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Introduction
Although the immune system has often been regarded as functioning 

independently in protecting the organism against foreign intruders, the 
last two or three decades have provided accumulating evidence that the 
nervous system, the endocrine, and the immune system are connected 
physiologically and act in a synchronized manner to mediate the body’s 
quick and precise response to environmental stress [1]. While physically 
separated, these systems interact in a bidirectional way via a complex 
and tightly regulated network of neuropeptides, hormones, cytokines, 
and chemokines, which serve to mount a coordinated response to 
danger and maintain homeostasis [2]. These reciprocal interactions are 
dynamic, allowing for a constant crosstalk between the brain and the 
immune system, mainly through the autonomic nervous system and 
the hypothalamic-pituitary-adrenal (HPA) axis [3,4]. Since the early 
evidence that inflammatory signals in the periphery can alter signaling 
in the hypothalamus [5], the focus has been on identifying a common 
molecular basis for this bidirectional communication shared through 
receptors and signaling ligands which cross sequestered anatomical 
locations [6]. Recent research suggests that neurotransmitters and 
neurohormones act by binding not only to their classical receptors on 
target cells in the nervous and endocrine systems, but also to receptors 
on various immune cells [7], thereby affecting many immunological 
processes in a powerful and rapid manner [8]. Primary and secondary 
lymphoid organs are innervated by nervous terminals secreting a 
variety of neurotransmitters [8]. Moreover, T-cells (and other immune 
cells) can also produce and secrete endogenous neuropeptides either 
spontaneously or after induction by external stimuli [8,9] which then 
act in an autocrine or paracrine manner to modulate pivotal immune 
functions, or cross anatomical barriers to facilitate the bidirectional 
crosstalk with other cells such as neurons or glia [8]. 

It is now well established that receptors for the parasympathetic 
mediator acetylcholine (ACh) and the sympathetic mediator 
norepinephrine (NE) are expressed on various immune cells such as 
macrophages, neutrophils, and lymphocytes [10-12]. For instance, 
activation of the ACh receptor on human macrophages exposed 
to bacterial lipopolysaccharide (LPS) significantly attenuates the 
release of pro-inflammatory cytokines such as tumor necrosis factor 
(TNF), interleukin (IL)-1β, IL-6, and IL-18, but not the production 
of anti-inflammatory cytokines (such as IL-10) [13]. Similarly, direct 
stimulation of the peripheral vagus nerve during lethal endotoxemia 
in rats inhibits TNF synthesis in the liver, prevents the development 
of a shock-like response [13], and reduces paw swelling, and inhibits 
the development of acute arthritis after injection of the inflammatory 
chemical carrageenan. This blunting of an inflammatory response 
with vagal stimulation demonstrates that the cholinergic system 
functions as an anti-inflammatory mechanism in localized and 
systemic inflammation [14]. There is also evidence that the sympathetic 
neurotransmitter norepinephrine can also inhibit macrophage 
activation and suppress TNF synthesis with a resultant increase in 
IL-10 release early in the course of a systemic infection [15]. This 
may seem contrary to the classical teaching that the sympathetic and 
parasympathetic nervous systems function in opposite directions; in 
many situations the two systems function synergistically to limit the 
deleterious effects of a non-specific defense reaction. 

Perhaps the quintessential reciprocal interaction between these 
systems in orchestrating the response to environmental stress is the 
modulation of the body’s immune responses through the hypothalamic-
pituitary-adrenal (HPA) [3,4] and hypothalamic-pituitary-gonadal 
axes. Studies as early as the 1980s demonstrated that cytokines 
play a pivotal role in this “chemical talk” by acting as immuno-
neuroendocrine modulators [16]. Activated immune (e.g. monocytes, 
neutrophils, basophils, eosinophils, lymphocytes) and accessory cells 
(e.g. endothelial cells, fibroblasts, tissue macrophages) at the site 
of peripheral infection or inflammation secrete pro-inflammatory 
cytokines and other neuropeptide mediators of inflammation. How 
these signal transducing neuroendocrine stresses reach the CNS 
is still incompletely understood, but may involve special transport 
systems, direct activation of corticotropin-releasing hormone (CRH) 
and arginine vasopressin (AVP) neurons in the median eminence 
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(which is outside of the blood-brain barrier), or stimulation of the 
noradrenergic stress system [17]. The hypothalamic paraventricular 
nucleus (PVN) releases CRH and activates the anterior pituitary to 
produce adrenocorticotrophic hormone (ACTH), which activates 
the adrenals to secrete glucocorticoids (cortisol), which ultimately 
downregulate the immune response. HPA axis activation during 
inflammation acts as an important protective mechanism through 
endogenous cortisol release which in turn limits the immune reaction 
through inhibition of immune cell activation, suppression of cytokine 
production, suppression of the cyclooxygenase-2 pathway leading to 
decreased production of prostanoids, platelet-activating factor, and 
nitric oxide, and decreased expression of adhesion molecules and their 
receptors [17]. Glucocorticoids seem to preferentially suppress the 
function of type I helper (Th1) T lymphocytes and induce resistance to 
Th1 cytokines [17]. 

Gonadal steroid hormones regulate immune responses

More than 100 years have passed since Calzolari published his initial 
report of the positive effect of castration on thymus development in 
rabbits castrated before sexual maturity. However, until recently, little 
was known of the effects of gonadal steroid hormones on immunity. 
Of late, researchers have begun to place greater emphasis on the 
interaction of the immune and endocrine systems in the regulation of 
innate and acquired immune responses. The differential susceptibility 
to autoimmunity between sexes [18-20], or the changes in cell-mediated 
immunity seen during menstrual cycle and pregnancy [21-23] suggest 
that sex hormones may indeed modulate immune responses. 

Androgens are generally viewed as negative regulators of immune 
function. The presence of the androgen receptor (AR) has been 
documented in lymphoid and nonlymphoid cells of thymus and bone 
marrow, but not in mature lymphocytes [24,25], suggesting that the 
major impact of androgens may be on the developmental maturation 
of T and B cells. Castration of male animals results in significant thymic 
enlargement and increase in thymus weight and thymocyte number 
[26-28], a phenomenon which is also observed in the setting of defective 
androgen action (the androgen-resistant testicular feminization mouse 
[29]. It has also been shown that androgen deprivation stimulates 
thymic T cell output and results in increased numbers of phenotypically 
naïve CD4+ and CD8+ peripheral T cells (approximately 2 weeks 
after castration) and enhances antigen-specific immune responses 
in postpubertal male mice [30]. In addition, androgen deprivation 
exerts a stimulatory impact on B-cell lymphopoiesis in the bone 
marrow (BM) [31,32], resulting in expansion of splenic and peripheral 
B-cell populations [33] and enhanced production of autoreactive 
antibodies [32]. Testosterone replacement in castrated mice, on the 
other hand, results in thymic regression and a significant decrease 
in thymocyte numbers, with a shift toward expression of mature 
thymocyte phenotypes, a decrease in double-positive (DP) phenotype 
(CD4+CD8+) T cells, and a relative predominance of the CD4-
CD8+ suppressor/cytotoxic over the CD4+CD8- helper phenotype 
T cells [28]. Potential mechanisms include acceleration of thymocyte 
apoptosis [34], AR-mediated induction of downregulatory cytokines 
such as transforming growth factor beta (TGF-β) [35], or changes in 
thymocyte differentiation and maturation [36]. 

Initially, estrogen and progesterone’s effects on the immune system 
appeared to be contradictory, until it was realized that the female sex 
steroid hormones have biphasic dose effects on immunity depending 
on physiological state, hormonal dose, and concentration [20]. For 

instance, lower levels of estrogen seem to enhance, whereas higher 
levels (such as those in pregnancy) inhibit specific immune activities 
[20]. Serum progesterone and estrogen levels rise 5 to10-fold during 
pregnancy [37]; these heightened hormonal levels are thought to help 
control the development and prevent rejection of the semi-allogeneic 
fetus by the maternal immune system [38,39]. This tolerogenic state 
is the result of the unique hormonal environment during pregnancy, 
which favors a Th2 response and, at the same time, halts the progression 
of Th1 immune responses associated with certain autoimmune diseases 
such as multiple sclerosis (MS), rheumatoid arthritis (RA), or uveitis 
[20,40]. It is not entirely known, however, how exactly the dynamic 
hormonal changes during normal ovulatory cycling and pregnancy 
modulate the body’s immune homeostasis and response to illnesses 
such as cancer. 

Experimental studies imply that, on one hand, “low-dose” estrogen 
increases antibody production [41-43] and autoimmunity [44,45], 
while on the other hand, it decreases T-cell mediated delayed-type 
hypersensitivity (DTH) [41,46-48], suppresses leukocyte production in 
the bone marrow and granulocyte-mediated inflammation [49] as well 
as natural killer (NK)-cell mediated cytotoxicity [43,50,51]. Mammalian 
cells express 2 receptor isoforms for estrogen receptor (ER), ERα and 
ERβ [52], although their relative contribution to estrogen-mediated 
changes in hematopoiesis is still under considerable debate [53]. Animal 
studies also suggest that ER subtypes have different roles in females 
and males [54]; for instance, ERα, but not ERβ, seems to be necessary 
for full thymic development in male mice [54,55], whereas expression 
of ERβ is required for estradiol-mediated thymic cortex atrophy and 
thymocyte phenotype shift in females [54]. Experimentally, estrogens 
have been shown to induce thymic atrophy and loss of lymphoid 
elements from the thymic cortex [56,57] at least partly, by increasing 
thymocyte apoptosis. In a study with ovariectomized female rats, 
ovariectomy produced a marked increase in thymus weight and had 
a profound effect on the thymocyte profile, leading to an increase in 
the CD4+CD8+ (DP) immature cells, with a relative decrease in the 
proportion of mature cells believed to harbor potentially autoreactive 
cell clones. This effect could be reversed by physiological doses of 
17β-estradiol [57]. Estrogen seems to rescue naive autoreactive B cells 
that normally are deleted and causes them to mature to a marginal zone 
phenotype and further leads to activation of this cell population [44,58]. 
Loss of estrogen through ovariectomy also upregulates B lymphopoiesis 
in the bone marrow and increases myeloid cell differentiation into the 
monocyte-macrophage lineage [59]. Estrogen receptor beta knockout 
(ERβ-/-) mice develop pronounced splenomegaly that is much more 
severe in females than in males, with myelogenous hyperplasia in bone 
marrow, an increase in the number of granulocytes and B lymphocytes 
in the peripheral blood, lymphadenopathy, and infiltration of 
leukocytes in the liver and lung resembling human chronic myeloid 
leukemia with lymphoid blast crisis [60]. Conversely, pregnancy 
or administration of exogenous estrogen was shown to inhibit B 
lymphopoiesis [61-63]. While some studies indicate that ERβ is the 
main negative regulator of hematopoietic progenitor cells [60,64], 
others suggest that this effect can be mediated through either ERα 
or ERβ [58,65]. The decreased lymphopoiesis may reflect an intrinsic 
B-cell response to estrogen of early lymphoid progenitors [62,66] and/
or indirect estrogen-dependent regulation of production and secretion 
of cytokines, such as IL-7, required for the development of early B 
lymphopoietic stages [58,66]. Furthermore, engagement of ERα, seems 
to be a trigger for autoimmunity and leads to breakdown in B-cell 
tolerance, with increased survival to immunocompetence of high-
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affinity autoreactive B lymphocytes. In contrast, ERβ engagement did 
not alter B-cell selection [58]. In addition, some hormonal effects on 
immunity and autoimmunity could be mediated through direct effects 
on dendritic cell (DC) function [40]. Estrogen and progesterone seem 
to exert different effects on DC differentiation and activation. Estrogen-
dependent activation of ERα appears to be responsible for normal 
granulocyte-macrophage colony stimulating factor (GM-CSF) induced 
dendritic cell (DC) differentiation and acquisition of effector functions 
[67]. ERα-deficient DCs fail to upregulate MCH class II and CD86 
molecules in response to microbial pathogens, which could account for 
their reduced capacity to prime naïve CD4+ T lymphocytes. Although 
they retain the ability to produce pro-inflammatory cytokines (e.g. 
IL-12, IL-6) upon toll-like receptor (TLR) engagement, ERα-deficient 
DCs are defective in their ability to secrete such cytokines in response 
to CD40-CD40L (CD40 ligand/CD154) interaction [67]. High-dose 
estrogen, on the other hand, induced IL-10 production by mouse 
splenic DCs [68] in one study, suggesting that this may be a mechanism 
by which high estrogen levels could facilitate expansion of tolerogenic 
DCs and explains the increase in the number and suppressive activity 
of regulatory Tcells (Treg) associated with pregnancy and exogenous 
estrogen administration [38,69]. The Th2 dominance of pregnancy is 
further emphasized by the tolerogenic and immunosuppressive effects 
of progesterone, which has been shown to decrease gene expression 
and production of Th-1 cytokines [70], increase the production of anti-
inflammatory cytokines (such as IL-10 and IL-13) [71], and increase 
the proportion of Treg during pregnancy [22,23]

Given this dynamic interaction between the endocrine system 
and immunity, a crucial question arises: could sex hormones 
or gonadotropin-releasing hormone (GnRH)-analogs be used 
therapeutically or as adjuvants in patients with cancer? Sex steroids 
and their agonists/antagonists are extensively used in contraception, 
hormone replacement therapy, as well as the treatment of breast and 
prostate cancer, but there is relatively little information regarding 
their effect on modulating the host immune response to other disease 
states. In autoimmune diseases, the defining event is loss of T cell 
tolerance to T-cell antigens, as opposed to the Th2-biased immune 
homeostasis and tumor-associated immunologic tolerance seen in 
advanced cancer. While still incompletely elucidated, understanding 
of the precise cellular and molecular mechanisms by which hormones 
alter these various immune functions is likely to play a crucial 
role in understanding gender differences in response not only to 
autoimmune diseases, but also chronic inflammatory conditions, 
human immunodeficiency virus (HIV) infection, cancer, bone marrow 
transplantation, or graft-versus-host disease (GVHD). For instance, 
gender has been shown to be an important and independent predictor 
of clinical outcome and survival in cutaneous melanoma, with pre-
menopausal females (but not women older than 60 years) experiencing 
an improved prognosis [72,73]. The presence of sex steroid receptors in 
hematopoietic elements [24,58,66], as well as thymic and BM stromal 
cells [74-76] suggests that they may have a direct or indirect effect on 
immunity and hematopoiesis. The sexual dimorphism of the immune 
response could be modulated by differences in T cell receptor signaling, 
expression of activation molecules on T lymphocytes and antigen-
presenting cells [77], transcription or translation of cytokine genes, or 
lymphocyte homing [20]. 

In the last few years, a significant body of research has accumulated 
regarding the immune modulatory effects of gonadal steroid hormones; 
however, the literature is often confusing and generates opposite 
conclusions. The main shortcomings involve the fact that most studies 

are done on single sex animals making it difficult to accurately asses 
gender-specific immune responses; moreover, it is well known that 
oftentimes animal models fall short of reproducing human conditions. 
Therefore, direct comparison of males and females to determine 
specific gender differences in the innate and adaptive immune 
response (including individual Th1/Th2 balance) is crucial, as they 
may translate in a different susceptibility and immunologic response 
to chronic inflammatory stress. Our laboratory’s work is focused on 
understanding the hormone-driven immune responses in human 
cancer and reproduction by studying the parallels of neuroendocrine 
immune regulation in women with and without cancer as they relate 
to menstrual cycle and pregnancy, identifying signals associated 
with inflammation versus tolerance induction in physiological and 
pathological states, and comparing to indicators of chemotherapeutic 
response in cancer. 

Sex steroids and immune reconstitution following 
hematopoietic stem cell transplantation

Androgens have been used empirically in the treatment of bone 
marrow failure syndromes such as dyskeratosis congenita or Fanconi 
anemia since the 1960’s, although their exact mechanism of action on 
hematopoietic recovery is not completely understood. Recent preclinical 
data suggests that one potential explanation is that androgens may act 
by restoring telomerase expression in hematopoietic cells. Exposure of 
normal human bone-marrow derived CD34+ cells and of peripheral 
blood lymphocytes from patients heterozygous for telomerase 
mutations to androgens increased telomerase activity in one study 
[78]. This effect was abolished by letrozole, an aromatase inhibitor, 
but not by flutamide, an androgen receptor antagonist, suggesting that 
stimulation of telomerase activity by androgens is regulated mainly 
by aromatization [78]. Estradiol had a similar effect on TERT gene 
expression and telomerase enzymatic activity, which was abolished by 
tamoxifen and by down-regulation by small interfering RNA (siRNA) 
of estrogen receptor-α (ER α), but not ERβ [78]. Estrogens have also 
been implicated in regulating cell proliferation fates by reprograming 
the sizes of telomeres in normal reproductive tissues [79] and ovarian 
cancer cell lines [80]. 

In addition, the potential immune modulatory properties of 
currently used synthetic hormones and their agonists/antagonists could 
be investigated and utilized in conditions such as HIV, bone marrow 
transplantation, or after high-dose chemotherapy in cancer patients, 
when prompt immune reconstitution is essential [81]. Impaired 
lymphoid reconstitution following autologous hematopoietic stem 
cell transplant (HSCT) is known to increase opportunistic infections 
post transplant and to affect disease relapse and survival in multiple 
hematologic malignancies due to a presumptive lack of graft-versus-
tumor effect [82-84]. Day 15 absolute lymphocyte count (ALC-15) 
after autologous HSCT has been reported to be a significant predictor 
of clinical outcome [82], with natural killer (NK) cells identified as a 
key lymphocyte subset affecting survival after transplant [82]. Post-
autologous HSCT, granulocytic recovery is usually accomplished in 2 
to 3 weeks, while recovery of lymphoid cell immunity seems to display 
a greater variability [85]. NK cells generally reach pretransplant, or at 
least normal, levels by 10-14 days, CD3+ and CD8+ T cells need about 
3 months, while recovery of humoral immune response takes 3 to 6 
months [85-87]. In contrast, total CD4+ T cells and certain subsets such 
as CD45RA+ T cells (predominantly naïve CD4 T cells) are depressed 
for more than 1 year post-transplant [86,88]. 
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Similar to lymphocyte recovery as pivotal for survival post-
autologous HSCT, several reports have also shown that early 
posttransplant lymphocyte recovery has a direct impact on survival 
in patients undergoing allogeneic HSCT [89-91] (and manuscript 
under review), indicating that this phenomenon may be a universal 
surrogate of immunologic reconstitution post-HSCT. However, 
recovery of immunity post-allogeneic HSCT is even more delayed 
and is often incomplete as compared to autologous HSCT due to 
the requirement of several months of immunosuppression and the 
potential development of GVHD [92]. Therefore, identification of new 
ways to modulate lymphoid and NK cell recovery after autologous and 
allogeneic HSCT could provide new immunomodulation strategies 
to reduce relapse, avoid infectious complications, and correct altered 
immune homeostasis. 

In the last decade, there has been increasing interest on the potential 
effect of sex steroids on post-transplant immune reconstitution. For 
instance, androgen deprivation has been shown to shorten skin allograft 
rejection time in male mice [93]. Indeed, the suppressive influence of 
sex steroids on the thymus is well documented, with age-related thymic 
atrophy becoming more pronounced at the onset of puberty [94]. 
Although the loss of thymic function with age does not have immediate 
clinical consequences, it results in detrimental changes in the peripheral 
T cell pool, with a decreased export of naïve T cells and a compensatory 
increase in the memory T cell population [95,96]. Therefore, the age-
related thymic involution resulting in defective thymopoiesis becomes 
important in situations when prompt regeneration of the peripheral 
T cell pool is needed following destruction, such as administration 
of cytotoxic chemotherapy or stem cell transplantation [96]. Surgical 
or chemical (via luteinizing hormone-releasing hormone (LHRH) 
analogues) castration has been shown to reverse thymus atrophy in 
both males and females [26,97,98], while re-administration of synthetic 
sex steroids inhibits thymic growth and regeneration [98]. Moreover, 
androgen deprivation has been shown to accelerate restoration of 
lymphocyte levels within the thymus and periphery of castrated 
mice treated with cytotoxic (lymphopenic) chemotherapy and after 
autologous and allogeneic stem cell transplant without leading to an 
increase in graft-versus-host disease [87,99-101], thereby providing 
new strategies for post-transplant immune reconstitution. The 
increased thymic cellularity involved all of the thymocyte subsets and 
early T lineage progenitors; in addition, surgical castration seems to 
induce early repair of damaged thymic stromal microenvironment 
resulting in enhanced production of chemokines and growth factors 
important for thymopoiesis [99]. Importantly, these observations have 
also been demonstrated in the clinical HSCT setting, where treatment 
with goserelin (an LHRH agonist) prior to HSCT resulting in improved 
thymopoiesis and disease-free survival without an increase in GVHD 
post-HSCT [102]. These results are encouraging and support further 
investigation into modulation of thymic function and immune 
responses using endocrine-based therapies.

Neuroendocrine-immune biorhythms in malignant diseases

Rhythmic phenomena are typical for all levels of biological 
organization, with periods ranging from centuries and decades 
(evolution of species and ecological systems), to milliseconds of 
electrical potential in nerve and cardiac cells [103]. There are natural 
fluctuations in the levels of gonadotropin and sex hormones during the 
menstrual cycle and even with diurnal rhythm. Similarly, in humans, 
immune cells of either innate (e.g., neutrophils, monocytes, natural 
killer [NK]-cells) or adaptive immune system (lymphocytes [T- and 

B-cells]) have been shown to exhibit circadian variations [104]. Under 
regular sleep-wake conditions leukocytes show robust diurnal rhythms 
which seem to be regulated by the body’s two major stress hormones, 
cortisol and epinephrine, with peak counts at night or during the day, 
depending on the cell type [4]. Most recently, Lee and colleagues have 
demonstrated similar fluctuations in the peripheral blood T cells and 
NK cells, as well as NK cytotoxicity during menstrual cycle in healthy 
women volunteers [105]. 

Circadian immune changes driven by biological rhythms 
have been shown to cause disease-associated diurnal changes in 
rheumatological disorders [106,107] which correspond to the diurnal 
variations in plasma glucocorticoid concentration. Biological rhythms 
with a periodicity longer than 24 hours have also been detected in 
experimental models of inflammation [107]. Muir et al. [108] described 
a circaseptan rhythm of paw edema with peak inflammation occurring 
every 6-7 days after paraffin injection in rats Circannual variations 
were also identified with greater inflammatory symptoms in the spring 
compared to fall and winter [109]. 

Temporal variations in the immune response to malignant disease 
have been underemphasized but they are likely to have significant 
implications for the pathogenesis and treatment of these diseases. For 
instance, carefully designed observational studies have shown that 
people whose circadian rhythms are chronically disrupted are more 
prone to developing cancer (e.g. night-shift workers and breast cancer 
risk) [110,111]. Likewise, cancer growth may disturb biorhythms in the 
host [112,113]. We have recently demonstrated that similar dynamics 
control the immune response to advanced cancer and that the immune 
infradian biorhythms in patients with metastatic melanoma extend 
beyond the 24-hour sleep-wake variability [4] seen in normal immune 
homeostatic states (Dronca et. al, in press). Moreover, our data also 
suggests that these immune biorhythms may be therapeutically relevant 
with respect to timing of chemotherapy administration and can have 
a dramatic impact on therapeutic outcome. Future studies will need 
to determine how normal immune and anti-tumor responses change 
longitudinally during menstrual cycle and pregnancy; correlating 
the levels and rhythms of sex steroids and cytokines with the body’s 
response to disease and disease severity will also be important.

Conclusion
Although gender differences in autoimmune diseases are well 

recognized, the sexual dimorphism in the immune response and the 
importance of sex hormones in promoting differences between men 
and women in the susceptibility and immunological responsiveness 
to other chronic conditions, such as cancer, need further study. In 
the last few decades, there has been an explosion of information 
on the role of hormones in certain malignancies and also on the 
immune mechanisms important in the pathogenesis of these diseases. 
Important questions remain regarding specific gender differences in 
the innate and adaptive immune response to acute and chronic stress 
and the mechanism underlying differential neuroendocrine immune 
regulation of specific disease states. Expanding our understanding of 
the dynamic intercommunication between the nervous, endocrine, 
and immune systems during remodeling of the immune response in 
pathological conditions such as cancer, bone marrow transplantation, 
and with administration of chemotherapy, will help identify new 
therapeutic targets and immunomodulatory strategies and provide 
insight into personalized cancer treatment. 
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