

Neutrophil Adhesion and Migration: Another Role of the Glucose-6-Phosphate Transporter

Hyun Sik Jun^{1*} and Janice Y Chou^{2*}

¹Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 339-700, Republic of Korea

²Section on Cellular Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA

*Corresponding author: Janice Y Chou, Building 10, Room 9D42, NIH, 10 Center Drive, Bethesda, MD 20892-1830, USA, Tel: 301-496-1094; Fax: 301-402-6035; E-mail: chouja@mail.nih.gov

Hyun Sik Jun, Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 339-700, Republic of Korea, Tel: +82-44-860-1411; Fax: +82-44-860-1598; E-mail: toddjun@korea.ac.kr

Received date: December 08, 2016; Accepted date: January 30, 2017; Published date: February 06, 2017

Copyright: © 2017 Jun HS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Keywords: Glycogen storage disease type Ib; Glucose-6-phosphate transporter; Neutrophil adhesion; CD11a; CD11b

Commentary

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in a glucose-6-phosphate transporter (G6PT) that belongs to the solute-carrier-37 family of endoplasmic reticulum (ER)-associated sugar-phosphate/phosphate exchangers [1,2]. The primary in vivo function of the ubiquitously expressed G6PT protein is to translocate G6P from the cytoplasm into the ER lumen where it couples with either the liver/kidney/intestine-restricted glucose-6-phosphatase-a (G6Pase-a) or the ubiquitously expressed G6Pase-ß to hydrolyze G6P to glucose and phosphate [3,4]. The G6PT/G6Pase-a complex maintains interprandial glucose homeostasis and the G6PT/G6Pase-ß complex maintains neutrophil energy homeostasis and functionality. Therefore, GSD-Ib is an autosomal recessive metabolic and immune disorder characterized by impaired glucose homeostasis, neutropenia and neutrophil dysfunction [3,4]. Recently, we showed that G6PTdeficient neutrophils from GSD-Ib patients receiving granulocytecolony stimulating factor (G-CSF) therapy exhibited impaired energy homeostasis and function [5], suggesting that G6PT-regulated G6P metabolism is important for neutrophil function. However, G-CSF failed to correct impaired neutrophil energy homeostasis in GSD-Ib [5].

Neutrophils are the most abundant leukocytes in peripheral blood that play a critical role in host defence by eliminating invading pathogens. Upon infections, neutrophils migrate from peripheral blood stream into inflammatory sites which is a tightly regulated process involving three distinct steps, selectin-mediated rolling, firm adhesion via integrins and transmigration into infected tissues [6]. Neutrophil adhesion is mediated by lymphocyte function-associated antigen 1 (LFA-1) and macrophage-1 antigen (Mac-1), members of the ß2 integrin family that are predominantly expressed on neutrophils [6,7]. LFA-1 and Mac-1 are heterodimers composed of a distinct a subunit (CD11a for LFA-1 and CD11b for Mac-1) and a ß subunit (CD18). Studies have shown that mutations in CD18 cause leukocyte adhesion deficiency syndrome type I, characterized by life-threatening recurrent bacterial infections resulting from severe defects in neutrophil/monocyte emigration to extravascular sites of inflammation [8]. However, genetic mutations in CD11a and CD11b have not been reported.

More recently, our research group demonstrated that GSD-Ib (G6pt^{-/-}) mice exhibited neutropenia in both blood and bone marrow, and G-CSF treatment increased both the frequency and the absolute neutrophil counts in the peripheral bloodstream [9]. However, neutrophil recruitment into the peritoneal cavity during peritonitis remains impaired in G-CSF-treated G6pt^{-/-} mice [9]; suggesting G-CSF therapy cannot rescue impairment in neutrophil adhesion and migration. We also provided evidence showing that the decrease in the expression of CD11a and CD11b on G6pt^{-/-} neutrophils underlies, at least in part, the impairment in neutrophil recruitment to the inflammation sites. Both CD11a and CD11b are glycoproteins [10]. While the glycosylated CD11b (170 kDa) was the primary species identified in wild-type neutrophils, both glycosylated and unglycosylated (~130 kDa) CD11b were found in G6PT-deficient neutrophils [9]. We have shown that impaired neutrophil recruitment into the peritoneal cavity is a characteristic of G6Pase-ß deficiency [11]. Moreover, G6Pase-ß deficiency is associated with a major defect of protein glycosylation [12]. The G6PT/G6Pase-ß complex regulates glucose homeostasis in the ER of neutrophils and the ER lumen serves as a critical site in protein maturation and its biochemical environment is uniquely designed to facilitate optimal post-translational modifications [13]. Therefore, G6PT may regulate protein glycosylation.

G-CSF is widely used to treat neutropenia patients including GSD-Ib and G6Pase- β deficiency [14,15]. We have shown that G-CSF cannot correct impaired energy homeostasis in G6PT-deficient neutrophils in human GSD-Ib patients [5]. We recently showed that this growth factor also fails to rescue impaired neutrophil recruitment in G6pt^{-/-} mice [9], highlighting the limitations of G-CSF in treating patients exhibiting neutrophil dysfunction. Understanding the functional roles of G6PT and/or G6Pase- β in neutrophils would facilitate the development of novel therapeutic approaches to address neutrophil dysfunction.

References

- 1. Bartoloni L, Antonarakis SE (2004) The human sugar-phosphate/ phosphate exchanger family SLC37. Pflugers Arch 447: 780-783.
- 2. Chou JY, Sik Jun H, Mansfield BC (2013) The SLC37 family of phosphatelinked sugar phosphate antiporters. Mol Aspects Med 34: 601-611.
- Chou JY, Jun HS, Mansfield BC (2010) Glycogen storage disease type I and G6Pase-ß deficiency: Etiology and therapy. Nat Rev Endocrinol 6: 676-688.

- 4. Chou JY, Jun HS, Mansfield BC (2010) Neutropenia in type Ib glycogen storage disease. Curr Opin Hematol 17: 36-42.
- Jun HS, Weinstein DA, Lee YM, Mansfield BC, Chou JY (2014) Molecular mechanisms of neutrophil dysfunction in glycogen storage disease type Ib. Blood 123: 2843-2853.
- Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat Rev Immunol 7: 678-689.
- Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30: 459-489.
- van de Vijver E, van den Berg TK, Kuijpers TW (2013) Leukocyte adhesion deficiencies. Hematol Oncol Clin North Am 27: 101-116, viii.
- 9. Kim GY, Lee YM, Kwon JH, Jun HS, Chou J (2017) Glycogen storage disease type Ib neutrophils exhibit impaired cell adhesion and migration. Biochem Biophys Res Commun 482: 569-574.
- 10. Sastre L, Kishimoto TK, Gee C, Roberts T, Springer TA (1986) The mouse leukocyte adhesion proteins Mac-1 and LFA-1: Studies on mRNA

translation and protein glycosylation with emphasis on Mac-1. J Immunol 137: 1060-1065.

- 11. Cheung YY, Kim SY, Yiu WH, Pan CJ, Jun HS, et al. (2007) Impaired neutrophil activity and increased susceptibility to bacterial infection in mice lacking glucose-6-phosphatase-beta. J Clin Invest 117: 784-793.
- Hayee B, Antonopoulos A, Murphy EJ, Rahman FZ, Sewell G, et al. (2011) G6PC3 mutations are associated with a major defect of glycosylation: A novel mechanism for neutrophil dysfunction. Glycobiology 21: 914-924.
- Stevens FJ, Argon Y (1999) Protein folding in the ER. Semin Cell Dev Biol 10: 443-454.
- 14. Visser G, Rake JP, Labrune P, Leonard JV, Ullrich K, et al. (2002) Granulocyte colony-stimulating factor in glycogen storage disease type 1b. Results of the European study on glycogen storage disease type 1. Eur J Pediatr 161: S83-S87.
- Boztug K, Appaswamy G, Ashikov A, Schäffer AA, Salzer U, et al. (2009) A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med 360: 32-43.

Page 2 of 2