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Abstract
There has been remarkable progress in understanding the genetic basis of cardiovascular malformations. 

Chromosome microarray analysis has provided a new tool to understand the genetic basis of syndromic 
cardiovascular malformations resulting from microdeletion or microduplication of genetic material, allowing the 
delineation of new syndromes. Improvements in sequencing technology have led to increasingly comprehensive 
testing for aortopathy, cardiomyopathy, single gene syndromic disorders, and Mendelian-inherited congenital 
heart disease. Understanding the genetic etiology for these disorders has improved their clinical recognition and 
management and led to new guidelines for treatment and family-based diagnosis and surveillance. These new 
discoveries have also expanded our understanding of the contribution of genetic variation, susceptibility alleles, and 
epigenetics to isolated congenital heart disease. This review summarizes the current understanding of the genetic 
basis of syndromic and non-syndromic congenital heart disease and highlights new diagnostic and management 
recommendations. 
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Recent advances in genetic technology have had a significant 
impact on the practice of clinical genetics and the diagnosis of genetic 
syndromes associated with cardiac malformations as well as sporadic 
congenital heart disease. The development of chromosome microarray 
technology has largely replaced routine chromosome analysis and 
has led to the identification of a number of new genomic disorders 
resulting from microdeletions or microduplications of genetic 
material. This technology has also led to expansion of the spectrum 
of well described genetic syndromes as individuals with non-classic 
features are increasingly being given a genetic diagnosis. Similarly, 
the rapid progress in the development of novel, high throughput, cost 
effective sequencing technology – so called next generation sequencing 
– has made it possible to sequence the entire genome or all genes
(whole exome sequencing). This technology is moving rapidly from the
research realm to clinical practice, with the launch of clinical whole
exome sequencing first occurring in the United States in November,
2011. Taken together, these new technologies will substantially increase
the diagnostic yield in patients with cardiovascular malformations. As
cohorts of patients with rare syndromes increase and the molecular
precision continues to evolve, there will be an increasing emphasis
on the recognition of genotype-phenotype correlations and the
implementation of personalized medicine. In keeping with the goals
of this special issue, this review will highlight new insights and recent
developments in the understanding of genetic syndromes and isolated
cardiovascular malformations.

Noonan Syndrome and RASopathies
The RAS/mitogen activated protein kinase (MAPK) pathway 

is important for control of cell proliferation and differentiation. 
Dysregulation of this pathway results in a spectrum of disorders 
known as “RASopathies” including Noonan, LEOPARD, Costello, and 
Cardiofaciocutaneous syndrome, along with Legius syndrome, and 
Neurofibromatosis type 1 [1,2]. The former syndromes are associated 
with a high rate of cardiac involvement whereas cardiac abnormalities 
are infrequent in Legius and NF1.

PTPN11 was the first gene identified as causing Noonan syndrome 
in 2001 [3]. Subsequently a number of additional causative genes have 
been identified in the RAS-MAPKinase signaling pathway. Currently, 

clinical testing is available for 10 genes causing Noonan syndrome and 
related disorders including LEOPARD syndrome, Costello syndrome, 
Cardiofaciocutaneous syndrome, and Noonan-like syndrome with 
loose anagen hair. The genes are: PTPN11, RAF1, SOS1, KRAS, 
NRAS, BRAF, MAP2K1 (MEK1), MAP2K2 (MEK2), HRAS, and 
SHOC2. Importantly, in the vast majority of cases Noonan and related 
syndromes result from point mutations and therefore require specific 
gene testing and will not be identified by broader methods such as 
chromosome microarray analysis. Table 1 provides the genetic testing 
yield by gene for RASopathies with cardiac features.

Noonan syndrome is a well-recognized genetic syndrome with 

Noonan LEOPARD Costello Cardiofaciocutaneous
PTPN11 50% 90% N/A N/A
RAF1 3-17% <5% N/A N/A
SOS1 10-20% N/A N/A N/A
KRAS <5% N/A N/A rare
NRAS <1% N/A N/A N/A
BRAF <2% <5% N/A 75%
MAP2K1 or 
MAP2K2 <2% N/A N/A 25% 

HRAS N/A N/A 80-90% N/A
SHOC2 <1%a N/A N/A N/A

a5% in cohort negative for other genes known to cause Noonan syndrome
Compiled from Pagon RA, Bird TD, Dolan CR, Stephens K, editors. GeneReviews 
[Internet]. Seattle (WA): University of Washington, Seattle; 1993-2007 [accessed 
Nov 30, 2011]

Table 1: RASopathies with cardiac features: molecular etiologies.
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a prevalence of approximately 1 in 3500 [4,5]. It is inherited in 
an autosomal dominant pattern although new cases are common 
because the de novo mutation rate is high. The classic manifestations 
of Noonan syndrome include short stature, pulmonic stenosis and/
or hypertrophic cardiomyopathy, dysmorphic features including 
hypertelorism, downslanting palpebral fissures, low set posteriorly 
rotated ears, and webbing of the neck. Pectus excavatum or mixed 
pectus carinatum superiorly with pectus excavatum inferiorly are 
common. A variety of lymphatic abnormalities have been associated 
with Noonan syndrome, especially in the prenatal period where 
cystic hygroma, polyhydramnios and hydrops fetalis have all been 
described [6,7]. Genitourinary abnormalities are also common, 
especially cryptorchidism in males, and ophthalmologic problems and 
sensorineural hearing loss (10%) can occur throughout the lifetime of 
the affected individual. Developmental delay of variable severity occurs 
in approximately 25% [4,8]. Patients may also have a coagulopathy 
and this is important to evaluate and manage appropriately prior to 
any surgical or invasive procedure [9]. Finally, there is a threefold 
increased risk of malignancy in Noonan syndrome. Juvenile 
myelomonocytic leukemia is most classically associated with Noonan 
syndrome, but acute lymphoblastic leukemia, acute myeloid leukemia, 
rhabdomyosarcoma, and neuroblastoma are all seen at higher rates 
than in the general population as are myeloproliferative disorders [10-
14].

The frequency of cardiac disease is estimated at 50-80% in patients 
with Noonan syndrome [4]. Pulmonary valve stenosis, often with 
dysplasia, is the most common cardiovascular malformation, occurring 
in 25-50% of patients. Other common structural defects include branch 
pulmonary artery stenosis, septal defects, especially secundum atrial 
septal defects and partial atrioventricular canal defects, and tetralogy 
of Fallot. Although coarctation of the aorta was originally thought to 
be a differentiating feature between Noonan and Turner syndromes, 
more recent data indicate that aortic coarctation is not rare in Noonan 
syndrome. Hypertrophic cardiomyopathy is found in approximately 
20% of patients and may occur at any age. Up to 50% of patients with 
Noonan syndrome have an abnormal electrocardiographic pattern 
characterized by left axis deviation, an abnormal R/S ratio over the 
left precordial leads, and an abnormal Q wave. These findings are 
independent of underlying cardiovascular malformations [15]. Patients 
with Noonan syndrome need lifetime cardiac follow-up because left 
sided obstructive lesions may develop in adulthood and hypertrophic 
cardiomyopathy can develop at any age.

One of the interesting new developments in the genetics of Noonan 
syndrome is the emergence of genotype-phenotype correlations. 
PTPN11 mutations are more common in individuals with pulmonary 
stenosis and characteristic facial features and stature [3,16,17]. Specific 
exons of PTPN11 are more highly associated with risk for hematologic 
malignancy.  Mutations in RAF1 are associated with hypertrophic 
cardiomyopathy in up to 95% of individuals, as compared to the 
overall prevalence of hypertrophic cardiomyopathy in this population 
of approximately 20%. This correlation is protein domain specific, 
with mutations occurring in the N-terminal 14-3-3 consensus site or 
the C-terminus. Overall, the growth and development of patients with 
SOS1 mutations is better but ectodermal abnormalities are common 
[18-20]. Patients with SHOC2 mutations have a specific phenotype 
associated with loose anagen hair, a distinctive hyperactive behavior, 
and growth hormone deficiency. There is an over-representation of 
mitral valve dysplasia and septal defects, especially atrial septal defects, 
in this population [21].

LEOPARD syndrome (lentigines, ECG abnormalities, ocular 
hypertelorism, pulmonary stenosis, abnormalities of genitalia, 
retardation of growth, deafness) is an autosomal dominant condition. 
Early diagnosis can be difficult due to phenotypic overlap with Noonan 
syndrome. Overlap with the phenotype of NF1 also occurs because 
both disorders have skin findings of café-au-lait macules. Age related 
development of lentigines with or without hearing loss was necessary for 
diagnosis prior to the availability of molecular testing. Approximately 
85% of patients have cardiac involvement, with HCM being most 
common [22]. Pulmonary valve stenosis and other structural defects 
have also been reported. ECG abnormalities are poorly characterized 
and longitudinal follow-up of a larger cohort is necessary to determine 
the natural history of cardiac involvement and appropriate surveillance. 

Costello syndrome shares features with Noonan syndrome 
but is generally regarded as more severe. Unlike Noonan and 
Cardiofaciocutaneous syndromes which are genetically heterogeneous, 
Costello syndrome is only caused by HRAS mutations that result in 
constitutive or prolonged activation of the protein [23]. These mutations 
typically originate from the paternal germline [24]. Facial features in 
Costello syndrome are coarse. Ectodermal features are common and 
include hyperpigmentation, papillomas, and curly hair. In infancy, 
excessive wrinkling of the skin, especially of the hands and feet, is 
notable. Individuals with Costello syndrome have an approximately 
15% lifetime risk for malignancy. Cardiac involvement includes 
structural anomalies, HCM, and conduction system abnormalities. 
Approximately 65-75% of Costello patients with HRAS mutations 
have cardiac involvement [2,25,26]. Pulmonic stenosis occurs in 
approximately 25%, arrhythmia in 42%, and HCM in 47%. The 
arrhythmia most commonly described is supraventricular tachycardia, 
especially chaotic atrial rhythm/multifocal atrial tachycardia, or ectopic 
atrial tachycardia [26]. 

Cardiofaciocutaneous syndrome (CFC) has substantial overlap 
with Noonan syndrome but can also be confused with Costello 
syndrome because of its common ectodermal involvement and more 
severe intellectual impairment. Skin abnormalities can be extensive 
and include hyperkeratosis, eczema, palmoplantar hyperkeratosis, and 
keratosis pilaris. The hair is typically sparse and curly. CFC syndrome 
has similar cardiac and lymphatic findings to Noonan syndrome [20]. 
Approximately 75% of patients have cardiac involvement.  HCM 
is identified in 40% of patients and is most frequently diagnosed in 
infancy but can occur at any age. Pulmonary valve stenosis is identified 
in 25% of patients. Atrial septal defects, ventricular septal defects, 
mitral or tricuspid valve dysplasia and BAV are all identified with lesser 
frequency. 

In summary, the RASopathies with cardiac involvement exhibit 
genetic heterogeneity and phenotypic overlap. While each syndrome 
has characteristic features and classic cases do exist, the overlap 
can make definitive diagnosis difficult without molecular testing. 
Genotype-phenotype correlations are emerging and will improve 
risk assessment, surveillance, and management. Finally, other genetic 
syndromic conditions characterized by short stature, congenital heart 
disease, and dysmorphic features such as Williams-Beuren syndrome, 
Turner syndrome (in females), Aarskog syndrome, and Kabuki 
syndrome need to be considered in the differential.

Turner Syndrome
Turner syndrome is a relatively common aneuploidy 

characterized by short stature, gonadal dysgenesis, and cardiovascular 
malformations, most typically coarctation of the aorta. Some features 
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of Turner syndrome overlap with Noonan syndrome including short 
stature, webbed neck, and a broad shield chest. Turner syndrome is 
estimated to affect 1 in 2000 live births although only about 1% of 45, 
X fetuses survive to term. Guidelines for health supervision of patients 
with Turner syndrome have been developed to address their long term 
developmental, endocrine, cardiac and other medical management 
needs [27]. 

From a cardiac standpoint, approximately 30% of patients have a 
congenital heart defect with left ventricular outflow tract obstructive 
defects predominating. Bicuspid aortic valve is most common (30-
50%) followed by coarctation of the aorta (15-30%). Elongation of 
the transverse aortic arch (30%), atrial and ventricular septal defects, 
and PAPVR (16%) are other common structural abnormalities. MRI 
is beneficial to more precisely define the anatomy. Recommendations 
exist for reimaging children using MRI when they can do so without 
sedation [28]. In addition, conduction or repolarization defects are 
common and an electrocardiogram should be obtained.

Mortality is significantly increased in women with Turner 
syndrome. Aortic dissection is estimated to occur in 1-2% of the 
Turner syndrome population and is most often preceded by dilation 
of the aortic root and/or ascending aorta (Figure 1). In one study, 
the median age for dissection was 35 years [29]. A national study in 
Great Britain followed a cohort of 3439 women diagnosed with Turner 
syndrome between 1959-2002 identified a 3-fold higher mortality than 
in the general population [30]. Circulatory disease accounted for 41% 
of excess mortality with the greatest risk being derived from aortic 
aneurysm (standardized mortality ratio = 23.6; 95% CI = 13.8-37.8) 
and aortic valve disease. The overall risk of aortic dissections is 100-
fold increased in Turner syndrome [31]. One of the major contributing 
risk factors for cardiovascular events is hypertension, which affects up 
to 25% of adolescents and 40-60% of adults with Turner syndrome 
[32], highlighting the need for careful blood pressure monitoring at 
each clinic visit and institution of appropriate therapy. The significant 
association between elongation of the transverse aortic arch and CoA, 
BAV, and aortic sinus dilatation may also play a role in the risk of aortic 
dissection. A recent study identified BAV as a risk factor for acceleration 
of aortic dilation. Although longitudinal follow-up was limited, this 
study documented increases in the aortic sinus, sinotubular junction 
and mid-ascending aorta at rates 0.4 mm/year [33]. Currently there 
are no guidelines for medical management in this patient population. 
Surveillance imaging is necessary, but further studies are required to 
determine the most appropriate interval. Current guidelines suggest 
repeat imaging every 5 to 10 years if initial imaging is normal without 
evidence of BAV, CoA, or dilation of the ascending aorta [34].

Connective Tissue Disorders
Hereditary disorders of connective tissue include syndromic 

conditions such as Marfan syndrome, Loeys-Dietz syndrome, and 
Ehlers-Danlos syndromes as well as non-syndromic conditions such 
as isolated thoracic aortic aneurysm and dissection (TAAD) with or 
without structural heart defects such as patent ductus arteriosus, 
bicuspid aortic valve (BAV), and coarctation of the aorta (CoA). 
These conditions are genetically heterogeneous and encompass a 
spectrum of clinical presentations. They share in common genetic 
defects in structural connective tissue proteins or pathways that affect 
these proteins. This abnormal connective tissue represents a risk for 
aneurysm formation and dissection of the aorta. 

Marfan syndrome

Marfan syndrome is an autosomal dominant connective tissue 
disorder with a high degree of clinical variability and a prevalence of 1 
in 5000-10,000. The cardinal features of Marfan syndrome involve the 
ocular, skeletal, and cardiovascular systems. Up to 90% of individuals 
with a clinical diagnosis of Marfan syndrome have mutations in FBN1, 
a gene that codes for fibrillin-1, a structural component of microfibrils 
which provides mechanical stability and elastic properties to connective 
tissues [35-37]. Five to 21% of individuals with a known or suspected 
diagnosis of Marfan syndrome who did not have mutations in FBN1 
had mutations in TGFBR2, a gene more commonly associated with the 
related connective tissue disorder Loeys-Dietz syndrome [38,39]. 

In 2010, the clinical diagnostic criteria for Marfan syndrome, 
also known as the Ghent criteria, were revised [40]. Non-cardiac and 
-ophthalmologic features are now grouped into a category of systemic 
features (Table 2), and the previous system of major and minor criteria 
has been removed. The new criteria also integrate molecular genetic 
testing into the diagnostic features. Aortic root enlargement is required 
for the diagnosis of Marfan syndrome. In the absence of a family 

Figure 1: Cardiac magnetic resonance imaging of adult with Turner syndrome 
revealing mild dilation of the aortic root and ascending aorta.

http://www.marfan.org

Table 2: Systemic features in new diagnostic criteria for Marfan syndrome.

Phenotype Score
Wrist or thumb sign 1
Wrist and thumb sign 3
Pectus carinatum deformity 2
Pectus excavatum or chest asymmetry 1
Hindfoot deformity 2
Plain flat foot (pes planus) 1
Pneumothorax 2
Dural ectasia 2
Protrusio acetabulae 2
Reduced upper segment / lower segment AND increased arm span/
height ratios 1

Scoliosis or thoracolumbar kyphosis 1
Reduced elbow extension 1
3 of 5 facial features 1
Skin striae 1
Pneumothorax 2
Dural ectasia 2
Protrusio acetabulae 2
Myopia 1
Mitral valve prolapse 1
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history, a second finding of either ectopia lentis, a pathogenic FBN1 
mutation, or a systemic score greater than or equal to 7 is required. 
Alternatively, if the patient has an FBN1 mutation previously associated 
with aortic enlargement and also has ectopia lentis, diagnostic criteria 
are satisfied. In cases where there is a positive family history of Marfan 
syndrome, isolated findings of ectopia lentis, aortic root enlargement, 
or a systemic score of 7 or greater suffices.

Cardiovascular manifestations in Marfan syndrome include 
dilatation of the aorta at the level of the sinuses of Valsalva, a 
propensity for aortic tear and rupture, mitral valve prolapse with or 
without regurgitation, tricuspid valve prolapse, and enlargement of 
the proximal pulmonary artery (Figure 2). Marfan syndrome accounts 
for approximately 5% of all thoracic aortic aneurysms (TAAs). Recent 
guidelines for management of genetic syndromes associated with TAA 
suggest an echocardiogram at diagnosis and 6 months thereafter to 
determine the rate of enlargement of the aorta. Subsequently, annual 
imaging is recommended for patients with stable aortic diameter less 
than 4.5 cm [34]. These guidelines may be modified in the pediatric 
population, especially around the time of puberty [41]. Evaluation for 
surgical repair usually occurs at a threshold external diameter of 5.0 cm. 
Mitigating factors affecting the timing of surgical repair include rapid 
growth (greater than 0.5 cm/yr), family history of aortic dissection at 
less than 5.0 cm, or the presence of significant aortic regurgitation [34]. 

Genotype-phenotype correlations have been investigated for 
Marfan syndrome. Overall, the inter- and intra-familial variability 
is high. Exons 24-32 have been associated with a severe phenotype, 
including neonatal Marfan [42]. In addition, missense mutations in 
which cysteine is replaced or added are more highly associated with 
ectopia lentis. Mutations in exon 59 are associated with isolated ectopia 
lentis and mutations resulting in isolated skeletal features have also 
been described. Currently, the molecular basis of these genotype-
phenotype correlations remains elusive [43].

Over the past decade there has been significant progress in 
understanding the pathogenesis of Marfan syndrome. The primary 
pathology is related to alterations in TGFβ signaling due to 
sequestration of TGFβ in the extracellular matrix triggered by loss 
of fibrillin-1 [44-46]. The increase in active TGFβ signaling has been 
shown to cause aortic root dilation, lung bullae, and impaired muscle 
regeneration. Angiotensin-II receptor blockers antagonize TGFβ 
signaling. Early trials with losartan, an angiotensin-II receptor blocker, 
showed marked success in ameliorating the effects of elevated TGFβ 
signaling in a mouse model and in a small trial in patients with Marfan 
syndrome [47,48]. A multi-site clinical study is ongoing to compare 
losartan vs. atenolol in the treatment of aortic root dilation in patients 
with Marfan syndrome. 

Loeys-Dietz syndrome (LDS) 

This is an autosomal dominant condition that includes many 
features of Marfan syndrome including aortopathy (arterial tortuosity, 
aneurysms, and dissections), skeletal involvement (pectus deformity, 
scoliosis, arachnodactyly, joint laxity), dural ectasia, and aortic root 
aneurysm with dissection. Some features of Marfan syndrome are 
either less prominent (dolichostenomelia) or absent (ectopia lentis). 
Unique features can include hypertelorism, broad or bifid uvula, 
cleft palate, learning disability (rare), craniosynostosis, cervical spine 
instability, talipes equinovarus, soft and velvety skin, translucent skin, 
easy bruising, generalized arterial tortuosity and aneurysms, and 
dissection throughout the arterial tree. Congenital heart disease may be 
present including atrial septal defects and patent ductus arteriosus [49]. 

Aortic aneurysms are typically more aggressive than those in 
Marfan syndrome, with frequent dissection and rupture at small 
dimensions and in early childhood being demonstrated in early 
reports, as well as diffuse arterial involvement. Both the thoracic and 
abdominal aorta may be involved in LDS (Figure 3). As the cohort of 
LDS patients increases in size, it is important to determine whether the 
initial reports represent the most severe cases due to ascertainment bias 
since subsequent reports document more similar clinical outcomes 
[38]. LDS is caused by mutations in either TGFBR1 or TGFBR2 [49,50]. 
Genetic testing has an increasingly important role in both the diagnosis 
and management of connective tissue disorders since identification of 
a mutation in TGFBR1 or TGFBR2 may alter the timing of surgical 
management. Repair is currently recommended at diameters less than 
5 cm.  Current guidelines recommend that LDS patients should have 
yearly MRI surveillance from the cerebrovascular circulation to the 
pelvis due to the propensity for aneurysm development in other vessels 
[34]. The differential diagnosis includes Marfan syndrome and other 
connective tissue disorders with vascular involvement such as Ehlers-
Danlos syndrome, vascular type, caused by mutations in COL3A1. 
Vascular EDS can be clinically differentiated from LDS on the basis 
of characteristic facial features, thin skin, prominent vasculature, and 
propensity for rupture of medium sized arteries, bowel, and uterus. 

Figure 2: Cardiac magnetic resonance imaging of an adolescent with Marfan 
syndrome depicting moderate dilation of the aortic root.

Figure 3: Cardiac magnetic resonance imaging of adolescent with Loeys-Dietz 
syndrome revealing tortuosity of the infrarenal abdominal aorta. 
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Tissue fragility significantly complicates surgical procedures in 
vascular EDS.

Familial thoracic aortic aneurysms and aortic dissection 
(TAAD) 

This an autosomal dominant disorder without other systemic or 
syndromic manifestations. Structural heart defects such as bicuspid 
aortic valve, aortic coarctation, or patent ductus arteriosus may also 
be identified. The aortic disease observed is similar to that observed in 
Marfan syndrome and includes dilatation of the aorta and dissections 
either at the level of the sinuses of Valsalva or the ascending thoracic 
aorta. Recent guidelines for the management of TAA have been 
established [34]. Mutations in MYH11, ACTA2, TGFBR1, TGFBR2, 
and MYLK have been described in individuals with TAAD [51,52]. 
Taken together, genetic testing identifies a cause in less than 20% of 
current TAAD cases, indicating substantial locus heterogeneity in this 
condition. Positive genetic testing results in the index case are highly 
informative for at risk first degree family members who can then be 
tested to determine whether ongoing cardiac surveillance is necessary. 
In the absence of an identifiable disease causing mutation in the index 
case, aortic imaging is recommended for all first degree relatives to 
identify those with asymptomatic disease. 

22q11.2 Deletion Syndrome
Disorders resulting from the gain or loss of chromosomal material 

are termed genomic disorders. 22q11.2 deletion syndrome, also known 
as DiGeorge syndrome or Velocardiofacial syndrome is a prototypical 
genomic disorder and is a multiple gene deletion syndrome with an 
estimated prevalence of 1 in 4000 live births. The submicroscopic 
chromosomal deletions are detected by FISH, multiplex ligation-
dependent probe amplification (MLPA), or by chromosome 
microarray analysis. A common deletion size of approximately 3 Mb 
leads to deletion of about 45 genes and results from recombination at 
rearrangement hotspots [53]. However, smaller and large deletions 
have been identified. 

Clinically, 22q11 deletion is characterized by dysmorphic features, 
aplasia or hypoplasia of the thymus and parathyroids, learning disability, 
and frequent cardiovascular malformations. Palatal abnormalities, 
especially velopharyngeal incompetence, submucous cleft palate, and 
cleft palate, are common and result in hypernasal speech. Immune 
deficiency, hypocalcemia, feeding problems, and renal anomalies are 
all frequently identified. The syndrome is characterized by marked 
variability and a high degree of suspicion can be required to make the 
diagnosis in adolescents and adults [54]. New guidelines for managing 
patients with 22q11.2 deletion syndrome were developed in 2011 [55].

Congenital heart defects occur in approximately 75% of individuals 
with 22q11.2 deletion and it is the second most common cause 
of developmental delay and congenital heart disease after Down 
syndrome. A subset of conotruncal defects are common in 22q11.2 
deletion syndrome, leading to the development of AHA consensus 
guidelines recommending FISH for 22q11.2 deletion in all infants 
with interrupted aortic arch type B or truncus arteriosus; tetralogy of 
Fallot associated with absent pulmonary valve, aortic arch anomalies 
(including right aortic arch), pulmonary artery anomalies, or 
aortopulmonary collaterals;  perimembranous ventricular septal defect 
and associated aortic arch abnormalities; or infants with isolated aortic 
arch abnormalities [56]. Pulmonary stenosis, atrial septal defects, 
heterotaxy syndrome, and hypoplastic left heart syndrome have also 
been reported. 

Understanding the developmental mechanisms that cause 
congenital heart disease in patients with 22q11.2 deletion is an active 
area of research. Analysis of genes within the deleted interval led to 
identification of the transcription factor TBX1 as responsible for 
cardiovascular malformations [57]. Genome wide association studies 
are in progress to better understand the genetic contributors to the 
phenotypic variability in 22q11.2 deletion syndrome. Common variants 
in TBX1 itself do not explain the phenotypic variability, suggesting the 
existence of additional genetic modifiers that influence phenotype [58].

Williams-Beuren Syndrome
Williams-Beuren syndrome, like 22q11.2 deletion, is a genomic 

disorder – in this case caused by a 1.5-1.8 Mb microdeletion of 
chromosome 7q11.23. It is estimated to occur in 1 in 10,000 individuals. 
The diagnosis can be made by chromosome microarray analysis 
or by FISH for 7q11.23. The deletion leads to haploinsufficiency 
of approximately 28 genes, including elastin (ELN) [59,60]. The 
clinical features of Williams syndrome include short stature, 
characteristic dysmorphic features, intellectual disability with a 
characteristic outgoing personality, endocrine abnormalities including 
hypercalcemia, hypothyroidism, and abnormal glucose metabolism, 
and cardiovascular malformations. 

The classic congenital heart defect associated with Williams 
syndrome is supravalvar aortic stenosis, often in conjunction with 
supravalvular pulmonary stenosis and peripheral pulmonary stenosis. 
Dosage sensitivity is a central concept to the understanding of genomic 
disorders. While many genes can exist in a single copy or in triplicate 
without consequence, the function of some genes requires exact 
dosage. In Williams syndrome, haploinsufficiency of the ELN has been 
shown to be primarily responsible for the associated cardiac features 
and generalized arteriopathy [59,60]. The degree of cardiovascular 
involvement varies widely. There is potential involvement of 
any medium to large-sized artery with narrowing due to medial 
hypertrophy. The supravalvular aortic stenosis has been shown to 
progress in many cases, whereas the supravalvular pulmonary stenosis 
or peripheral pulmonary artery stenosis usually regresses with time 
[61]. Stenosis involving the aorta does not usually respond to balloon 
dilation. Idiopathic hypertension is seen in approximately 50% of 
patients, diffuse aortic hypoplasia in 10-20%, renovascular stenosis in 
5-10% and structural cardiac defects such as atrial and ventricular septal 
defects in 10% [54]. Whereas Williams syndrome is a contiguous gene 
deletion syndrome, point mutations in ELN result in familial autosomal 
dominant supravalvar aortic stenosis without other syndromic features 
associated with Williams syndrome [62]. Recently, a new syndrome 
caused by duplication rather than deletion of the Williams syndrome 
critical region has been identified [63,64]. It is characterized by severe 
expressive speech delay and autism, intellectual disability in some 
patients, hypotonia, and cardiovascular malformations, especially 
patent ductus arteriosus. 

Rare Genetic Syndromes
A search of the Online Mendelian Inheritance in Man (OMIM) 

database reveals that the number of genetic syndromes with cardiac 
involvement is greater than 1300. Advancing genetic technology has led 
to the recognition of the molecular basis of these syndrome and further 
delineation of the phenotypic features. Here we briefly highlight three 
genomic disorders and three single gene syndromic disorders that have 
relevant new findings. 
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Microdeletion and microduplication syndromes

Three genomic disorders that have significant new developments 
with regard to cardiac or genetic findings within the last 5 years 
include 1p36 syndrome, Jacobsen syndrome, and 17p11.2 duplication 
syndrome (also known as Potock-Lupski syndrome, PTLS). 

1p36 deletion syndrome: 1p36 deletion syndrome, also called 
monosomy 1p36, is the most common terminal chromosome 
deletion and is estimated to occur in at least 1 in 5000 livebirths 
[65-68]. The majority of cases are de novo deletions. The diagnosis 
is most frequently made by chromosome microarray analysis since 
the deletion can be very difficult to visualize by routine chromosome 
analysis. Characteristic features include severe intellectual disability, 
seizures, hearing loss, dysmorphic facial features, microbrachycephaly, 
large anterior fontanelles and cardiac defects. The first systematic 
clinical characterization of a cohort of 1p36 deletion patients identified 
23% with a history of dilated cardiomyopathy in infancy and 43% 
with structural defects, the most common of which was patent ductus 
arteriosus followed by  ventricular septal defects, dilated aortic root, 
atrial septal defects, and BAV [66]. A second cohort study identified 
an even larger degree of cardiac involvement, with 71% of patients 
having a structural abnormality [69]. More recently, left ventricular 
noncompaction has been recognized as a common feature of 1p36 
syndrome and is estimated to occur in greater than 20% of patients [69-
71]. Guidelines for longitudinal surveillance have not been established 
and given that the identification of 1p36 deletions is relatively new, the 
natural history of cardiomyopathy in this patient population is not yet 
known. 

Jacobsen syndrome: Jacobsen syndrome is a well-recognized 
genetic syndrome caused by partial deletion of the long arm of 
chromosome 11. The size of the deletion is variable, ranging from 7 Mb 
to 20 Mb in size. These deletions are detectable by routine chromosome 
analysis. Chromosome microarray analysis is useful for more specific 
delineation of deletion size. While Jacobsen syndrome is quite rare, 
cardiac features are common and often severe, occurring in more than 
50% of patients [72]. Left ventricular outflow tract obstructive defects 
are the most common anomalies and Jacobsen is one known syndromic 
cause of hypoplastic left heart syndrome [73]. The syndrome is also 
characterized by growth retardation, dysmorphic features, intellectual 
disability, and abnormal platelet number and/or function (Paris-
Trousseau) or pancytopenia [74]. Noonan syndrome and Turner 
syndrome are in the differential given shared features of small size and 
facial dysmorphisms. Some recent breakthroughs in the investigation 
of Jacobsen syndrome have stemmed from the establishment of mouse 
models and identification of ETS-1 as a gene within the deletion region 
important for congenital heart defects [75] .

17p11.2 duplication syndrome: 17p11.2 duplication syndrome, 
also known as Potocki-Lupski syndrome, is a recently identified 
syndrome resulting from the reciprocal duplication of the genomic 
region that causes Smith-Magenis syndrome when deleted [76].  This 
genomic disorder is most frequently caused by duplication of a 3.7 Mb 
region containing the RAI1 gene on 17p, although larger and smaller 
duplication sizes have been identified [77]. The diagnosis is made by 
chromosome microarray analysis. Characteristic features include 
failure to thrive, intellectual disability, autistic features, apraxia, sleep 
apnea, and cardiovascular malformations. Although relatively small 
numbers of patients have been evaluated in this newly described 
disorder, there has been significant effort to characterize the cardiac 
anomalies [78,79]. Approximately 50% of patients have cardiac 
involvement including structural heart disease, aortopathy, and 

electrocardiographic abnormalities. Dilated aortic root was the most 
common abnormality, occurring in 20% of patients.

Single gene syndromic disorders

The molecular basis of single gene disorders underlying Mendelian 
disease is being identified at a rapid pace. Alagille syndrome, CHARGE 
syndrome, and Kabuki syndrome are single gene syndromic disorder 
in which cardiovascular malformations have been regularly identified. 

Alagille syndrome: Alagille syndrome is a multisystem disorder 
with heart, skeletal, liver, eye, and facial features. It is classically 
characterized by paucity of bile ducts on liver biopsy, cholestasis and/
or conjugated hyperbilirubinemia. Other findings include skeletal 
abnormalities such as butterfly vertebrae, eye anomalies such as 
posterior embryotoxon, and right sided heart defects. The diagnosis is 
based on clinical features and molecular testing. Mutations in JAG1 
account for the majority of cases, occurring in approximately 89% 
of patients that fulfill clinical criteria [80,81]. JAG1 encodes a ligand 
in the Notch signaling pathway. Microdeletions containing JAG1 on 
chromosome 20p12 account for up to 7% of cases and can be detected by 
FISH. A second gene, NOTCH2, has been shown to cause less than 1% 
of cases. The clinical features are highly variable, even within families. 
While detection rate is greater than 80% in patients with involvement 
of all five systems, mutations are identified in up to 20% of patients 
with involvement of only one system, illustrating that many atypical or 
mild cases exist that would go unrecognized without molecular testing 
[82,83]. Sequence variants in JAG1 have also been identified in a small 
number of apparently isolated cases of tetralogy of Fallot or pulmonic 
stenosis [84].

The prevalence of cardiac findings is unclear due to ascertainment 
bias, but early descriptions of Alagille documented structural defects in 
greater than 90% [85]. Right sided defects predominate, occurring in 
75%. Peripheral and branch pulmonic stenosis are the most common 
findings. Tetralolgy of Fallot is seen in approximately 15% of patients. 
Less frequent cardiac malformations include ventricular septal defect, 
atrial septal defect, aortic stenosis and coarctation [85,86]. NOTCH and 
JAG1 are known to be important for vascular development and at least 
10% of patients with Alagille have documented extra-cardiac vascular 
anomalies including internal carotid artery anomalies, basilar artery 
aneurysms, middle cerebral artery aneurysm, and Moyamoya disease. 
Aortic aneurysms have also been documented as have intracranial 
vascular events without documented vessel abnormalities, with the 
latter accounting for 34% mortality in one cohort [87]. 

CHARGE syndrome: CHARGE is an acronym for ocular coloboma, 
congenital heart defects, choanal atresia, retardation of growth 
and development, genital hypoplasia, and ear anomalies associated 
with deafness. The phenotype is highly variable and the spectrum of 
anomalies has been further expanded since the identification of CHD7 
as the causative gene in 2004 [88]. CHD7 is a chromatin remodeling 
ATPase that is important for epigenetic regulation of gene expression 
[89]. Clinical testing for CHD7 mutations identified mutations in 
approximately 60-70% of patients with CHARGE syndrome. The 
remaining patients are diagnosed based on clinical findings including 
temporal bone imaging. Clinical criteria for diagnosis have been 
established [90,91]. Unilateral or bilateral coloboma occurs in 80-90%. 
Abnormal outer ears with or without Mondini defect of the cochlea and 
absent or hypoplastic semicircular canals are nearly pathognomonic, 
occurring in greater than 90%. Cranial nerve dysfunction is also very 
characteristic of classic CHARGE, but occurs in only 40% of patients.
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Cardiovascular malformations are found in 75-85%. The most 
characteristic defects include conotruncal anomalies. AV canal 
defects, vascular ring, and aberrant subclavian artery are also 
described frequently. A subset of CHARGE patients has significant 
phenotypic overlap with 22q11.2 deletion or DiGeorge sequence 
[92] including conotruncal defects and cell-mediated and humoral 
immunodeficiencies along with multiple congenital anomalies; 
however, abnormalities of the semicircular canals, if present, are a 
differentiating feature. The differential also includes Kabuki syndrome, 
Kallman syndrome, VACTERL association, and Cat-Eye syndrome, 
among others.

Kabuki syndrome: Recently, MLL2 was identified as the gene 
causing a majority of cases of Kabuki syndrome. Mutations are detected 
in 56-76% of individuals with a clinical diagnosis of Kabuki and it seems 
likely that the availability of molecular testing will assist in further 
delineation of associated features [93-97]. Kabuki syndrome (KS) is 
characterized by typical facial features (elongated palpebral fissures 
with eversion of the lateral third of the lower eyelid; arched and broad 
eyebrows; large, prominent, or cupped ears), minor skeletal anomalies, 
persistence of fetal fingertip pads, mild to moderate intellectual 
disability, and postnatal growth deficiency.   Approximately 40-50% of 
patients with Kabuki syndrome have cardiovascular involvement. Left 
sided obstructive defects, especially coarctation of the aorta, are most 
common [98]. Atrial and ventricular septal defects are also common 
findings. Other structural abnormalities that may occur include 
genitourinary anomalies, cleft lip and/or palate, and gastrointestinal 
anomalies including anal atresia, ptosis and strabismus.

The Genetic Basis of Non-Syndromic Cardiovascular 
Malformations

Congenital heart disease is the most common birth abnormality 
and the etiology is unknown in the overwhelming majority of cases. 
Epidemiologic and population based studies estimate that syndromic 
cardiovascular malformations comprise approximately 25% of 
cases, with the remainder being isolated malformations [99-101]. A 
study of normal and abnormal cardiac development in a variety of 
animal models has provided information on the genes important for 
cardiac morphogenesis. Mutations in genes known to be essential 
for cardiac development such as NKX2.5, TBX20, GATA4, GATA6, 
and MYH6 have been identified in small families with isolated, non-
syndromic cardioavascular malformations with autosomal dominant 
inheritance [102-106]. While families exhibiting autosomal dominant 
inheritance of isolated cardiovascular malformations have been 
genetically informative, in the majority of isolated cases, it is likely 
that the cardiovascular malformation results from a complex mixture 
of genetic and environmental factors. In many cases, congenital heart 
defects may be inherited as a complex trait resulting from inheritance 
of rare or common variants as susceptibility alleles. Higher throughput 
analysis afforded by next generation sequencing technology will allow 
comprehensive and simultaneous detection of multiple deleterious 
variants in genes/developmental pathways important for cardiac 
morphogenesis, thereby providing insight into these more complex 
inheritance models in which the cumulative effect of multiple genetic 
risk factors leads to disease.

Multiple epidemiologic studies show that isolated cardiovascular 
malformations show familial clustering and have high heritability. 
A recent Danish population-based study investigating absolute and 
relative recurrence risk of congenital heart disease strongly suggests 
that gene mutations are the underlying cause [99]. Two of the classes 

of defects with the highest relative risk of recurrence of the same heart 
defect phenotype were heterotaxy, with a relative risk of 79.1 (95% CI 
32.9-190) and left ventricular outflow tract defects, with a relative risk 
of 12.9 (95% CI 7.48-22.2). Familial clustering of dissimilar types of 
heart defects also had an elevated  relative risk of 3.02 [107], suggesting 
that common pathways that involve shared susceptibility genes 
may underlie a continuum of heart defects. Recent studies provide 
further insight into the genetics of specific classes of cardiovascular 
malformations such as septal defects, LVOTO defects and heterotaxy, 
as discussed below.

Septal defects

Atrial septal defects, ventricular septal defects, and atrioventricular 
septal defects are genetically and phenotypically heterogeneous 
cardiovascular malformations that together account for a large 
proportion of all congenital heart disease. In some cases, these 
defects are highly associated with syndromic congenital heart disease, 
such as the common finding of atrioventricular septal defects in 
patients with Trisomy 21. While the underlying molecular basis of 
most cases of nonsyndromic septal defects is unknown, autosomal 
dominant pedigrees have been identified and have proven useful for 
identification of genes or chromosomal loci (Table 3). Many of these 
genes have been shown to be essential for cardiac development in 
animal models and biological networks are emerging. For example, 
GATA4, NKX2.5, and TBX5 (the gene causing Holt-Oram syndrome) 
may function in a complex to regulate a subset of genes required for 
cardiac septal formation [102]. Interestingly, mutations in MYH6 or 
ACTC1 can cause either congenital heart disease or cardiomyopathy. 
Genetic testing is clinically available for GATA4, NKX2.5, and ACTC1. 
The yield of testing in individuals with cardiovascular malformations 
without a significant positive family history of autosomal dominantly 
inherited disease is not known with certainty although some studies 
indicate that it is relatively low [108].

Table 3: Chromosomal loci and genes implicated in non-syndromic septal defects.

Phenotype Chromosome locus Gene

Atrial septal defect 1 5p unknown

Atrial septal defect 2 8p23.1 GATA4

Atrial septal defect 3 14q11.2 MYH6

Atrial septal defect 4 7p14.2 TBX20

Atrial septal defect 5 15q14 ACTC1

Atrial septal defect 6 4q32.3 TLL1

Atrial septal defect 7 5q35.1 NKX2.5

Atrial septal defect 8 6q24.1 CITED2

Ventricular septal defect 1 8p23.1 GATA4

Ventricular septal defect 2 6q24.1 CITED2

Ventricular septal defect 3 5q35.1 NKX2.5

Atrioventricular septal defect 1 1p31-21 unknown

Atrioventricular septal defect 2 3p25.1 CRELD1

Atrioventricular septal defect 3 6q22.31 GJA1

Atrioventricular septal defect 4 8p23.1 GATA4
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LVOTO defects

Left ventricular outflow tract obstructive (LVOTO) defects  include 
bicuspid aortic valve (BAV), aortic valve stenosis (AVS), coarctation 
of the aorta (CoA), and hypoplastic left heart syndrome (HLHS). A 
recent national epidemiologic study from Denmark indicated that 
these defects exhibited a high relative recurrence risk [99]. LVOTO 
malformations are a leading cause of infant mortality and the majority 
of cases are non-syndromic. These malformations are thought to share 
developmental pathogenic mechanisms. Mutations in NOTCH1 have 
been identified as a cause of aortic valve malformations, including BAV 
and early aortic valve calcification, via linkage analysis in an affected 
family [109]. Linkage to multiple loci, including chromosomes 2p, 6q, 
10q, and 16p have been identified  for AVS, CoA, and HLHS indicating 
that they are genetically heterogeneous [110,111]. Additional loci for 
BAV have been found on chromosomes 5q, 13q, and 18q [112]. The 
presence of an LVOTO lesion increases the risk of identifying BAV in a 
parent or children and the overall relative risk of BAV in relatives is 5.05 
(95% confidence interval: 2.2-11.7) [113]. The high heritability of these 
malformations has been established with recurrence risks ranging from 
5% risk of BAV in first degree family members of individuals with AVS, 
CoA, or HLHS to 22% recurrence risk of cardiovascular malformations 
in siblings of patients with HLHS [113-115]. As a result these findings, 
first degree relatives of an individual with AVS, CoA, or HLHS should 
be screened by echocardiography. 

Heterotaxy

Heterotaxy spectrum defects have the highest relative risk of 
recurrence of all classes of cardiovascular malformations [99]. 
Despite this, heterotaxy is sporadic in the vast majority of cases, and 
occurs without an identifiable family history, a fact that has made the 
identification of causative genes challenging. These lesions have high 
morbidity and mortality and because of the substantially decreased 
reproductive fitness it is possible that some fraction of heterotaxy could 
be caused by highly penetrant de novo mutations. Mechanistically, they 
have their basis in abnormal patterning of the left and right sides of the 
body during early embryogenesis prior to organ formation, with an end 
result of abnormal organ positioning (Figure 4) [116]. While heterotaxy 
can be associated with genetic syndromes, including aneuploidies, 
most cases are non-syndromic. Inheritance can be X-linked, autosomal 
dominant, autosomal recessive, or sporadic [117-119]. The X-linked 
form is caused by mutations in the zinc finger transcription factor ZIC3 
[120]. Mouse models and expression analyses of patient mutations 

demonstrate that heterotaxy results from loss of function of ZIC3 
[121]. Mutations account for approximately 75% of familial cases and 
5% of sporadic cases. Affected females have been identified [121-123]. 
Testing for mutations in ZIC3 should be performed for any male with 
heterotaxy since the results significantly affect familial recurrence risk: 
50% recurrence risk if positive vs. 5-10% recurrence risk if negative. 
Mouse models have been useful for elucidating other genes important 
for the development of LR patterning. Mutations in genes within the 
TGFβ pathway required for left-right patterning such as NODAL, 
CFC1, ACVR2B, LEFTYA, and FOXH1 have been identified in patients 
with heterotaxy but also with isolated congenital heart defects [124-
127]. Likewise, mutations in ZIC3 have been identified in patients with 
isolated heart defects as well as patients with more complex phenotypes 
including VACTERL association [121,128]. Clinical testing is available 
for heterotaxy genes. In addition, there is a newly identified overlap 
between heterotaxy and primary ciliary dyskinesia (PCD). Published 
data indicate that at least 6.4% of PCD patients have heterotaxy and 
unpublished data indicate that true numbers may be 10-20% [116]. This 
has important management implications with regard to pulmonary 
toilet and institution of chest physiotherapy and surveillance in order 
to prevent bronchiectasis. The increasing sophistication and availability 
of genomic technology is leading to the identification of additional 
genetic causes, including a new candidate pathway involving ROCK2 
and SHROOM3 [129,130]. Rare variants in genes in developmental 
pathways important for left-right patterning may confer susceptibility 
to heterotaxy with the phenotype resulting from a combination of 
inherited susceptibility risk factors and environmental risks such as 
maternal diabetes and vascular insufficiency. 

Other Important Cardiovascular Disorders with A 
Genetic Basis

While the focus of this special issue is on emerging topics in 
congenital heart defects, the genetic basis of a number of other cardiac 
disorders including cardiomyopathy, inherited arrhythmias, atrial 
fibrillation, coronary artery disease, and hyperlipidemia is rapidly 
evolving. We briefly discuss relevant issues related to use of genetic 
testing in clinical practice and refer the reader to several excellent 
recent reviews for more comprehensive overviews of these topics [131-
140]. 

Genetic testing is becoming increasingly incorporated into 
clinical practice in the assessment of heritable arrhythmias such as 
long QT syndrome (LQTS), Brugada syndrome, Arrhythmogenic 
Right Ventricular Cardiomyopathy (ARVC), and Catecholinergic 
Polymorphic Ventricular Tachycardia (CPVT) and cardiomyopathies 
such as Hypertrophic Cardiomyopathy (HCM), Dilated 
Cardiomyopathy (DCM), Left Ventricular Noncompaction (LVNC), 
and Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC).  
HCM, DCM, LVNC, and restrictive cardiomyopathy (RCM) all occur 
in childhood with a bimodal age distribution (Figure 5A-D) and the 
underlying causes of cardiomyopathy are more heterogeneous than in 
adults. Genetic syndromes, neuromuscular disease, inborn errors of 
metabolism, mitochondrial disorders, and mutations in genes encoding 
structural components of the cardiomyocyte including the sarcomere 
and cytoskeleton all contribute to the genetic heterogeneity [141,142]. 
Recent reviews highlight the genetic basis and pathogenesis of these 
disorders [143,144].  Heart Failure Society of America guidelines have 
been developed to guide cardiac surveillance and genetic testing in 
cardiomyopathy, and similar guidelines exist to guide testing for other 
autosomal dominantly inherited cardiovascular disorders [140,145]. 
These guidelines recommend that clinical genetic testing should be 
incorporated into routine patient care and highlight the importance of 

Figure 4: Cardiac magnetic resonance imaging of a child with heterotaxy 
syndrome depicting a midline liver with symmetric hepatic venous drainage.
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genetic counseling for patients and at risk family members with regard 
to inheritance, family screening recommendations, genetic testing 
options, and management implications of results [140,146,147]. 

Future Directions
The role of the geneticist in pediatric cardiology

As the technology for evaluation of the human genome continues 
to improve, there is an increasing need for professionals to apply and 
interpret genetic testing in a thoughtful and clinically meaningful 
way. Pediatric cardiologists and geneticists need cross discipline 
training in order to provide the best care to patients with congenital 
heart disease. The increased availability of genetic testing provides 
an opportunity to improve diagnostic yield and precision and to 
deliver more sophisticated recurrence risk information. Subsequently, 
there is a clear need for longitudinal clinical studies in which careful 
phenotyping and outcome measures are evaluated in the context of a 
known genetic diagnosis. A priori knowledge of a patient’s genotype 
should be used for the development of more sensitive measures of 
disease and to improve the ability to monitor disease progression. 

Studies of large cohorts are required in order to begin to identify 
genetic and environmental modifiers of disease and determine whether 
risk stratification is feasible. 

Epigenetics

Epigenetics refers to a functionally relevant modification of the 
genome that does not change the nucleotide sequence. Examples of 
epigenetic changes include DNA methylation, histone modification, 
and microRNAs. These modifications function to alter the expression 
of genes or determine allele-specific inheritance. These modifications 
play an important role in the development of cardiac hypertrophy and 
heart failure, and a role in cardiac development is being increasingly 
recognized [148-150]. In addition, epigenetics underlie cellular 
reprogramming that can occur, for example, in induced pluripotent 
stems cells (iPS) in which DNA methylation of pluripotency genes is 
required to alter cell fate. 

Recently, the effect of maternal diet and nutritional status on the 
epigenome has been identified [151,152]. Likewise, transcriptional 
changes in the fetus are speculated to result from environmental 
effects such as maternal folate status and maternal hyperglycemia via 
epigenetic mechanisms [153,154]. Epigenetic changes are therefore 
important candidates to explain the biological mechanisms underlying 
gene x environment interactions. Future studies are required to 
determine whether epigenetic mechanisms integrate these gene x 
environment influences to dysregulate cardiac morphogenesis. 
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