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Commentary
Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency

in a glucose-6-phosphate transporter (G6PT) that belongs to the
solute-carrier-37 family of endoplasmic reticulum (ER)-associated
sugar-phosphate/phosphate exchangers [1,2]. The primary in vivo
function of the ubiquitously expressed G6PT protein is to translocate
G6P from the cytoplasm into the ER lumen where it couples with
either the liver/kidney/intestine-restricted glucose-6-phosphatase-α
(G6Pase-α) or the ubiquitously expressed G6Pase-ß to hydrolyze G6P
to glucose and phosphate [3,4]. The G6PT/G6Pase-α complex
maintains interprandial glucose homeostasis and the G6PT/G6Pase-ß
complex maintains neutrophil energy homeostasis and functionality.
Therefore, GSD-Ib is an autosomal recessive metabolic and immune
disorder characterized by impaired glucose homeostasis, neutropenia
and neutrophil dysfunction [3,4]. Recently, we showed that G6PT-
deficient neutrophils from GSD-Ib patients receiving granulocyte-
colony stimulating factor (G-CSF) therapy exhibited impaired energy
homeostasis and function [5], suggesting that G6PT-regulated G6P
metabolism is important for neutrophil function. However, G-CSF
failed to correct impaired neutrophil energy homeostasis in GSD-Ib
[5].

Neutrophils are the most abundant leukocytes in peripheral blood
that play a critical role in host defence by eliminating invading
pathogens. Upon infections, neutrophils migrate from peripheral
blood stream into inflammatory sites which is a tightly regulated
process involving three distinct steps, selectin-mediated rolling, firm
adhesion via integrins and transmigration into infected tissues [6].
Neutrophil adhesion is mediated by lymphocyte function-associated
antigen 1 (LFA-1) and macrophage-1 antigen (Mac-1), members of the
ß2 integrin family that are predominantly expressed on neutrophils
[6,7]. LFA-1 and Mac-1 are heterodimers composed of a distinct α
subunit (CD11a for LFA-1 and CD11b for Mac-1) and a ß subunit
(CD18). Studies have shown that mutations in CD18 cause leukocyte
adhesion deficiency syndrome type I, characterized by life-threatening
recurrent bacterial infections resulting from severe defects in
neutrophil/monocyte emigration to extravascular sites of
inflammation [8]. However, genetic mutations in CD11a and CD11b
have not been reported.

More recently, our research group demonstrated that GSD-Ib
(G6pt-/-) mice exhibited neutropenia in both blood and bone marrow,
and G-CSF treatment increased both the frequency and the absolute
neutrophil counts in the peripheral bloodstream [9]. However,
neutrophil recruitment into the peritoneal cavity during peritonitis
remains impaired in G-CSF-treated G6pt-/- mice [9]; suggesting G-CSF
therapy cannot rescue impairment in neutrophil adhesion and
migration. We also provided evidence showing that the decrease in the
expression of CD11a and CD11b on G6pt-/- neutrophils underlies, at
least in part, the impairment in neutrophil recruitment to the
inflammation sites. Both CD11a and CD11b are glycoproteins [10].
While the glycosylated CD11b (170 kDa) was the primary species
identified in wild-type neutrophils, both glycosylated and
unglycosylated (~130 kDa) CD11b were found in G6PT-deficient
neutrophils [9]. We have shown that impaired neutrophil recruitment
into the peritoneal cavity is a characteristic of G6Pase-ß deficiency
[11]. Moreover, G6Pase-ß deficiency is associated with a major defect
of protein glycosylation [12]. The G6PT/G6Pase-ß complex regulates
glucose homeostasis in the ER of neutrophils and the ER lumen serves
as a critical site in protein maturation and its biochemical environment
is uniquely designed to facilitate optimal post-translational
modifications [13]. Therefore, G6PT may regulate protein
glycosylation.

G-CSF is widely used to treat neutropenia patients including GSD-
Ib and G6Pase-ß deficiency [14,15]. We have shown that G-CSF
cannot correct impaired energy homeostasis in G6PT-deficient
neutrophils in human GSD-Ib patients [5]. We recently showed that
this growth factor also fails to rescue impaired neutrophil recruitment
in G6pt-/- mice [9], highlighting the limitations of G-CSF in treating
patients exhibiting neutrophil dysfunction. Understanding the
functional roles of G6PT and/or G6Pase-ß in neutrophils would
facilitate the development of novel therapeutic approaches to address
neutrophil dysfunction.
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