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Abstract
S-nitrosylation is a biologically relevant post-translational protein modification with signaling consequence. In

eukaryotes, a large number of proteins have been identified as S-nitrosylation targets. Derangement in protein 
S-nitrosylation has been implicated in the pathogenesis of a number of different disease entities including Multiple
Sclerosis (MS). A growing body of evidence has shown that Nitric oxide (NO) plays a critical role in MS. NO and
other reactive nitrogen species (RNS) are involved in neuroinflammation and neurodegeneration in MS. Signaling by
RNS is carried out mainly by S-nitrosylation of critical cysteine residues in targeted proteins. In recent years, newer
roles in MS have been attributed to RNS. These roles relate to S-nitrosylation of cysteines in proteins which has
emerged as a potential new paradigm in signal transduction and regulation of protein function. In the present review
we discuss the evidence for the diverse roles of S-nitrosylation in MS, including nitrosative stress-induced gene
expression in MS, and S-nitrosylation of transcription factors in MS. In addition, S-nitrosylation can be therapeutically 
used in MS. Recent studies providing evidence for SNO-based therapy strategy in the treatment of MS will also be
discussed. Undoubtedly, new exciting results will contribute to the expanding area of MS research.
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Introduction 
Nitric Oxide (NO) has long been recognized as a modulator of 

gene expression both in prokaryotic and eukaryotic cells and is an 
import molecule involved in many physiological and pathological 
processes [1,2]. NO is synthesized by Nitric Oxide Synthase (NOS) 
which oxidizes a guanidine nitrogen of L-arginine releasing nitric 
oxide in the form of a free radical and citrulline. Three isoforms of the 
NOS have been identified, including neuronal NOS (nNOS or NOS-
1), inducible NOS (iNOS or NOS-2), and endothelial NOS (eNOS or 
NOS-3). S-nitrosylation is one of the key mechanisms by which NO 
regulates the function of various target proteins is through the coupling 
a nitroso moiety from NO-derived metabolites to a reactive cysteine 
leading to the formation of a S-nitrosothiol (SNO) [3]. SNOs are stable, 
bioactive forms of NO and are known to regulate the immune response 
[4]. Classic NO signaling delineates a pathway by which NOS-derived 
NO diffuses to and then binds to the heme moiety of guanylate cyclase 
inducing a conformational change that results in enzyme activation and 
increased formation of cyclic GMP (cGMP) [5]. Nitrosative stress has 
been implicated in the pathophysiology of MS and its animal model 
experimental autoimmune encephalomyelitis (EAE) [6-8]. It was 
reported that protein SNOs accumulate in the brain of MS patients and 
SNO levels are also increased in EAE [6,9].

MS is a chronic inflammatory demyelinating disease of the central 
nervous system (CNS), which is the most frequent disabling neurological 
disease in young adults. MS afflicts over 2 million people worldwide. 
According to the temporal course of disease, MS can be subdivided 
into three clinical groups: relapsing remitting MS (RR-MS), secondary 
progressive MS (SP-MS) and primary progressive MS (PP-MS). Most 
evidence supports that the activation of autoreactive T-cells is a central 
event in the development of autoimmune response in MS and the 
pathogenesis of MS in most patients is likely to result from autoreactive, 
activated CD4+ T cells moving from the periphery across the blood 
brain barrier (BBB) into the CNS [10]. There are numerous symptoms 
associated with the neurologic damage in MS patients, including 
fatigue, spasticity, depression, bowel and bladder dysfunction, pain, 
and impaired mobility. Several therapies (eg. modafinil, dalfampridine, 

baclofen, diazepam, gabapentin, and opioids) are used for symptomatic 
treatment of disability and symptoms, but these do not improve disease 
outcome [11]. This chronic immune-mediated disease potentially 
requires more definitive symptomatic and disease-modifying therapies.

Nitrosative stress induces the generation of protein and non-
protein nitrosothiols, resulting in alterations in tissue function [12,13]. 
Accumulating evidences points to an important role for NO in the 
pathogenesis of MS and to its contribution to the various facets of the 
disorder: inflammation, oligodendrocyte injury, changes in synaptic 
transmission, axonal degeneration, and neuronal death [14]. Boullerne 
et al. found that S-nitrosothiols was detected in MS patients and EAE 
animals [15,16]. Calabrese et al. also reported that the concentration of 
both nitric oxide metabolites and unidentified low molecular weight 
nitrosothiols were increased in serum and cerebrospinal fluid (CSF) 
from patients with active MS [17]. Recent studies have reported that 
SNOs accumulate in brain white matter of MS patients, indicating 
that the occurrence of protein S-nitrosylation correlates with the 
inflammatory demyelinating disorders in MS patients [8]. This review 
paper provides insights into the role of protein S-nitrosylation in the 
pathophysiology of MS and summarizes the SNO-based therapy 
strategy in the treatment of MS.

Nitrosative Stress-induced Protein S-nitrosylation in 
MS

NO has been linked to numerous physiological and 
pathophysiological events. It is very important to identify the 
protein targets of S-nitrosylation which include metabolic, structural 
and signalling proteins. Previous studies indicated that protein 
S-nitrosylation acts as a physiological signalling mechanism in MS [18].
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Cytoskeletal proteins

Jaffrey et al. reported that the proteins which were S-nitrosylated 
comprise neurofilament heavy chain (NFH), α/β-tubulin, and β/α-
actin when the rat cerebellum homogenates were incubated with 
NO donors in vitro experiments [18]. In vivo, S-nitrosylation of both 
α-tubulin and β-tubulin was increased only during acute EAE [19]. 
The S-nitrosylation of the major microfilament protein β-actin was 
also detected only in animals with acute EAE [20], but β-actin were 
not modified by S-nitrosylation in either control or EAE tissues as well 
as dynein, ankyrin, and tropomyosin. It is likely that the abnormal 
S-nitrosylation of several structural proteins such as NFPs, tubulin, and 
β-actin in EAE may contribute to the pathophysiology of MS.

Proteolipid protein (PLP)

Exposure to NO donors causes myelin decompaction, accompanied 
by S-nitrosylation of a cysteine-rich proteolipid protein (PLP) [7,14]. 
Indeed, incubation of rat spinal cord slices with GSNO resulted in 
the S-nitrosation of a number of proteins [6,21]. In myelin, one of 
the major S-nitrosated substrates was identified as PLP, an abundant 
cysteine-rich protein that is responsible for the intraperiod line (IPL) 
stabilization [6]. It is proposed that NO-mediated nitrosation of 
sulfhydryl groups is likely to interfere with the normal function of PLP 
and other important CNS myelin proteins leading to the structural 
demise of this membrane. These findings are relevant to multiple 
sclerosis and other inflammatory demyelinating disorders where both 
excessive NO production and myelin instability are known to occur [7]. 
S-nitrosylation of PLP has been linked to decompaction of CNS myelin 
at the level of the intraperiod line, where this protein plays an adhesive 
role.

Metabolic enzymes

In vitro experiment, incubation of rat spinal cord slices with 
GSNO leads to S-nitrosylation of four metabolic enzymes including 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), creatine 
kinase (CK), hexokinase 1 (HK), and glycogen phosphorylase (GP) 
[18]. Among the four metabolic enzymes that are S-nitrosylated in 
vitro, only GAPDH was S-nitrosylated to a higher level in EAE in vivo 
experiment. The S-nitrosylation of GADH Cys-149 at the active site 
significantly attenuates the activity of this glycolytic enzyme [22,23]. 
It was also found that GSNO inhibited GAPDH activity in both 
purified enzyme preparations and endothelial cells [24]. In addition, 
recent studies indicated that the S-nitrosylation of GAPDH induces its 
binding to the E3 ubiquitin ligase Siah1 to cause nuclear translocation 
and to promote apoptosis [25]. GSNO induced S-nitrosylation of HK 
causes enzyme inactivation, but the effect apparently is caused by 
S-nitration of several tyrosine residues instead of by S-nitrosylation of 
cysteine thiols [26]. GSNO also inhibits the activity of Triosephosphate 
isomerase (TPI), Phosphofructokinase (PFK), Neuron-specific enolase 
(NSE), GP and Creatine kinase (CK) through S-nitrosylation [27-29]. 
In vivo experiment, TPI, PFK, and GP were S-nitrosylated to the same 
extent in control and EAE tissues. Bizzozero and Zheng reported that 
NSE is heavily modified in acute EAE and is minimally S-nitrosylated 
in control spinal cords [6]. CK was barely modified in control and 
EAE spinal cord [29,30]. These finding suggest that S-nitrosylation of 
important metabolic enzymes such as GAPDH and NSE could lead to 
neuronal death later in the disease process in MS.

Ion-channels-related proteins

The NO donors induced the S-nitrosylation of 3 ion channel-
related proteins including N-methyl-d-aspartate (NMDA)-glutamate 

receptors, hyperpolarization activated cation channel (HCN3), and 
Na1/K1 ATPase α-2 subunit [18]. In vivo, HCN3 was not S-nitrosylated 
either in control or in EAE tissues. Na/K ATPase α-2 subunit was 
modified equally in control and EAE spinal cords. In contrast, the 
proportion of S-nitroso-NR2A increased in both acute and chronic 
EAE [6]. Choi et al. reported that S-nitrosylation of a single cysteine 
residue in NR2A modulates its channel activity [5]. Site-directed 
mutagenesis identified a critical cysteine residue (Cys 399) on the 
NR2A subunit whose S-nitrosylation under physiological conditions 
underlies this modulation. Bizzozero et al. found that the proportion 
of S-nitrosylated NMDA receptors increased in EAE [6]. They also 
discovered that neuronal specific enolase is the major S-nitrosylated 
protein in acute EAE. Given that S-nitrosylation affects protein 
function, it is likely that the observed changes are significant to the 
pathophysiology of inflammatory demyelination in MS [6]. The NMDA 
receptor (NMDAR)-associated ion channel was modulated not only by 
exogenous NO but also by endogenous NO. In cell systems expressing 
NMDARs with mutant NR2A subunits in which this single cysteine 
was replaced by an alanine, the effect of endogenous NO was lost [5]. 
Thus endogenous S-nitrosylation can regulate ion channel activity.

Signal transduction proteins

Jaffrey et al. found that the retinoblastoma (Rb), heat-shock protein 
72 (Hsp72), isoforms 2 of the collapsin-response-mediator protein 
(CRMP2), and calbindin were S-nitrosylated when rat cerebellum 
homogenates were incubated with the NO donors GSNO [18]. In vivo, 
Rb protein was not detected in either the total homogenate of mouse 
Spinal cords (T1-L5). HSP-72, CRMP-2, and calbindin were detected in 
the total homogenates of mouse Spinal cords (T1-L5) [6]. These findings 
indicate that, although some proteins are susceptible to S-nitrosylation 
in vitro with various NO donors, they may not be modified in vivo to 
any appreciable extent even under severe nitrosative stress conditions.

S-nitrosylation of Transcription Factors in MS
NF-κB

NF-κB is a transcription factor activated by cell surface receptor 
signaling to meet stress and inflammatory responses, regulating key 
cellular processes such as inflammation, innate and adaptive immunity, 
and cell growth and survival [31]. Accumulating evidences indicate 
that NF-κB plays an important role in controlling expression of genes 
relevant to the pathogenesis of autoimmunity. Genetic factors related 
to NF-κB may also be determinants of MS susceptibility [32]. Within 
chronic active MS lesions and adjacent white matter, both NF-κB and 
c-jun/JNK reactivity was markedly up-regulated on glial cells and 
inflammatory elements [1]. NF-κB p50-deficient mice were significantly 
resistant to EAE induced by myelin oligodendrocyte glycoprotein. The 
resistance to EAE in NF-κB p50-deficient mice was associated with a 
deficiency of myelin oligodendrocyte glycoprotein-specific T cells to 
differentiate into either Th1- or Th2-type effector cells in vivo, suggesting 
that NF-κB plays crucial roles in the activation and differentiation of 
autoreactive T cells in vivo and that blocking NF-κB function can be 
an effective means to prevent autoimmune encephalomyelitis [2]. NO 
acts as second messenger molecular which through S-nitrosylation has 
been shown to control important cellular processes by regulation of 
activity of NF-κB [33]. NF-κB activity is exquisitely sensitive to cellular 
NO levels with multiple steps in the signaling pathway targeted by 
S-nitrosylation. In addition, both p50 and p65 have been shown to be 
targeted by S-nitrosylation in cytokine-stimulated respiratory epithelial 
cells [34]. In addition to direct modification of NF-κB proteins, NO can 
also alters NF-κB activity through S-nitrosylation of proteins in other 
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signal transduction pathways that cross-talk with NF-κB [34]. NO 
inhibits TLR-4 activation of NF-κB via S-nitrosylation of MyD88 [35]. 
Based on the role of NF-κB in MS, S-nitrosylation of NF-κB could be 
considered as a new therapeutic target in MS.

HIF

Hypoxia-inducible factor (HIF) is a transcription factor that 
regulates cellular hypoxic responses, and it has therapeutic potential 
in MS. An increased expression of HIF-1α in MS normal-appearing 
white matter (NAWM) in oligodendrocytes was detected by in situ 
hybiridization analysis and quantitative RT-PCR [36]. HIF-1α, a key 
regulator of hypoxia-induced gene regulation, and its downstream 
genes were significantly unregulated in MS NAWM in the microarray 
study [37]. The upregulation of HIF-1α in oligodendrocytes supports 
the view of oligodendrocyte and/or neuronal dysfunction in the NAWM 
as a possible primary cause. These studies suggest an endogenous 
inflammatory reaction throughout the whole white matter of MS 
brain, in which oligodendrocytes actively participate. Recent studies 
also demonstrate that HIF stabilization and transcriptional activity is 
achieved through S-nitrosylation of HIF pathway components [38]. 
HIF-1 plays a critical role in the mammalian program by which cell 
respond to hypoxia in both physiological and pathological situations. 
HIF-1 transcriptional activity, protein stabilization, protein-protein 
interaction, and cellular localization are mainly modulated by 
post-translation modifications such as hydroxylation, acetylation, 
phosphorylation, S-nitrosylation, and SUMOylation [39]. Under 
normal oxygen tension, HIF-1 activity is usually suppressed due to 
the rapid, oxygen-dependent degradation of HIF-1α. Normoxic HIF-1 
activity can be upregulated through NO-mediated S-nitrosylation and 
stabilization of HIF-1α [40].

IRF

Interferon regulatory factor (IRF) family is a group of transcription 
factors that are induced following treatment with type I interferon 
(IFN) [41]. Following the initial identification of two structurally 
related members, IRF-1 and IRF-2, seven additional members have now 
been reported [42]. IRF-1 is an interferon-induced transcription factor 
with pro-inflammatory and pro-injurious functions. New evidences 
emerged over past decade indicated that IRF-1 gene is associated with 
progressive MS and the elevated expression of IRF-1 was detected in 
active and chronic-active MS lesions [43-45]. IRF-1 was detected in 
the areas of CNS inflammation and co-localized with the perivascular 
mononuclear cells as well as with microglia and oligodendrocytes 
[46]. Oligodendrocyte injury and inflammatory demyelination are 
key pathological abnormalities of MS and its animal model EAE. 
Emerging evidences indicate that oligodendrocytes can regulate the 
events leading to inflammatory demyelination [47]. The role of IRF-1 
in EAE was initially investigated using IRF-1 KO mice. In these studies, 
the KO mice were found to be resistant to EAE upon immunization 
with MOG 35-55 compared to wild-type mice [48,49], indicating 
suppression of IRF-1 signaling resulted in a dramatic protection 
against EAE without any appreciable adverse effects. IRF-1 appears 
to be directly involved in the pathogenesis of MS, oligodendrocyte 
injury, and inflammatory demyelination. It suggests that IRF-1 acts 
as a master transcription factor orchestrating oligodendrocyte injury 
and inflammatory demyelination in MS and EAE. New evidences also 
show that IRF-1 regulates the autophagic response in LPS-stimulated 
macrophages through NO. In vivo, tissue macrophages obtained from 
LPS-stimulated IRF-1 knockout (KO) mice demonstrated increased 
autophagy compared to those isolated from IRF-1 wild-type mice 

[50]. In vitro, LPS-stimulated peritoneal macrophages obtained from 
IRF-1 KO mice experienced increased autophagy. IRF-1 mediates 
the inhibition of autophagy by modulating the activation of the 
mammalian target of rapamycin (mTOR). The inhibitory effects of 
IRF-1 mTOR activity were mediated by NO [48]. Herein, we propose a 
novel role for IRF-1 and NO-induced S-nitrosylation in the regulation 
of MS. In addition, recent findings suggest that IRF-4 is essential for 
the development and function of T helper (Th) cell, regulatory T (Treg) 
cell, B cell, as well as dendritic cell (DC) and these cells are crucial in the 
pathogenesis [49]. Functional studies have provided evidence that Th17 
cells are important for the modulation of autoimmune responses in MS, 
and Th17 cells are controlled by IRF4 [51], suggesting that IRF-4 also 
contributes to the pathogenesis of MS. Currently, although there is no 
direct evidence to show that S-nitrosylation involve in the function and 
regulatory mechanism of IRF-4 in MS, future investigation may provide 
new evidence about Nitrosative Stress-induced IRF-4 regulation in MS. 
In addition, Tregs cells also play a vital role in MS. Brahmachari and 
Pahan reported that NO inhibited the expression of Foxp3 in MBP-
primed T cells via soluble guanylyl cyclase-mediated production of 
cGMP, indicating a novel role of NO in suppressing Foxp3(+) Tregs via 
the soluble guanylyl cyclase (sGC) pathway in MS [52,53]. sGC is the 
major cellular receptor for the intercellular messenger NO and mediates 
a wide range of physiological effects through elevation of intracellular 
cGMP levels [54].

SNO-based Therapy Strategy in the Treatment of MS
Multiple sclerosis is the most frequent chronic inflammatory, 

demyelinating and neurodegenerative disease in young adults, but 
has no definitive pharmacological treatment. Most therapeutic agents 
used in MS including immunosuppressive and immunomodulatory 
drugs and cell cycle interruption drugs are only used for the treatment 
of RR-MS. These therapeutic agents can lessen the relapse rate in RR-
MS and time to progression, but cannot cure MS. Therefore, there is a 
need for new efficient treatments for all types of MS. A more definitive 
therapy for MS should reduce relapse rate, prolong remission, limit the 
onset of new MS lesions, and postpone the development of long-term 
disability. There is a growing interest in developing a treatment strategy 
focused on protein posttranslational modification in MS, including 
S-nitrosylation. Herein, we are drawing attention to S-nitrosylation as a 
potential therapeutic strategy in MS (Figure 1).

The S-nitrosylated protein biomarkers for detection of MS

The symptoms of MS include independent processes of 
inflammation, demyelination, neurodegeneration, gliosis and repair. 
The progress made in the search for new biomarkers in MS is helpful 
for the early diagnosis, prognosis, evaluation of the development of 
the disability caused by the disease and the response to therapy [55]. 
Biomarkers are very helpful to make decision in clinical diagnostics 
and important for guiding therapeutic treatment. MS is a class of 
disorders that need early diagnosis and steady monitoring. Now it 
was confirmed that S-nitrosylation affects the immunogenicity of 
self-protein antigens, and triggering an autoimmune response. In 
this context, S-nitrosylated peptides provided a more valuable tool 
with respect to isolated or recombinant proteins to selectively detect 
autoantibodies as disease biomarkers. It is now well established that 
some posttranslational modifications can generate new self-antigens 
or even mask antigens normally recognized by the immune system 
in physiological conditions. The most extensively studied putative 
self-antigens are components of normal myelin of the central nervous 
system, or of their post-translational modified forms [55]. Peptides can 
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for pharmacological modulation. iNOS seems to establish a link 
between neuroendocrine and immune system through beta-endorphin 
explaining stress-related relapses in MS [61]. Understanding the 
modulation of iNOS and NO production may provide better therapeutic 
strategies for MS.

Concluding Remarks
S-nitrosylation is a biochemical modification that plays an important 

regulatory role in signal transduction in MS. Accumulating evidences 
showed that functional changes resulting from the S-nitrosylation, and 
the growing number of proteins were shown to be S-nitrosylated in MS. 
Currently, drug development for MS faces numerous challenges with 
many drugs failing at various stages of development [62]. In addition, 
a number of agents are in development, but thus far no beneficial agent 
has been established in primary-progressive MS [33]. A more definitive 
therapy for MS should reduce relapse rate, prolong remission, limit 
the onset of new MS lesions, and postpone the development of long-
term disability. Detailed studies addressing the role of S-nitrosylation 
in MS by endogenous NO and RNS are not abundant, but those that 
are available pave the way for future developments. These findings raise 
the intriguing possibility that S-nitrosation is directly involved in the 
modulation of protein function [63]. It could be expected that more 
and more research has been focused on the control of physiological 
levels of NO and for the design of new drugs that inhibit pathological 
induction of iNOS to prevent overproduction of NO for the treatment 
of MS.

Herein, we review recent progresses in the field of S-nitrosylation 
and MS research that may have direct implications for our understanding 
of the role of S-nitrosylation in MS-associated pathology and for 
designing SNO-based therapies for MS. Recent discoveries highlight 
the need to investigate the protein targets of S-nitrosylation in MS and 
the discovery of the S-nitrosylated transcriptional factors and relevant 
proteins opens an unexplored signaling realm with great potential for 
therapy. It is the aim of this review to provide new insights into the 
role of S-nitrosylation and the therapeutic modulation of iNOS and NO 
production. This review hopes to serve as a summary of the prevalent 
strategies in the regulation of protein function in MS.
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