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Abstract

Pathway analysis is one of the most interesting aspects of Systems Biology. Modeling biological pathways is

interesting as well as difficult to optimize. Various modeling problems of diseases can be successfully analyzed

using this simulation approach. Graphical probabilistic approaches are one of the unique methodologies that are

used for designing and analyzing pathways. We have discussed the various graphical approaches that are actively

involved in pathway modeling.
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Introduction

Biological pathways are modeled for analyzing and vi-
sualizing various sub-steps of the network, study gene ex-
pression profiles and predicting outcome of various alter-
ations made to the cells. A major challenge in developing
these models is to choose the correct abstraction. Due to
the large and diverse nature of biological networks, it is es-
sential to balance computational complexity against model
fidelity and to move between models of different levels of
detail, using different meaning ways. Here, graphical proba-
bilistic models are discussed for modeling biochemical path-
ways. Biological pathways are categorized into Metabolic
Pathways, Signal Transduction Pathways and Gene regula-
tory Networks. Here, we have tried to look into all these
aspects of biological pathway modeling.

Graphical probabilistic models

Graphical Probabilistic Models represent multivariate
probability densities. These multivariate probability densi-
ties are represented by a product of terms that involves few
variables. Furthermore, the products are represented by
graph theoretical approach. This graph relates the variables
that are represented by a common term. The common types
of graphical models are discussed here (Agarwal et al.,

Figure 1:  Figure showing a gene regulatory network
explained using Bayesian statistics.

Received July 11, 2008; Accepted August 02, 2008; Published August 14, 2008

Citation: Somnath T, Virendra SG,  Rajat KD  (2008) Pathway Modeling: New face of Graphical Probabilistic Analysis. J Proteomics
Bioinform 1: 281-286. doi:10.4172/jpb.1000035

Copyright: © 2008 Somnath T, et al..  This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited.

2000; Hall et al., 1999).

Types of graphical probabilistic models

Bayesian networks

Bayesian Networks are used for predicting relationship
within variables. It is a directed acyclic graph whose nodes
represent random variables; arcs represent statistical de-
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Figure 2: Figure showing the Gaussian network

Figure 3:  Figure shows LVM.

pendence relations among the variables and local probabil-
ity distributions for each variable given values of its parents
(Levitsky et al., 2007; Marashi et al., 2007).

Thus, for each variable X
i
,

 i • {1, …, N} (1)

the set of parent variables is denoted by parents (X
i
),

then the joint distribution of the variables is product of the
local distributions.

          Pr (X
1
, … , X

n) = 
Ð Pr (X

r
 | parent (X

i
)) (2)

Gaussian Networks

The normal distribution is univariate in nature. But, there
is a difficulty working with univariate distribution as the co-
variance matrix must be positive definite in nature. But with
gaussian networks, this constraint needs not to be consid-
ered (McKinney et al., 2006).

Maximum likelihood

Maximum Likelihood Estimation begins with writing a
mathematical expression called the Likelihood Function of
the sample data. It is the probability of obtaining that par-
ticular set of data, given the chosen probability distribution
model. This expression contains the unknown model pa-
rameters. The values of these parameters that maximize
the sample likelihood are known as the Maximum Likeli-
hood Estimators (MLE’s) (Hu, 2004; Jin et al., 2008).

Thus, Given a family M{i} of probability distributions
parameterized by ‘i’ associated with a known probability
function fn{i}, we may draw a sample x{1} to x{n} of ‘n’
values from this distribution and then using fn{i} we may

compute the probability density (Justenhoven, et al., 2008).

 [fn{i}(x{1} to x{n})| i]            [3]

In this case, the likelihood function is given by,

 [L(i)=[fn{i}(x{1} to x{n})|i]    [4]

Density estimation

Density Estimation is the construction of an estimate
based on an un-observed data. This is again based upon an
un-observed probability density function (Estivill-Castro
and Houle, 2001).

Helmholtz machine (HM)

Helmholtz Machines are neural networks that learn the
hidden structure of a set of data one being trained to create
a generative model, producing the original set of data. Thus,
by learning the various representations of the data, the un-
derlying structure of the generative model approximates the
hidden structure of the data set (Estivill-Castro et al., 2001;
Estivill-Castro et al., 2001). These are categorized as
Autoencoders, Deterministic HM and Stochastic HM.
Autoencoders reconstructs its best guess of the input on
the basis of the code that it sees, whereas Deterministic
HM is inspired by mean-field methods and Stochastic HM
captures the correlation between the activities in different
hidden layers (Han and Kamber, 2000).

Latent variable models (LVM)

Latent Variable Models relates a set of manifest vari-

ables to set of latent variables, which are grouped accord-
ing to whether the manifest and latent variables are cat-
egorical or continuous. It provides a means to parse out
measurement error by combining across
observed variables and allow for the estimation of complex
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Figure 4: Figure showing HMM.

causal models. Furthermore, these are well developed for
metric and discrete observed variables. Also, these account
for clustering random effects (Tonella, 2001).

Generative topographic mapping (GTM)

In Generative Topographic Mapping (GTM), the train-
ing data is assumed to arise by first picking a point
probabilistically in a low-dimensional space, then mapping
the point to the high-dimensional input space that is observed.
This is done by a smooth function and then adding noise in
the high dimensional input space. The Expectation-Maximi-
zation (EM) algorithm is used to make a training set that
can be used to train the parameters of the low-dimensional
probability distribution (Cormen et al., 2000).

Hidden markov model (HMM)

In a Hidden Markov Model, a state is not directly visible,
but variables influenced by the state are visible. Each state

has a probability distribution over the possible output tokens.
This model is a finite set of states, each of which is associ-
ated with a probability distribution (Demetrescu et al., 2004).
Transitions among the states are governed by a set of prob-
abilities called transition probabilities. In a particular state
an outcome or observation can be generated, according to
the associated probability distribution. The three main prob-
lems of HMM include Evaluation Problem, Decoding Prob-
lem and Learning Problem (Demetrescu et al., 2003).

Application of graphical probabilistic models

Application to metabolic pathway modeling

A machine learning system is introduced for gene func-
tions determination from heterogeneous data sources using
a Weighted Naive Bayesian network (WNB). The aim is to
infer functions of putative genes or Open Reading Frames
(ORFs) from existing databases using computational meth-
ods. While integrating evidence from multiple and comple-
mentary sources significantly improves the prediction ac-
curacy. The experimental results suggest that the stated
hypothesis is valid and provide guidelines for using the WNB
system for data collection, training and predictions. Further-
more, the combined training data sets consists results from
gene expressions, clustering outputs and sequence homol-
ogy from public databases. It is also used to analyze the
contribution of each source of information toward the pre-
diction performance through the weight training process
(Deng et al., 2006).

Searching for peptide hormones that signals via mem-
brane receptors is often hampered by their small size, and
lack of sequence similarity. A search tool based on the hid-
den Markov model is developed that uses various peptide
hormone sequence features for estimating the likelihood that
a protein contains a processed and secreted peptide of this
class. Analysis of the top scoring hypothetical and poorly
annotated human proteins identifies two candidate peptide
hormones. Their analysis shows that both are localized to
secretory granules in a transfected pancreatic cell line. The
findings demonstrate the utility of a bioinformatics approach
to identify novel biologically active peptides (Mirabeau et
al., 2007).

Multivariate methods are used for the analysis of mo-
lecular data including genotypic data and clinical pheno-
types. These methods include latent variable models and
joint multivariate modeling techniques. Thus, given the wide
variety in the data considered, the objectives of the analysis
and the methods applied, direct comparison of the results
are discussed (Beyene et al., 2007).

Major stem cell species are studied using a co-cluster-
ing latent variable model (LVM). It helps to explain cell
type-specific transcription factors, using expression profiles.
The LVM-based study also helps to analyze regulatory
modules for each stem cell cluster. Furthermore, the identi-
ties of the stem cell clusters are revealed by the constituent
genes that are directly targeted by the modules (Joung et
al., 2006).

Application to signal transduction modeling

A primer on the use of Bayesian networks is introduced
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for analyzing the connectivity of signaling networks. Baye-
sian networks are used to derive causal influences among
biological signaling molecules. An automatically derive a
Bayesian network model is introduced from proteomic data
and to interpret the resulting model (Pe’er, 2005).

Stochastic biochemical systems are used for modeling
transcriptional regulation in single cells. Transcriptional regu-
lation is easily modeled using a hidden Markov model
(HMM). It is used to mathematically and computationally
study transcriptional regulation in single cells. Furthermore,
analysis by Monte Carlo simulation is computationally labo-
rious. Several simulations are employed based on a tran-
scriptional regulatory system for showing the relative mer-
its and limitations of various approximation techniques
(Goutsias, 2006).

Graphical models are very well used for analyzing G-
Protein coupled receptors (GPCRs). Most of signaling net-
works in cells are mediated through the interaction of GPCRs
with heterotrimeric GTP-binding proteins (G-proteins). Ex-
perimental data suggest that heterotrimeric G-proteins in-
teract with parts of the activated receptor at the transmem-
brane helix-intracellular loop interface. An exploratory ap-
proach is designed to generate a refined library of Hidden
Markov Models that predict the coupling preference of
GPCRs to heterotrimeric G-proteins. It predicts the cou-
pling preferences of GPCRs to Gs, Gi/o and Gq/11, but not
G12/13 subfamilies (Sgourakis et al., 2005).

A Hidden Markov model library is designed for classify-
ing protein kinases into 12 families. This classification is
also coupled with a mis-classification rate of zero on the
characterized kinomes of H. sapiens, M. musculus, D.
melanogaster, C. elegans, S. cerevisiae, D. discoideum, and
P. falciparum. This is applied to 38 unclassified kinases of
yeast including AGC (5), CAMK (17), CMGC (4), and STE
(1). It also facilitates the annotation of kinomes and pro-
vides data regarding early evolution and subsequent adap-
tations of the various protein kinase families (Miranda-
Saavedra et al., 2007).

Application to gene regulatory networks

Gene regulatory networks are modeled using probabilis-
tic Boolean network methods and dynamic Bayesian net-
work methods. These methods are compared using certain
biological time-series dataset from the Drosophila Interac-
tion Database for designing Drosophila gene network. Also,
a subset of time points and gene samples from the whole
dataset is used to evaluate the performance of these two

approaches (Li et al., 2007).

A hierarchical hidden Markov regression model is intro-
duced for determination of gene regulatory networks from
genomic sequence and gene expression microarray data. A
hybrid Monte Carlo methodology is devised to estimate pa-
rameters under 2 classes of latent structure. One is arising
due to the unobservable state identity of genes and the other
is due to the unknown set of covariates influencing the re-
sponse within a state (Gupta et al., 2007).

A comparative gene predictor, called Conrad is proposed,
based on semi-Markov conditional random fields (SMCRFs).
It is trained to maximize annotation accuracy. It encodes
information as features and treats all features equally in the
training and inference algorithms. On Cryptococcus
neoformans, configuring Conrad to reproduce the predic-
tions of a two-species phylo-GHMM closely matches the
performance of Twinscan. Furthermore, it produces similar
results on Aspergillus nidulans comparing Conrad versus
Fgenesh (DeCaprio et al., 2007).

Hidden Markov Models are compared with genotyping
to determine the transmission characteristics of sporadic
vancomycin-resistant enterococci (VRE). For this, a struc-
tured continuous-time hidden Markov model (HMM) is de-
veloped. Two parameters are estimated, one to quantify the
cross-transmission of VRE and the other to quantify the
level of VRE colonization from sporadic sources. Some
evidence is found, based on model selection criteria that the
cross-transmission parameter changed throughout the study
period. This model estimates that cross-transmission in-
creases at week 120 and declines after week 135, coincid-
ing with environmental decontamination. HMMs are also
applied to serial prevalence data to estimate the character-
istics of acquisition of nosocomial pathogens and distinguish
between epidemic and sporadic acquisition (McBryde et
al., 2007).

Current Research

Bayesian networks are used for predicting interaction
partners using multiple alignments of interacting protein do-
mains sequences without the need for any training examples.
This also accurately predicts interaction partners in datasets
of polyketide synthases. Also, analysis of the predicted ge-
nome-wide two-component signaling networks shows that
interacting kinase/regulator pairs, which lie adjacent on the
genome and which lie isolated form two relatively indepen-
dent components of the signaling network in each genome
(Burger and van Nimwegen, 2008).
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A hidden Markov model is used for predictive modeling
of nuclear hormone receptor response elements coupled with
chromatin microarray technology explains a binding site in
the Type I human hepatic 3alpha-hydroxysteroid dehydro-
genase (AKR1C4) promoter for the nuclear hormone re-
ceptor liver X receptor alpha. It also suggests that LXRalpha
modulate the bile acid biosynthetic pathway at a unique site
downstream of CYP7A1 (Stayrook et al., 2008).

The probable state path of three nucleotides sequences
of cis-regulatory region of target genes are identified using
a Hidden Markov Model (HMM). These regions are key
elements in the transcriptional regulation of gene expres-
sion. These computations are also used to predict C(2)H(2)
zinc finger transcription factor binding sites in cis-regula-
tory regions of their target genes (Cho et al., 2008).

Certain Markov matrix (MMM) values are used to char-
acterize numerically 81 sequences of type III RNases and
133 proteins of a control group. Also one MMM-QSAR
and one classic hidden Markov model (HMM) is developed
based on the same data. The MMM-QSAR shows a dis-
crimination power of RNAses from other proteins of
97.35% without using alignment, which is a result as good
as for the known HMM techniques. Furthermore, the
MMM-QSAR model predicts the new RNase III with the
same accuracy as other classical alignment methods
(Agüero-Chapín et al., 2008).

Conclusion

Graphical probabilistic models are of much importance
in Systems biology, especially in analyzing and modeling bio-
logical networks. Bayesian Networks have large applica-
tions in almost every field of life science ranging from gene
expression analysis, genetic/metabolic network analysis and
pathway modeling. Gaussian Networks are applied to ana-
lyze various interaction networks like protein-protein, gene-
gene and gene-protein. Pathway modeling is also done based
on this method. Maximum Likelihood is used in phyloge-
netic estimates, study genetic cross-over, pathway model-
ing and gene expression analysis. Density Estimation is useful
for certain immunological or clinical trials, metabolic net-
work analysis and pathway modeling. Helmholtz Machine
(HM) is used in studying metabolic activities of brain and
nervous system. Latent Variable Models (LVM) is used for
studying various regulatory networks, pathway modeling and
gene expression profiles. Generative Topographic Mapping
(GTM) is used in microarray analysis, gene expression level
analysis and pathway modeling. Lastly, Hidden Markov
Models (HMM) are used in protein structure analysis, se-
quence analysis, metabolic pathway analysis, gene expres-

sion analysis and promoter region identification.
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