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Editorial
Obesity has reached epidemic proportions and is associated with 

increased risk of type 2 diabetes, cardiovascular diseases, several forms 
of cancer, and other diseases named together metabolic syndrome. The 
quest or effective strategies to treat obesity have activated fat research 
into an analysis of the molecular processes that drive adipocyte 
formation, and hence body fat mass. 

Historically, the adipose tissue was considered only as a reserve 
for the storage of high-energy substrates in the form of triglycerides, 
cholesterol and fat-soluble vitamins. Adipose tissue is now recognized 
as a major endocrine and secretory organ, releasing a wide range of 
protein factors and signals, termed adipokines, in addition to fatty 
acids and other lipid moieties. To elucidate the molecular mechanism 
of visceral obesity related diseases, biological characteristics of adipose 
tissue and full understanding of tissue mechanisms differentiation 
have been investigated [1]. Two types of adipose tissue are present 
in mammals, white adipose tissue (WAT) that specializes in lipid 
storage and undergoes pathological expansion during obesity, and 
brown adipose tissue (BAT), which has an opposing physiological 
function because it allows dissipation instead of storage of energy. 
This is achieved by the presence in brown fat cells of a key protein, 
the uncoupling protein-1 (UCP1, thermogenin), which bypass the 
electrochemical gradient across the inner mitochondrial membrane 
and thereby dissipates energy as heat. In the past, the study of the 
physiology of brown adipose tissue has been limited mostly to rodents, 
because it was thought that human intrascapular brown adipose 
tissue disappeared shortly after birth, and that small depots of cells, 
resembling brown adipose tissue, have been considered vestigial and 
devoid of a physiologic role. In this respect, more recently, several 
reports indicate that in mammals, the adipose tissues are contained 
in a multi-depot organ, the adipose organ which consists of several 
subcutaneous and visceral depots [2]. Therein, metabolically active 
brown fat cells are interspersed within WAT of rodents and humans 
and that a brown phenotype may be inducible also in adult humans 
by promoting the proliferation and differentiation of brown fat cell 
precursors or by inducing white-to-brown fat transdifferentiation [3].

Despite all indications of choice of food and the anti-obesity 
medications used in combination with diet and exercise in the treatment 
of obesity, this is often difficult to achieve with the currently available 
therapies. The central question that recently rises from new perspectives 
in fat biology is whether BAT function significantly impacts energy 
balance and human obesity [4-6]. Precursors of brown adipocytes are 
of the skeletal muscle lineage and are characterized by the expression 
of muscle developmental gene Myf5 under the induction of the two 
master regulators of brown phenotype induction, PRDM16 (PRD1-BF-
1-RIZ1 homologous) and BMP7 (bone morphogenetic protein 7) [7].
In many ways, brown adipocytes physically resemble muscle cells more
than it does typical fat. This affinity between skeletal muscle and brown
adipocytes appears also by a very recent paper, that demonstrated that
PGC-1α (peroxisome proliferator-activated receptor-γ coactivator-1α),
inducible regulator of energy metabolism, promotes the release into
the circulation of a newly identified hormone, irisin, which increases in
the body during exercise, boosting energy expenditure and controlling
blood glucose levels [8]. Of interest is that irisin acts on white adipose

cells in culture and in vivo to stimulate UCP1 expression and a broad 
program of brown-fat-like development exhibits regulatory effects on 
adipose tissue.

However, brown cells are also recruitable when derive from 
a Myf5-negative precursor, as the white cells, after adrenergic 
stimulation or cold exposure. These cells can be converted to brown 
adipocyte–like cells and appear in white fat depots [9]. Sawada et al. 
[10] demonstrated that overexpression of PLIN1 (perlipin 1) in white
adipocytes reduces lipid droplet size by decreasing FSP27 (Fat-Specific
protein 27) expression and thereby inducing a brown adipose tissue-
like phenotype.

From all these new features a number of provocative questions 
raise: could the white adipocyte phenotype be modified, molecularly 
and functionally, to provide new therapeutic avenues to reduce 
obesity and its associated diseases? The alternative pathway that leads 
to brown adipocyte differentiation could offer novel therapeutic 
approaches to obesity? Is the modulation of lipid droplet proteins in 
white adipocytes a potential therapeutic strategy for the treatment of 
obesity and its related disorders? Could the irisin be cloned easily by 
recombinant DNA technology to improve pathological conditions 
that are characterized by a variable imbalance of energy demand and 
expenditure? Could be an answer to the problem of obesity within the 
same adipose tissue?

On the other hand, it should be mentioned that for the Selfish theory 
[11] obesity is explained as an allocation defect: instead of requesting
energy from the body, energy is added by consuming food. How leptin
acts on hypothalamus is known and it is likely that a brain and fat
deposition are related each other. Dysregulation of endocannabinoid
system along with leptin resistance is linked to abdominal obesity and
may exacerbate risk factors that lead to cardiovascular diseases and
type II diabetes mellitus. A very interesting and new advance in this
field is conducted by Piomelli group [12] suggesting that the decrease of
2-arachidonoylglicerol (2-AG), one of the two main endocannabinoids,
leads to hypersensitivity to β3-adrenergic-stimulated thermogenesis
and brown adipose tissue of transgenic mice express high levels of
UCP1. Again, brown fat may indeed shift the balance of calorie intake
and expenditure also by a ‘central’ regulation.

Really interventions aimed at increasing energy expenditure are 
very few, but in human body there is a tissue that works exactly with the 
purpose of burning energy. Although counterregulatory mechanisms 
to maintain energy homeostasis and preserve fuel reserves could 
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be implemented by the organisms, new evidences indicate that old 
paradigms about brown adipocyte must be revised and that brown 
adipose tissue might provide a pharmacologic target for the treatment 
of obesity and related diseases. 
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