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ABSTRACT

Neutrophils and macrophages are the first line of defense against pathogens. They have the ability to eradicate 
pathogens in an environment with inflammation and hypoxia. How these cells adapt to that environment is 
something that has been studied for several years now. HIF-1 is the main orchestrator to maintain this cells 
functional in hypoxia, and more recently is have established that HIF-1 can be stabilized by bacterial antigens in 
the absence of hypoxia via NF-B, making HIF-1 a key protein in the innate immune response. Using HIF-1 as a 
therapeutic target requires knowing the pathogen that is causing the infection and whether this infection is local or 
systemic. In this review we gathered information about this issue to understand how these cells remain functional in 
this type of environment where you have a pathogen, inflammation and hypoxia.
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ABBREVATIONS

AMP: Antimicrobial Peptides; BMDM: Murine Bone Marrow-
Derived Macrophages; HIF: Hipoxia Inducible Factor; HRE: 
Hypoxic Response Elements; HCLO: Hypochlorous Acid;  IL-1: 
Interleukin-1; iNOS: Inducible Nitric Oxide Synthase; mRNA: 
Messenger Ribonucleic Acid; LPS: Lipopolysaccharide; MDM: 
Monocyte-Derived Macrophages; MMP: Metalloproteinase; Mtb: 
Mycobacterium Tuberculosis; NETs: Neutrophil Extracellular 
Traps; NFkB: Nuclear Factor Kappa B; NO: Nitric Oxide; PAF: 
Platelet-Activating Factor; PHD: Prolyl Hydroxylase; ROS: Reactive 
Oxygen Species; TLR: Toll-Like Receptor; TNF-α: Tumor Necrosis 
Factor Alpha; VEGF: Vascular Endothelial Growth factor; vHL: 
Von Hippel–Lindau Tumor-Suppressor Protein

INTRODUCTION

The elimination of pathogens depends initially on the innate 
immune response that pre-exists in all individuals. Neutrophils and 
macrophages are the main effectors in innate immunity because 
they can detect, phagocyte, and eliminate pathogens without 
the help of an adaptive immune response. Neutrophils and 
macrophages reflect their ability to function in hypoxia when they 
migrate to healthy tissues and are exposed to an oxygen tension 
that is generally 20–70 mmHg or to tissues with inflammation or 
necrosis where oxygen tension drops below 20 mmHg [1-3].

The adaptive response of neutrophils and macrophages to hypoxia 
is regulated by the action of hypoxia inducible factor 1 (HIF-

1). HIF-1 is a heterodimer whose expression is regulated by the 
presence of oxygen in a tissue. Prolyl hydroxylases (PHD) regulate 
the stability of the α subunit (HIF-1α) by adding a hydroxyl group 
to HIF which then interacts with the von Hippel–Lindau tumor-
suppressor protein (vHL) and HIF is ubiquitinated to be eliminated 
in the proteasome. In hypoxia the action of the prolyl hydroxylase 
is inhibited, and HIF-1α accumulates in the cytoplasm and 
translocates into the nucleus, where it binds to HIF-1β and they 
activate the Hypoxic Response Elements (HREs) in the nucleus, 
increasing the transcription of genes of glycolysis, proinflammatory 
cytokines, vascular endothelial growth factor (VEGF) and 
inducible nitric oxide synthase (iNOS) implicated in the control 
of metabolism, angiogenesis, and elimination of pathogens [4,5].

Oxygen is vital for life and its availability impacts on various 
physiological and pathophysiological processes across the human 
body [6]. Organs and tissues have different oxygen tensions and this 
differences are of central importance for normal organ function, for 
example, in lungs, blood vessels, bone marrow, cartilage, liver, and 
kidney [7,8]. Hypoxia is present in acute and chronic diseases and, 
depending on the magnitude and duration, can be either beneficial 
or harmful for tissue recovery [9]. Oxygen tension varies across the 
human body, for example: 150 mmHg (lung apices), 100 mmHg 
(alveoli and arterial blood), to <20 mmHg (bone marrow) [10]. In 
this review, we will focus on how neutrophils and macrophages 
respond to hypoxia in the context of inflammation and infection 

(Figure 1) [11]. 
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INFLAMMATION AND HYPOXIA

Inflammation is a complex and ordered sequence of events that 
includes redness, heat, swelling, and pain. Inflammation can be 
triggered by infection, chemicals, radiation, and mechanical force. 
Neutrophils and macrophages are very important in inflammation 
because they are usually found in high numbers and with a 
proinflammatory profile in inflamed tissues. Neutrophils and 
macrophages not only engulf and kill microorganisms, but also 
promote the activation of lymphocytes, fibroblasts, and endothelial 
cells which are important for pathogen control and tissue/organ 
reconstitution [12,13]. Inflammation is intimately linked to oxygen 
metabolism [14]. It is important to note that, while in inflammation 
increased blood flow suggests an increase in oxygen delivery, 
inflamed tissues are usually hypoxic [15-17]. This could be happening 
due to higher interstitial pressure (swelling) and increased oxygen 
consumption of cells in their fight to survive the harsh conditions 
of inflamed tissues. Neutrophil respiratory burst has been thought 
to contribute to inflammation-associated hypoxia before, Campbell 
et al. presented evidence for a functional role of neutrophils in 
oxygen consumption during colitis and the induction of a hypoxic 
response in intestinal epithelial cells [18]. Furthermore, mice with 
a defective respiratory burst (Nox2−/− mice, a model system for 
chronic granulomatous disease) displayed severe impairment of 
inflammatory resolution in the gut, supporting the notion that 
hypoxia and hypoxia-induced responses are functionally relevant 
for various aspects of the pathogenesis of inflammation [18]. 
The intimate link between hypoxia and inflammation is also 
demonstrated by the observation that hypoxia by itself can induce 
an inflammatory response [14]. Mice that were exposed to 5% O2 
for 60 minutes had an increased protein expression of IL-6, TNF-α, 
and IL-1 in both serum and isolated macrophages [19]. In healthy 
human volunteers that stayed 3 nights at high altitudes there was 
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an increase in serum levels of proinflammatory proteins [20]. 

Macrophages response to hypoxia in vitro is complex and 
determined by the source and phenotype of the macrophage as 
well as the culture conditions. Hypoxia affects the expression of 
cell surface markers, viability, phagocytosis, metabolic activity, 
and cytokine release of macrophages [21]. The clinical relevance 
of hypoxia induced inflammation is demonstrated in lung and 
kidney transplants where an ischemia-associated inflammatory 
reaction increases the risk of transplant failure and graft rejection 
[22,23]. All of the above shows us the possibility of a vicious circle 
where hypoxia and inflammation work together and mutually 
boost each other [24]. With all of this information it is reasonable 
to assume that the molecular mechanisms that induce the hypoxia-
inflammation vicious circle represent possible therapeutic targets 
for the treatment of chronic, non-resolving inflammation thus 
helping prevent organ failure [11,25,26].

INFECTION AND HYPOXIA

The reason that hypoxia is present during an infection associated 
inflammation is multifactorial, and involves an augmented oxygen 
consumption in order to fulfill the requirements of inflamed 
resident cells like macrophages, infiltrating inflammatory cells 
like neutrophils and monocytes and also multiplying pathogens 
[18,27,28]. A chronic inflamed tissue associated with a chronic 
infection leads to decreased blood supply resulting in the 
combination of vascular pathology and microthrombosis [28]. The 
combination of an increased oxygen consumption and decreased 
supply contributes to the presence of hypoxia during an infection. 
Tissue hypoxia has been demonstrated in vivo during a range of 
infections. Stabilization of HIF-1 in host cells has been reported 
during bacterial infections with several pathogens [29], and, in 
most cases, HIF-1 stabilization is associated with increased bacterial 

Figure 1: Expression of HIF-1α in blood vessels, healthy tissue and inflamed or infected tissue (A) Neutrophils and monocytes have 
low HIF-1α levels when circulating in the oxygen-rich bloodstream where oxygen tension is 100 mmHg (B) As these cells migrate to 
tissues they encounter a declining oxygen tension (20-70 mmHg) which increases the expression of HIF-1α and in this point HIF-1α 
initiates activation of glycolysis and increases the production of glucose transporters (GLUT) to increase ATP production in hypoxia 
(C) Maximum activation of HIF-1α is achieved in the environment of hypoxia, inflammation and infection where oxygen tension is <20
mmHg. TLRs (e.g., TLR-4) via NF-κB play a key role in the expression of HIF-1α. HIF-1α promotes the release of antimicrobial peptides
(AMP) (e.g., cathelidicins) and granule proteases with direct impact on bacteria elimination; it also increases production of VEGF and
proinflammatory cytokines which facilitates recruitment and activation of additional immune effector cells. Activation of inducible nitric 
oxide synthetase (iNOS) generates a Nitric Oxide (NO) which has antimicrobial properties, and is able to stabilize HIF-1α creating a
feedback loop and amplifying the innate immune response.
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killing, but it also depends whether the infection is local or systemic 
[5,30].

Bacterial infection can lead to an increased HIF activation through 
hypoxia-independent pathways, including the upregulation of HIF-
1α mRNA levels by NF-B, which is activated in response to the 
activation of toll-like receptor (TLR-4) by bacterial antigens (LPS) 
[31].

Lipopolysaccharide (LPS) can increase succinate accumulation 
which promotes PHD inhibition with subsequent HIF stabilization 
[32]. Although the activation of HIF-1 promotes infection control, 
it does not universally increase cellular capacity to clear invading 
pathogens. In some cases, pathogens can use HIF-1 to increase their 
pathognomic potential. For example, Bartonella henselae via HIF-
1 increases vascular endothelial growth factor (VEGF) expression 
in cells leading to vascular proliferations [33-35]. It also depends 
whether the infection is local or systemic [5,29,34] This means that 
using HIF-1 as a therapeutic target requires knowing the pathogen 
that is causing the infection and whether this infection is local or 
systemic.

NEUTROPHILS

Neutrophils are the most abundant cell of the innate immune 
system and they are recruited to wounds and infections during the 
early phase of the disease. Neutrophils are attracted to inflammatory 
tissues via IL-8, C5a, N-formylated peptides, platelet-activating 
factor (PAF), and leukotriene B4 [36]. After detecting bacteria or 
inflammation mediators, neutrophils engulf pathogens followed by 
the activation of the electron transport chain (NADPH oxidase) 
which releases electrons across the membrane to molecular oxygen 
for the generation of hypochlorous acid (HClO) and reactive 
oxygen species (ROS) leading to the elimination of the pathogen 
[37]. This process is called “respiratory burst” and it consumes 
an elevated quantity of oxygen [38]. The respiratory burst is an 
essential antimicrobial pathway of neutrophils. Neutrophils can 
also kill pathogens via release of antimicrobial peptides (AMP), 
inflammatory cytokines like TNF-α, IL-1, IL-6 and in some cases 
they generate extracellular traps [39]. The presence of neutrophils 
at sites of inflammation or infection results in oxygen consumption, 
this phenomenon is called “inflammatory hypoxia” [11,39].

NEUTROPHILS, HYPOXIA, AND INFLAMMATORY 
DISEASES

Inflamed tissue like in type 2 diabetes becomes extremely hypoxic 
when there is an increased oxygen demand and the availability 
decreases due to swelling, trauma, or thrombosis [14-17]. Neutrophils 
have a half-life of approximately 6 to 8 hours, but in the presence of 
HIF neutrophils increase their survival within inflammatory tissues, 
giving them the time to properly eliminate a pathogen [36]. The 
inhibition of neutrophil apoptosis and increased survival associated 
with hypoxia was demonstrated to be NF-B-dependent, showing 
that NF-B is a regulator of the hypoxic response in neutrophils 
[40]. In the presence of hypoxia, HIF facilitates neutrophil binding 
to the epithelium via the increased expression of β2 integrin [41]. In 
terms of ATP generation, neutrophils rely on high rates of glycolysis 
in which HIF-1α plays a key role by regulating the expression of key 
glycolytic enzymes [42]. HIF-1 also increases neutrophil expression 
of antimicrobial peptides (AMP), this is suggested by experiments 
in which HIF-1αdeficiency increases the susceptibility of local and 
systemic bacterial infections [5,42]. 

The role of another HIF subunit (HIF-2α) during neutrophilic 

inflammation is less known. Deficiency of HIF-2α in murine 
neutrophils did not affect chemotaxis, phagocytosis, or respiratory 
burst, but it did increase apoptosis resulting in a reduced 
neutrophilic inflammation [43]. Neutrophils with an increased 
expression of HIF-2α had lower apoptosis rates, suggesting a key 
role of HIF-2α in the resolution of inflammation [11].

NEUTROPHILS, HYPOXIA, AND INFECTIOUS 
DISEASES

In the presence of HIF neutrophils increase their survival 
extending their half-life beyond 8 hours [44]. Neutrophils oxidative 
burst consumes a lot of oxygen, generating a hypoxic environment 
and this could be happening during active TB when they infiltrate 
the lung. Neutrophils prolonged survival in response to hypoxia, 
infection and inflammation is related to a sustained expression of 
PHD3 [45]. This is important because in the lungs of Mtb infected 
mice there are an increased expression of PHD3 [46]. HIF-2α is 
highly expressed in neutrophils, whereas HIF-1α is highly expressed 
in macrophages. HIF-2α deficiency increases neutrophil apoptosis 
[43]. Neutrophils contribute in the innate immune response 
[47,48] and granuloma formation [49-51] in the early phase of 
Mtb infection. As the neutrophil migrates through the granuloma, 
oxygen tension decreases and there is an increased neutrophil 
degranulation and tissue damage [45]. In an early phase of Mm 
infection HIF-1α increases NO production in neutrophils and 
increases the elimination of the bacteria [52]. Human neutrophils 
stimulated with Mtb and hypoxia increase the secretion of MMP-
8, MMP-9 and neutrophil elastase, which are involved in matrix 
destruction. Hypoxia inhibits NETs formation, apoptosis and 
necrosis after exposure to Mtb [44,53].

MACROPHAGES

Macrophages are phagocytic cells involved in many pathological 
processes like inflammation, wound healing, atherosclerosis, and 
tumors. All of these processes are characterized by hypoxia [54]. 
Hypoxia is present in inflamed tissues and macrophages are able 
to adapt to this hostile microenvironment. This is possible by the 
stabilization of HIF in macrophages which is found at various 
stages of activation and polarization [55,56]. Inhibition of HIF 
affects macrophage functions such as aggregation, migration, and 
invasion [11,36,42,57].

MACROPHAGES, HYPOXIA, AND INFLAMMATORY 
DISEASES

In HIF-1α-deficient macrophages low levels of intracellular ATP 
were detected, confirming the importance of HIF-1α for energy 
generation via glycolysis in myeloid cells [58]. Hypoxia is present 
in sterile inflammation and infection [57]. Macrophages are part 
of the first line of defense against pathogens and it has been 
hypothesized that these cells must be able to function in hypoxic 
areas. It was shown via gene ablation in mice, that the expression of 
HIF-1α in macrophages is extremely important for the elimination 
of pathogens [5,42]. The antimicrobial effect of HIF-1α is present 
in hypoxia, but also under ambient air. It was observed that 
under normoxia and bacterial infection, the stabilization of HIF-
1α increases in macrophages [5]. In terms of bacterial antigens, 
lipopolysaccharide (LPS) is capable of inducing mRNA expression 
and HIF-1α protein accumulation in murine macrophages and 
human monocytes under normoxia [59,60]. Because of this, it 
was suggested that toll-like receptor 4 (TLR-4) could play a key role 
in HIF-1α activation. Later on it was discovered that HIF-1α and 
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TLRs interact with each other in a feedback loop on many 
different levels [61]. HIF-1α regulates the expression and signal 
transduction of several TLRs (e.g., TLR-2, -3, -4, -6, -7/8 and -9) 
[62-67]. It is important to remember that NF-kB is crucial for TLR 
signaling and that it is induced by LPS [68]. Thus, the activation 
of HIF-1α by LPS is dependent on NF-kB in human monocytes 
and murine macrophages [59,69]. In summary, the activation of 
TLR by HIF-1α shows the importance of HIF-1α in the control of 
pathogens. Compared to HIF-1α, there is little information about 
HIF-2α expression in macrophages. Under hypoxia HIF-2α 
expression increases in several myeloid cell types, for example, 
human monocyte-derived macrophages (MDM) and murine bone 
marrow-derived macrophages (BMDM) [70,71]. Functional 
inactivation of HIF-2α in macrophages resulted in a decreased 
response to hypoxia and to proinflammatory stimulation with 
LPS plus interferon-γ [55,70]. HIF-1α and HIF-2α function in 
macrophages is not always redundant; they have specific 
regulation of selected factors [72]. For example, deletion of 
HIF-2α in macrophages does not impact the expression of the 
inducible nitric oxide synthase (iNOS) and the vascular 
endothelial growth factor (VEGF) which are target genes of 
HIF-1α [71,73]. In contrast, HIF-2α activates soluble VEGF 
receptor-1, while HIF-1α has no effect [11,74].

MACROPHAGES, HYPOXIA, AND INFECTIOUS 
DISEASES

In an infection by Mycobacterium tuberculosis (Mtb) there are 
several host factors that contribute to a higher expression of 
HIF-1α. One factor is nitric oxide (NO) which is induced by the 

action of an inducible nitric oxide synthase (iNOS) in infected 
murine macrophages. iNOS expression produces a redistribution 
of intracellular oxygen and inhibition of PHDs forming a positive 
feedback loop that leads to an increased expression of HIF-1α 
which increases macrophage activation. The other factor is NF-
B, its expression is increased in alveolar macrophages of mice 
and rabbits during Mtb infection, as well as in the granulomas of 
patients with pulmonary tuberculosis where hypoxia is present. NF-
B translocates into the nucleus and activates the transcription of 
HIF-1α and other target genes which in turn control Mtb growth 
[46,73] (Figure 1).

POTENTIAL THERAPEUTIC IMPLICATIONS

As mentioned before, using HIF-1 as a therapeutic target requires 
knowing the pathogen that is causing the infection and whether 
this infection is local or systemic. The comorbidity of pulmonary 
tuberculosis and type 2 diabetes is a great example of the 3 things 
mentioned in this article, infection, inflammation and hypoxia, 
all at the same time with the stimulation of bacterial antigens 
and advanced glycation end products derived from chronic 
hyperglycemia (Figure 2). In this type of situation and with the 
increasing antibiotic resistance from Mtb and many bacteria, 
the modulation of HIF-1α and HIF-2α could be a great adjuvant 
therapy alongside antibiotics, but there is still a long way to go to 
understand the function of HIF-1α and HIF-2α in this types of 
diseases, like the comorbidity of pulmonary tuberculosis and type 

Figure 2: Model for the Granuloma in the comorbidity of pulmonary tuberculosis and type 2 diabetes. As neutrophils and macrophages 
go deeper into the granuloma oxygen tension starts to decrease increasing the stabilization of HIF-1α and promoting an inflammatory 
response and tissue damage. As mention before HIF-1α also promotes the production of glucose transporters (GLUT) and in patients 
with type 2 diabetes there is plenty of glucose to use, thus promoting an inflammatory response as well. This could mean that in the 
comorbidity of pulmonary tuberculosis and type 2 diabetes using HIF-1α as a therapeutic target could decrease inflammation and tissue 
damage, making recovery more viable, although there is still a lot to learn from this disease in terms of HIF-1α. 

2 diabetes.
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PERSPECTIVE

Hypoxia, inflammation and infection are 3 things that create a 
hostile environment for neutrophils and macrophages, this is the 
main cells in innate immunity and they have adapted to function 
in these conditions. HIFs are absolutely essential for proper cell 
function under hypoxic conditions. Although there is a lot of 
literature on the role of HIF-1α, the role of HIF-2α remains elusive, 
and whether there are more HIF proteins that could affect the 
function of neutrophils and macrophages. 

CONCLUSION

Another key question is how effective the modulation of HIF will 
prove to be in the therapy of acute and chronic inflammation with 
hypoxia and infection and what kind of side effects will appear. 
Will the modulation of HIF be effective as an adjuvant therapy 
alongside antibiotics? These questions, among others, will have to 
be studied in order to find a successful therapy in patients with 
chronic inflammatory diseases which are susceptible to chronic 
infections, that lead to chronic hypoxia, tissue damage and organ 
failure.
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