesolimbic 
dopamine (DA) system [21-23], wherein an increase in DA in the 
NAc is thought to be vital for reward signaling. This system has been 
connected to the rewarding effects of many abused drugs [22,24-27]. 
The VTA consists of three major types of neurons: DA, γ-aminobutyric 
acid (GABA), and glutamate neurons. The most numerous are DA 
neurons that project to the NAc. The second, GABA neurons, inhibit 
DA neurons in local circuitry and project to other brain nuclei. Finally, 
there is a small population of glutamatergic neurons [28] which can 
innervate both DA and GABA neurons. The NAc is part of the ventral 
forebrain and is segregated into two regions: the shell and the core. 
Of the two regions, the shell has been shown to be important for the 
rewarding effects [29]. The medial VTA seems to consist of the highest 
number of DA neurons innervating the NAc shell [30]. 

Dopamine Independent Mechanisms in the Mesolimbic 
System

Although the mesolimbic DA system’s involvement has been 
known to be critical for most drugs of reward, drugs such as morphine, 
phencyclidine and NIC also manifest DA independent mechanisms. 
The necessity of this DA system in the rewarding properties of 
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benzodiazepines, barbiturates and caffeine is also questioned [29,31,32]. 
A rising hypothesis asserts that DA is not requisite for all rewarding 
effects of opiates, cannabis, cocaine and NIC. The idea that DA in the 
mesolimbic system is the only way by which reward occurs is perhaps 
too limiting. Evidence supporting a lack of DA involvement in drug 
reinforcement has been demonstrated in cocaine self-administration 
[33], and conditioned place preference [34,35]. Additionally, there has 
been confirmation that GABA neurons in the mesolimbic pathway 
are involved in the rewarding properties of opiates [36-38]. It has 
been reported that GABAA receptors in the VTA could be a gating 
mechanism wherein opiate naïve animals utilize a DA independent 
system, while opiate dependant, and opiate withdrawn, animals utilize a 
DA dependent system [39]. Following opiate exposure and withdrawal, 
VTA GABAA receptors change from acting in an inhibitory manner to an 
excitatory one. Moreover, high doses of the DA antagonist haloperidol 
neglected to stop the reinstatement of heroin seeking behavior, giving 
credence to a notion of a DA independent system, at least in the case 
of opiates [40,41]. Some assert that DA neurons are not exactly reward 
neurons, but instead may be pivotal for the initiation and reinstatement 
of drug use [42]. These conflicting reports on the necessity of DA for 
the reinstatement of drug use shows that the role of DA is not fully 
understood. Therefore, DA transmission in the mesolimbic pathway 
may be important for the motivational effects of abused drugs in 
dependent animals, while other systems could be exploited when 
animals are naïve [43,44]. These studies supply verification for the 
existence of DA independent mechanisms that also contribute to the 
reinforcing properties of drugs of abuse. 

Nicotine and Ethanol Reward Associated with the 
Ventral Tegmental Area 

The effects of both NIC and EtOH involve the VTA [45,46]. The 
direct excitatory effects of EtOH on neurons in the VTA have been 
observed [47,48]; both in vivo and in vitro recordings have shown this 
effect [49,50]. Rodents will self-administer NIC and EtOH individually 
into this region [51-55] and synaptic plasticity has been demonstrated in 
the VTA in response to both substances [56], giving further support to 
this theory. It is also well known that NIC binds to nAChRs throughout 
the brain. Rodents with NIC infusions into the VTA demonstrate 
conditioned place preference. However, similar infusions into areas 
dorsal or caudal to the VTA do not produce this preference, even if 
heavily populated by nicotinic receptors [57]. This demonstrates that 
the medial VTA is essential for the rewarding behaviors of NIC [58]. 
For the above-mentioned reasons, it is likely that the neural substrates 
underlying the co-use of NIC and EtOH depend on VTA neuronal 
activity. 

Other midbrain tegmental regions are involved in the reinforcing 
characteristics of drugs such as opiates and NIC [51,59]. Cholinergic 
receptors work together with neurons in the NAc, VTA, and 
pedunculopontine tegmental nucleus (PPTg) to produce the rewarding 
effects of NIC [20,59,60]. As many drugs of abuse have demonstrated 
both rewarding and aversive properties [29,61], it has been proposed 
that the VTA is involved in mediating both of these qualities in actions 
of NIC [57]. The aversive properties of NIC are reported as being 
mediated by the mesolimbic DA system, while its rewarding effects are 
mediated by non-DA neurons projecting from the VTA to the PPTg 
[57]. Although these two separate effects are thought to be mediated 
by the same region, two different systems are involved. Blocking the 
mesolimbic DA pathway with the DA antagonist α-flupenthixol 
greatly increases the sensitivity to NIC reward in rodents [57]. In fact, 
a reduction in the amount of DA D1 and D2 receptors is positively 

correlated with NIC addiction, additionally supporting this finding 
[62]. Therefore, the VTA mediates the rewarding effects of EtOH and 
the aversive effects of NIC via DAergic projections to the NAc, while the 
rewarding properties of NIC are mediated via non-DAergic projections 
from the VTA to the PPTg [57]. This mediation of both NIC reward 
and aversion in the VTA could aid in explaining the cross-tolerance 
observed with NIC and EtOH interactions. 

It is currently understood that the mesolimbic system, especially 
in the VTA, is involved in NIC-EtOH reward. There is, however, a 
question as to which type or subtype of receptor is most important and 
on which category of neuron they are found. The origin of long-term 
potentiation (LTP) induction in NAc DA neurons has been reported to 
be from presynaptic neurons [63]. GABA neurons play an integral role 
in the rewarding effects of drugs of abuse [48]. In fact, stimulation of 
GABAA receptors is reinforcing [51] and inhibition of GABA neurons 
in the VTA could lead to increased DA release in the NAc [64]. nAChRs 
can be found on postsynaptic, preterminal, and presynaptic segments 
of GABA neurons [65-67], and the reinforcing properties of EtOH is 
influenced by these receptors. These studies suggest GABA neurons in 
the VTA serve as an important locus for the modulation of the EtOH 
effects, possibly by nAChRs. 

Nicotine and Ethanol Interactions
Interactions between NIC and EtOH have been demonstrated in 

an assortment of experiments. Alteration of nAChRs in response to 
EtOH has been verified [68]. Mouse and rat studies have displayed 
cross-tolerance between EtOH and NIC [69-72]. Additional testing 
has elucidated aspects of the interaction between NIC and EtOH on 
nAChRs. For example, locomotor stimulation in mice by EtOH was 
partially impeded by the non-selective/non-competitive nAChR 
antagonist mecamylamine (MEC) [46]. Systemic EtOH induces DA 
release in the rat NAc and can be blocked by MEC in the VTA but 
not the NAc [46]. The EtOH ingestion and preference in high EtOH-
preferring rats was also decreased by MEC [73,74]. Together, these 
researches confirm that EtOH’s effects are partially facilitated through 
nAChRs and suggest these receptors as likely candidates for NIC-EtOH 
interaction.

On the other hand, it is known that the DAergic portion of the 
mesolimbic pathway is not the only contributor to the reinforcing effects 
of NIC and EtOH. Many neuron systems and receptor types have been 
implicated in the interaction involving NIC and EtOH. The serotonin 
[75], endogenous opioid [76], glutamatergic [77], and cholinergic 
[60,78] systems have been associated with NIC and EtOH interactions. 
Cholinergic receptors, especially nAChRs, have been implicated in this 
association for some time, but they are not the only mediators of the 
NIC EtOH interaction. Aside from nAChRs, endocannabinoid CB1 
receptors have been implicated in EtOH and NIC seeking [79], NIC-
EtOH cross-sensitization [71], and interactive effects of NIC and EtOH 
involved in passive avoidance learning [80]. Although nAChRs are 
not the sole agents involved in the NIC-EtOH interaction, they seem 
to have greater effects on this relationship than CB1 receptors in both 
number and impact.

Nicotinic Acetylcholine Receptors and Ethanol 
In the VTA, nAChRs are involved in mediating some reinforcing 

properties of EtOH [81]. nAChRs are ligand-gated ion channels 
expressed in a variety of compositions with two subtypes, α and β. Nine 
types of α subunits (α2-α10) are known to be expressed vertebrates, as 
well as three β subunit types (β2-β4) [82]. The pentameric structure 
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of each individual nAChR determines the variety of ion that is able 
to pass through the receptor’s channel [82]. For example, the α4β2 
receptor mostly permits the passage of sodium through its pore while 
the α7 receptor has relevantly high Ca2+ permeability [82]. The known 
subunits found in the human brain are thought to be α3-α7 and β2-β4, 
although not all are presently known [82,83]. Many nicotinic receptors, 
composed of diverse combinations of subunits, are present in the human 
brain. The most common nicotinic pentamers consist of heteromeric α4 
and β2 subunits or homomeric α7 subunits. The heteromeric pentamers 
could be joined as α4(2)β2(3), α4(3)β2(2). Upregulation of some nAChRs in 
the mouse midbrain has been shown in the presence of NIC and EtOH 
together [84]. Some have argued that EtOH is simply a co-agonist and 
requires NIC to elicit a cholinergic response [85]. However, EtOH is 
not only a co-agonist in the presence of a ligand binding to cholinergic 
receptors, but also operates directly on some types of nAChRs in vitro 
[83,86] and in vivo [87-89]. The sensitivity and effects elicited by EtOH 
binding to nAChRs are dependent upon subunit composition [90]. 

Because α4β2 and α7 nAChRs are the most numerous of the 
subtypes in the human brain [86,91], they have been investigated for 
their relevance in the NIC and EtOH relationship. Human nAChRs 
expressed in Xenopus oocytes have demonstrated that α4β2 and α2β4 
nAChRs have the highest affinity to EtOH, while α4β4, α2β2 and α7 
nAChRs also respond to EtOH [90]. All combinations of α2, α4, β2 
and β4 subunits enhanced receptor function in response to EtOH, 
while EtOH inhibited the functional α7 homomeric nAChRs expressed 
in these Xenopus oocytes [92,93]. The results seen in α4β2 and α7 
nAChRs have also been confirmed in cultured rat neurons [83,94]. 
A microdialysis study has shown that DA release because of systemic 
EtOH involved nAChRs in the VTA [95]. It has also been proposed that 
α4 containing nAChRs enable modulation of the withdrawal effects of 
EtOH in mice [78]. Together, these data illustrate the crucial role of 
nAChRs in the interaction of these two substances.

As previously stated, EtOH acts as an antagonist on α7 nAChRs 
[93,96,97]. However, the intraperitoneal administration of selective 
α7 nAChR antagonist methyllycaconitine did not obstruct either the 
locomotor activity or DA overflow induced by systemic EtOH [81,98]. 
As α7 nAChRs are located on glutamatergic terminals in the VTA 
[21] which innervate both GABA and DA neurons [99], the effects of 
this blockade could cause changes in neuronal firing in the VTA local 
circuitry as well as projections to the NAc and PPTg. Interestingly, the 
α4β2 nAChR antagonist, DHβE also failed to block changes in DA levels 
recorded from the NAc when it is microinfused into the VTA [85]. Since 
a change of DA levels is normally found in response to EtOH [81,85], 
this failure is puzzling, as there is evidence of EtOH binding to α4β2 
nAChRs in oocytes. Pretreatment with MEC significantly attenuated 
alcohol drinking in a rat limited access paradigm, but pretreatment 
with DHβE had no effect [100]. Thus, nAChRs are partially responsible 
for the reinforcing effects of EtOH, but the roles of both α4β2 and α7 
nAChRs in the association between NIC and EtOH are unclear. 

The α6 Subunit in Nicotinic Acetylcholine Receptors 
Almost two decades ago, the α-conotoxin MII (α-CtxMII), derived 

from the Conus magnus marine snail, was identified and was shown 
to antagonize α3β2 containing nAChRs [101]. Soon thereafter, it was 
discovered that β2 knockout mice did not self-administer NIC, nor 
were they sensitive to NIC induced DA release in the NAc much unlike 
their wild-type opposites [102]. These data display the necessity of 
the β2 subunit in the VTA is necessary for the rewarding properties 
of NIC [103,104]. It is evident that the β2 subunit is critical for NIC 

reinforcement, but not when paired with the α4 subunit alone because 
DHβE does not block NIC induced DA effects in the NAc [85]. 
More recently, α6 knockout mice revealed that α-CtxMII binds to α6 
containing nAChRs (α6*-nAChRs). The α6β2 containing pentamer 
rather than α3β2 pentamer was found to modulate NIC induced 
changes in DA systems [105]. In addition, the α4 subunit could play a 
role in NIC reward when paired with the α6 subunit [106-108]. Studies 
using immunoprecipitation discovered that not only were α6 and β2 
subunits expressed in the same receptors, but the β3 subunit was also 
found in most α6*-nAChR pentamers in mesolimbic and nigrostriatal 
DA pathways [109,110]. β3 knockout mouse studies confirmed that 
this subunit plays a role in α-CtxMII binding [109,111-114], and this 
subunit may be involved in control of ion permeability and receptor 
location [82]. α-CtxMII administered in the VTA was able to reduce 
EtOH induced NAc DA release in [115], and locomotor activity [116]. 
In addition, α6 knockout mice failed to self-administer NIC, while 
self-administration of the drug was restored with the reintroduction 
of the α6 subunit [117]. Fast-scan cyclic voltammetry studies have 
shown that α6β2 subunit containing nAChRs are responsible for 
the majority of NIC induced affects on DA release in the NAc [118]. 
In further behavioral studies, α-CtxMII perfusion into the VTA 
blocked recognition of EtOH associated cues [119] and voluntary 
EtOH drinking in rodents [115]. Genetic, electrophysiological, and 
pharmacological techniques have been employed to demonstrate 
functional α6*-nAChRs situated on GABA terminals innervating DA 
neurons in the VTA [120]. The combined data robustly propose α6 
and β2 containing nAChRs are located on these terminals, however α4 
subunits are not [120]. Therefore, the majority of α6*-nAChRs in the 
mesolimbic pathway are part of either an α6(1)α4(1)β2(2)β3(1) or an α6(2)
β2(2)β3(1) heteromeric pentamer [104,109,113,121-123] with the later 
located on VTA GABAergic boutons [120]; both these receptors may 
have a significant role in the actions of both NIC and EtOH.

Conclusion
The neural network underlying the interaction between NIC and 

EtOH is complex. Their interaction utilizes the mesolimbic DA system 
and the majority of its mediation takes place within the VTA. The VTA 
mediates rewarding effects of EtOH and aversive effects of NIC through 
the NAc; the rewarding properties of NIC are meditated through the 
PPTg. The nAChR antagonist MEC has been shown to attenuate EtOH 
induced DA release in the NAc. However, both α7 (MLA) and α4β2 
(DHβE) antagonists could not block this effect. The mixed results 
involving α7 and α4β2 nAChRs suggest that more research is needed 
in order to uncover their involvement in the mediation of EtOH 
reward. However, the α6*-nAChR antagonist α-CtxMII was helpful in 
the identification of the critical role α6 subunits have in the rewarding 
effects of both NIC and EtOH. Many types of nAChRs affect NIC-EtOH 
co-use, however, the α6(2)β2(2)β3(1) nAChR pentamers in the meslolimbic 
DA pathway situated on VTA GABA terminals are a likely site for NIC-
EtOH interactions. Future research could target α6*-nAChRs in order 
to combat NIC-EtOH co-dependence. 
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