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Abstract

A substantial number of patients diagnosed with major depression disorder have poor or no response to standard
antidepressive drugs. Recent studies showed that ketamine promotes a rapid and sustained antidepressive effect
and also promotes neuroplasticity in the regions involved in MDD psychopathology.

In this review we summarize the molecular mechanisms of ketamine action, behavioral changes upon
administration and the psychotherapeutic implication of ketamine-induced modification of learning and memory
processes. Then, from a multi-point perspective, we argue for possible long-term benefits of NMDA receptor
modulation on psychotherapy in patients with major depressive disorder. We embed this proposed augmentation
strategy into existing literature on the role of NMDA-receptor mediating learning and conclude on recent
psychotherapeutic implications for the use of ketamine within multidimensional treatment consideration.
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Introduction
Neuroplasticity is the capacity of the brain to reorganize its

structure and functions in response to intrinsic or extrinsic stimuli [1].
Therapeutically, these changes may occur as a consequence of
pharmacological interventions dubbed by psychotherapy [2] or very
elaborate noninvasive interventions such as neurofeedback training
[3,4]. Thus, neuroplasticity-based therapy conceptually moves beyond
the simple focus of symptom alleviation and management.

The recognized deficit in neuroplastic capacity of several psychiatric
disorders, among them Major Depressive Disorder (MDD) can be
alleviated by pharmacological intervention (see e.g., [5]). The Brain-
Derived Neurotrophic Factor (BDNF) is a member of the
neurotrophin family of growth factors, and is critically involved in
regulating the survival and differentiation of neuronal population
during development [6]. In MDD, inadequate BDNF secretion in
brain region such as hippocampus was for example associated with the
dysfunctional neural circuitries of emotion-perception [7]. With a
symptomatology that is dependent on the route of administration [8],
BDNF levels in MDD patients were shown to have a strong association
with depression scores. Hence, the association between MDD
symptom alleviation and neuroplasticity can be sufficiently supported
by recent work (reviewed in [9,10]).

Conventional antidepressants target mainly monoamine levels to
alleviate symptoms. However, the timeframe in which these drugs
reach the efficiency peak spans over a few weeks within the treatment
period. This delay enhances the risks associated with severe patients
[11] including suicide for the worst.

Ketamine, an antagonist of N-methyl-D-aspartate (NMDA)
receptor, is a rapid antidepressant that targets the glutamate systems.
Recent clinical trials have shown that a single trail of low dose
ketamine produces rapid antidepressant response, reaches the highest
effect at 24 hours and lasts up to 7 days [12]. The mild
psychotomimetic and dissociative effects - caused by the acute
blocking of the excitatory glutamate NMDA receptor - completely
dissipate within 80 minutes after ketamine administration [12,13]. The
rapid antidepressant effect of ketamine is especially common in
treatment-resist depression patients (TRD) [14].

Many of the major depressive disorder (MDD) symptoms can be
associated with a biased cognitive function. Functional neuroimaging
and lesion studies have emphasized the large overlap between the
regions involved in reversal and reinforcement learning, and those
showing abnormalities in MDD psychopathology. For example, both
reinforcement and reversal learning share dopaminergic pathways that
send impulses to the nucleus accumbens and to prefrontal cortex
(PFC) [15]. In turn PFC structural and functional abnormalities
contribute to cognitive deficits associated with MDD [16].
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In this study we summarize the molecular neurobiology of
ketamine, the behavioral changes upon administration and the
psychotherapeutic implication of ketamine in learning and memory
process.

Neurobiological mechanism of ketamine as an
antidepressant

Ketamine produces a rapid antidepressant response that reaches the
highest effect after 24 hours and lasts up to 7 days [12]. Acute blocking
excitatory glutamate receptor, ketamine infusion causes mild
psychotomimetic and dissociative effects 30 minutes after ketamine
infusion and this effect dissipating 80 minutes after administration
[12,13].

In low doses, ketamine blocks NMDA receptors and increases the
extracellular glutamate level which, in turn, stimulates postsynaptic
non-NMDA receptors - such as AMPA/kinase receptor (α-amino-3-
hydroxy-5-methylisoxazole-4-propionate) [17]. AMPA receptors play
an essential role in ketamine related antidepressant effects: a)
subcutaneous treatment with 2,3-dihydroxy-6-nitro-7-
sulfoamoylbenzo(f) quinoxaline (NBQX), an AMPA receptor
antagonist, induces a blockage of ketamine antidepressant effect in
both acute (30 minutes) and sustained (72 h) phase [18]; b) chronic
treatment with low dose ketamine results in increased AMPA/NMDA
receptor density ratio in the hippocampus [19]; c) low dose of
ketamine activates mammalian target of rapamycin (mTOR) pathway
in postsynapse increasing synaptic signaling proteins such as 4E-BP1
(eukaryotic initiation factor 4E binding protein) and p70S6K (p70S6
Kinase) within two hours after injection [20]. Activation of mTOR
pathway triggers synaptic protein synthesis: a single dose of ketamine
significantly increases levels of activity regulating cytoskeletal protein
(Arc) within one hour, as well as glutamate AMPA receptor-1
(GluR1), postsynaptic density protein-95 (PSD95) and synapsin I after
two hours. The prolonged induction of GluR1, PSD95 and synapsin I
remained elevated up to 72 hours after ketamine treatment resulting in
increase synaptogenesis [20]. This effect increases number of mature
dendrite spines - as well as the serotonin (5-HT)- and hypocretin-
induced excitatory post-synaptic currents (EPSC) in PFC - indicating a
facilitation of synaptic plasticity.

Acute stress and depression induces neuronal atrophy in prefrontal
cortex (PFC) and hippocampus [21,22], mediated by NMDA receptors
activation [23]. A decrease of dendritic spines in hippocampus is
frequently found in depression animal models [24]. Human studies
reported decreased PFC and hippocampus volume in depressed
patients [16]. The neuroplastic effect of ketamine might counteract
these effects therefore improving the cognitive control deficit related
to depression.

Molecular evidence of ketamine in prolonged (24 hours)
learning facilitation

The activation of NMDA receptor results in postsynaptic
depolarization through AMPA receptors. The binding glutamate
allows Ca2+ to enter the postsynaptic neuron inducing synaptic
plasticity changes - especially long-term potentiation (LTP) - and
activating downstream neural pathways, e.g., cyclic adenosine
monophosphate (cAMP), protein kinases, cAMP-response-element-
binding protein (CREB) and regulating gene expression [25,26].

NMDA receptors are regarded as one of the key proteins in
hippocampus-dependent memory. They overexpress the NR2B

receptor subunit of the NMDA receptor enhancing learning and
memory performance in animals [27]. Most pharmacological studies
using NMDA receptor antagonists found impaired learning and
memory in acute phase, suggesting disrupted memory pathways
shortly after NMDA blockage [28]. Nevertheless, treatment with
dizocilpine (MK801) - NMDA receptor nonselective antagonists - has
been shown to improvement short-term memory acquisition in step-
down passive avoidance task, i.e., avoidance of a noxious event by
suppression a particular behavior [29]. Low dose of dizocilpine (0.01
mg/kg) facilitates long-term habituation activity in a spatial novelty
test in Napel low excitability rats line with lower behavioral arousal to
novelty [30]. However, this enhanced learning effect by NMDA
receptor antagonists can be argued by non-associative factors such as
anxiolytic activity or motor activation of these types of learning
paradigms [31].

So far, to the best of our knowledge, few studies focused on the
effects of NMDA receptor antagonist after its half-life (circa 180
minutes in humans [32]). Recent studies on the neural signal pathways
of ketamine have started to provide evidence of sustained, beneficial
role of ketamine.

The first evidence derives from the AMPA-dependent learning,
especially in the context of emotion. Emotional arousal-induced
endogenous stress hormone release, e.g., noradrenaline, negatively
impacts memory formation by phosphorylation of AMPA receptor
GluR1 subnunit, lowering the threshold for trafficking to the synapse
[33]. Stress studies indicate that acute stress can weaken memory via
the removal of synaptic AMPARs [34,35]. Thus, stress hormone
mediates irregularities in AMPA receptor plasticity underlining
neurological dysfunctions following traumatic events causing
psychiatric disorders, e.g., major depression and general anxiety
disorders [36]. Studies using both GluR1 knockout mice and normal
mice found that AMPAR trafficking (especially GluR1) is required in
amygdala-dependent learning [37,38]. As described above, AMPA
receptor augmentation still exists when NMDA receptor blockage by
ketamine stopped; it is very likely that a learning facilitation effect will
start at this time point.

Secondly, both rapamycin treatment and genetic studies revealed
the importance of mTOR signaling in memory (reviewed in [39]).
New protein synthesis is crucial for long-term memory and is
accompanied by an increase in the number of mature synapses [40,41].
In 6-24 hours delayed time point after ketamine treatment, the
activated mTOR signal-pathway induced protein synthesis and
psynaptogenesis. New protein synthesis and psynaptogenesis provide
possibility for establishing new memory trace therefore very likely
enhances learning and memory [42].

Thirdly, AMPA receptor regulation of synaptic function involves
the activation of voltage-dependent calcium channels (VDCCs) and
activity-dependent release of brain-derived neurotrophic factor
(BDNF) [43,44]. Positive AMPA receptor modulators induce
increased BDNF, mRNA (messenger RNA), protein kinase B protein-
activate (PKB/Akt) and extracellular signal-regulated kinase (ERK).
This prompts the activation of mTOR in dendrites and the
synaptoneurosome fraction which upregulates the local protein
synthesis [45], facilitates LTP and increases synaptic transmission [46].
This mechanism facilitates memory formation [47].

In the past decades, large number of studies suggested that BDNF
plays a crucial role in learning and memory [48,49]. Molecular studies
found that BDNF facilitates glutamate release and increases
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phosphorylation of the NMDA receptor NR1 and NR2B subunits and
up-regulates GluR1 AMPA-receptor expression and phosphorylation
thereby highly involved in LTP [50]. The changes in BDNF levels are
directly associated with depression- and anxiety-like behavior [51].
Post-mortem studies have shown an association between depression
and: i) a decrease of BDNF (and CREB) concentration in the
hippocampus [52]; ii) an increase of BDNF (and CREB) concentration
in the nucleus accumbens (NAc) [53,54]. The single nucleotide
polymorphism (SNP) Val66Met of the BDNF gene influences the
activity-dependent secretion and intracellular trafficking of BDNF
[55]. Knock-in mice, that homozygously express Met66 BDNF,
showed more anxiety-like behavior and a greater resilience to
behavioral and molecular changes after social defeat [53,56]. Both
knock-in mice and human Met carriers show impaired conditional
fear extinguish response. This suggests that BDNF plays a role in
anxiety disorders with impaired learning of cues that signal safety
versus threat [57]. Further, human polymorphism studies indicated
that the Met alleles are associated with abnormal hippocampal
neuronal function as well as impaired episodic memory [58].
However, later human studies have suggested that BDNF trafficking
change does not influence all memory types. In particular, no
association of the BDNF genotypes with declarative memory and
working memory was observed [59,60].

In addition, a recent study found that ketamine persistently
enhances induction of LTP of synaptic transmission 24 hours after
injection and increases the NMDAR-NR2B concentration on cell
surface at rat hippocampus and medial PFC (MPFC) synapses in vitro
[61]. Regarding the importance of NR2B subunit in hippocampus-
dependent memory, it underpins the memory beneficial effect of a
single dose ketamine at 24 hours.

Behavior evidence of ketamine in learning facilitation effect
and perspective

Encoding and retrieval
Ketamine is known to produce robust episodic memory

impairments, to disrupt semantic memory and to impair error
monitoring during execution [62]. It might also be related to
declarative memory task deficit through its effect on manipulation
rather than maintenance of information in working memory [62]. The
deleterious effects of ketamine on episodic memory rely more on
encoding process rather than retrieval, as a number of studies have
shown [63-67]. Honey et al. [68] found that low dose ketamine
administered at retrieval reduces guessing tendencies for answers -
opposite to the effect if administered at encoding – and suggested that
ketamine improves memory recall performance by facilitating encoded
memory. Another study found that when administered immediately
after the introductory session or before the recognition session,
NMDA receptor antagonist MK-801 induces increased interest for the
novel object reflecting retention facilitation [69]. Taken together, these
studies have shown that ketamine impairs encoding and facilitates
retrieval.

Sustainability
However extensive this evidence is, the sustainability effect of

ketamine remains poorly understood. A recent study reported post
ketamine infusion enhancement of reconsolidated memory occurring
after 24 hours. This effect was associated with the psychotic symptoms
resulted from excessive glutamate release [70]. Enhanced memory

consolidation and reconsolidation was also found 24 hours after
memantine - an NMDA receptor antagonist - administration in day-
old chicks [71]. Thus, it seems that NMDA receptors antagonist is
relevant for memory process.

However, chronic ketamine users shown increased D1 receptor
(dopaminergic receptor) concentration in right dorsolateral prefrontal
cortex, suggesting that elevated D1 receptor up-regulation might be a
compensatory mechanism for drug-induced deficit [72].

Learning, reward and cognitive flexibility
In reinforcement learning the agent learns as a consequence of its

actions. This process, eminently of a trial-and-error nature, can be
doubled by the presence of rewards or by punishments avoidance
(reviewed in [73]). A recent study found that NMDA receptor
uncompetitive (but not competitive) antagonists such as ketamine,
significantly increase impulsive choice. This observation is preferential
to low-impulsive rats [74]. Functional neuroimaging and lesion studies
showed that some brain regions are common to both reinforcement
and reversal learning, such as the nucleus accumbens and the PFC
(especially the ventromedial PFC (vmPFC)) [75,76] that involved in
dopaminergic pathways [15], as well as orbitofrontal cortex (OFC)
[77], dorsolateral PFC (dlPFC) [78] and dorsal anterior cingulate
cortex (ACC) [79].

For a later discussion, it is noteworthy to emphasize the large
overlap between the regions involved in reversal and reinforcement
learning, and those showing abnormalities in MDD psychopathology.
This overlap might explain the cognitive deficit present in MDD.

In humans acute administration of ketamine impairs attentional
set-shifting indicating cognitive inflexibility [80-82]. However, little is
known about the timeline of this inflexibility. Some evidence may be
considered from animal studies where in an attentional set-shift task,
in mice, a high dose (10 or 20 mg/kg) of ketamine, administered 50
minutes prior to sessions, worsened the performance by increasing the
necessary number of trials, the time and the errors to reach the
criterion. In the same experiment, ketamine administration (10
mg/kg) 3 or 24 h prior to sessions showed normal performance [83].
These findings provide some evidence that for the attentional set-
shifting tasks, ketamine has different effects in acute and sustained
phase.

As seen above, some studies investigating reinforcement learning,
set-shift task, and reversal learning reported ketamine impairment
after acutely administration, while others reported a facilitation effect.
However, acute ketamine caused cognitive inflexibility but this effect
disappears even before drug's half-life [12]. This might not be the case
with the effect of ketamine on cognitive flexibility changes.

Major depression, neuroplasticity, ketamine and
psychotherapy

MDD is characterized by a cognitive bias towards negative stimuli
[84]. In vulnerable people special environmental circumstances can
trigger an activation of depressive self-referential schemas like “I am
worthless”. This schema activation can lead to biased attention, biased
processing and biased memory of emotional internal and external
stimuli which causes depressive symptoms and reinforces the self-
referential schema. Neurobiological correlates of biased attention were
found in the PFC, ACC and superior parietal cortex (SPC). In MDD,
decreased functional activity in ventrolateral PFC (associated with
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control over stimulus selection), in dorsolateral PFC (associated with
executive functioning), in rostral ACC (important for inhibitory
processing) and in SPC (involved in coordination of shifts in gaze)
leads to a focus on negative stimuli. A hyperactivity of thalamus,
amygdala and subgenual ACC together with a lack of inhibition via
dorsal ACC is exemplary for the biased processing of negative stimuli
and leads to an increased processing of negative stimuli. Biased
memory and rumination are caused by altered functional activity
mentioned above together with hyperactivity in hippocampus induced
by negative stimuli (reviewed in [85]).

MDD patients show a higher sensibility towards learning by
punishment, and a lower sensitivity towards learning by reward
[86-88]. These findings crucially link to the clinical symptom of
anhedonia, a main constituent of MDD core symptoms [89]. However,
the bias towards learning by punishment in patients suffering from
MDD leads to an overall worse performance in reward related learning
[90]. The change in sensitivity was also found in reversal learning
paradigms and related to the brain area striatum [91]. Furthermore,
MDD patients shown impairment cognitive flexibility and memory
[92,93], functions proposed to play a crucial role in reversal learning.
These findings concur with studies showing that MDD is associated
with prefrontal cortex (PFC) and the hippocampus structural and
functional dysfunction [16].

Apart from task functional magnetic resonance imaging (fMRI)
studies, resting state fMRI (rs-fMRI) studies found decreased
functional connectivity of the default mode network (DMN) 24 hours
ketamine post infusion [94]. The DMN network (a) consists of the
pregenual anterior cingular cortex (pgACC), the medial PFC and the
dorsal nexus (DN) located in the dlPFC, (b) shows a higher activity in
resting state than in goal directed tasks, and (c) is believed to be a
network of relative inactivity [95]. MDD patients showed DMN
hyperactivity [96] and decreased ability to interrupt the activity of the
DMN [97,98], which has been linked the inability to quit rumination
and concentrate on a task [99]. The decrease in functional connectivity
of DMN induced by ketamine might lead to a higher ability to work on
goal directed tasks and thus reversal learning which heavily relies on
executive functions and cognitive flexibility. However, this hypothesis
needs further investigation.

Acute ketamine administration has a negative impact on
reinforcement learning and reversal learning. There are no studies
about a delayed effect on learning, but the mechanisms that were
found to explain the antidepressive impact of ketamine hint to a
possible improvement in learning, in general, and especially to
reinforcement learning and reversal learning. This might, besides
relieving certain MDD symptoms, lead to a benefit in
psychotherapeutic sessions for MDD patients. Reversal learning as the
ability to unlearn associations and learn new ones might be helpful to
unlearn maladaptive thought patterns - as frequently seen in
rumination - and to learn new ones. We can also hypothesize a change
in the bias towards learning by punishment in MDD since, in
monkeys, ketamine was found to modify the dopamine turnover in the
striatum [100].

Cognitive behavioral therapy is often used as integral addition to
pharmacotherapy for primary care based patients with treatment
resistant depression [101]. Cognitive behavioral therapy (CBT)
teaching patients to recognize, to proof and to modify their biased
perception and biased processing aids patients, as soon as they learn
how to connect their biased perception to new experiences, in that
negative feelings will be less intense and patients will be able to cope

better with the demands of daily life [102]. Another behavior therapy
that specifically designed for patients with chronic depressive
disorders is CBASP (cognitive behavioral analysis system of
psychotherapy). In the therapeutic setting with a focus on
interpersonal interactions, the patient learns to change maladaptive
patterns of interpersonal behavior through new experience related
learning [103]. Importantly CBASP directly focuses on generating
novel experiences and their conceptual integration via negative
reinforcement, a mechanism which may offer distinct molecular
targets addressable by pharmacological augmentation. Nevertheless
most behavioral therapies are largely based on patients’ ability to learn
new thoughts that could inhibit or replace the old biased, automatic
thoughts as we described above. The neurobiological augmentation by
single dose ketamine treatment, as described before, might have
increased effictiveness when combined with other psychotherapies.
Cognitive therapy focuses on the top-down control of the limbic brain
areas and shows to modulate prefrontal-limbic functioning in
depressed patients [104]. These structures were also showed to
enhance neuroplasticity induced by ketamine treatment [105]. In
addition, it was evidenced that the psychoactive effect of ketamine
treatment facilitates psychotherapeutic intervention [106,107].

Neuroplasticity is the capacity of the brain to reorganize its
structure and functions in response to intrinsic or extrinsic stimuli [1].
These changes occur as a consequence of pharmacological
interventions dubbed by cognitive behavioral psychotherapy [2],
neurofeedback training [3,4], mental rehearsal and learning of
cognitive tasks [108,109], and non-verbal emotion communication
training [110]. The characterization of such changes ranges from a
molecular perspective to a behavioral one [5]. It is then reasonable to
conclude, “plasticity is an obligatory consequence of all neural activity
- even mental practice” [111]. At a molecular level the glutamatergic
system is relevant to neuroplasticity as well as long-term cell growth/
atrophy [112]. As a consequence, abnormalities within neural
plasticity contribute to the pathological processes underlying mood
disorders [113]. Ketamine showed beneficial effects in treatment
resistant depression (TRD) patients [14], through enhancing AMPA
receptor function, altering glutamatergic neurotransmission in
prefrontal limbic circuitries and leads to neuroplastic adaptations
[105].

Conclusion
We reviewed here emerging evidences that speak in favor for an

augmentation of psychotherapeutic learning via glutamatergic
antidepressants. Not only would such a mechanism potentially allow
for improved efficacy of behavioral reshaping, it further would also
provide an answer to a critical limitation of ketamine use in MDD.
The strong and fast responses rarely outlast a week after infusion, thus
leaving patients either as depressed as initially or provoking
continuous, long term treatment with a drug for which
disadvantageous cognitive and morphological consequences have been
reported (see review [62]). In response to such important caveats,
augmentative use of NMDA antagonists in the framework of “opening
plasticity windows” for psychotherapy would probably find its pace
particularly in the early treatment phase, where rapid antidepressant
action enables intense therapeutic work with promising neuroplastic
effects of target brain circuits underlying specific behavior [114]. The
combination with psychotherapy, optimized for exploitation of such
pharmacologically opened doors, then may provide a crucial answer to
the unresolved challenge to sustain the positive response towards
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ketamine. Most generally speaking, glutamatergic modulation via
agents such as ketamine benefit psychotherapy via improved mood
and boosting plasticity as early as 24 hours after single infusion – while
psychotherapeutic learning is necessary to sustain this otherwise
transient clinical improvement by behavioral readaptation which itself
would be beyond any pharmacological intervention.
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