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Abstract

Background: Binding of peptides to Major Histocompatibility class II (MHC-II) molecules play a central role in
governing responses of the adaptive immune system. MHC-II molecules sample peptides from the extracellular
space allowing the immune system to detect the presence of foreign microbes from this compartment. Predicting
which peptides bind to an MHC-II molecule is therefore of pivotal importance for understanding the immune
response and its effect on host-pathogen interactions. The experimental cost associated with characterizing the
binding motif of an MHC-II molecule is significant and large efforts have therefore been placed in developing
accurate computer methods capable of predicting this binding event. Prediction of peptide binding to MHC-II is
complicated by the open binding cleft of the MHC-II molecule, allowing binding of peptides extending out of the
binding groove. Moreover, the genes encoding the MHC molecules are immensely diverse leading to a large set of
different MHC molecules each potentially binding a unique set of peptides. Characterizing each MHC-II molecule
using peptide-screening binding assays is hence not a viable option.

Results: Here, we present an MHC-II binding prediction algorithm aiming at dealing with these challenges. The
method is a pan-specific version of the earlier published allele-specific NN-align algorithm and does not require
any pre-alignment of the input data. This allows the method to benefit also from information from alleles covered
by limited binding data. The method is evaluated on a large and diverse set of benchmark data, and is shown to
significantly out-perform state-of-the-art MHC-II prediction methods. In particular, the method is found to boost the
performance for alleles characterized by limited binding data where conventional allele-specific methods tend to
achieve poor prediction accuracy.

Conclusions: The method thus shows great potential for efficient boosting the accuracy of MHC-II binding
prediction, as accurate predictions can be obtained for novel alleles at highly reduced experimental costs. Pan-
specific binding predictions can be obtained for all alleles with know protein sequence and the method can
benefit by including data in the training from alleles even where only few binders are known. The method and
benchmark data are available at http://www.cbs.dtu.dk/services/NetMHCIIpan-2.0

Background
Binding of peptides to MHC II molecules play a major
role in governing adaptive immune responses. They
allow peptides derived from pathogens in the extracellu-
lar compartment to be presented by professional antigen
presenting cells (APCs) to T helper cells of the immune
system.

These T cells might in turn activate the presenting cell
to kill intracellular bacterial infections. Help is also for
most antigens needed to activate B cells to produce anti-
bodies that may neutralize the pathogen. Over the last
decade a number of different methods for prediction of
binding to MHC II molecules have been developed, the
most known being the TEPITOPE method [1]. Prediction
of binding of peptides to MHC II is complicated by the
immense polymorphism of the MHC class II alleles since
the many different encoded MHC class II molecules
(more than 690 different known HLA-DR alleles are
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known) bind very different sets of peptides. The TEPI-
TOPE method covers 50 of these HLA-DR alleles. During
the last decays several data driven so-called allele-specific
methods have been developed for alleles where sufficient
numbers of binding peptides are known. These methods
cover a very broad range of different bioinformatics train-
ing algorithms including Gibbs sampler [2,3], artificial
neural networks [4,5], support vector machines [6-8],
hidden Markov models [9], as well as other (often exotic)
motif search algorithms [10-18]. For a detailed review
please refer to Nielsen et al. [19].
These methods can interpolate between peptide bind-

ing data and create predictions for peptides not present
in the training set. Recently, pan-specific methods that
in principle can make predictions for all alleles with
known amino acid sequence have been developed
[20-26]. These methods work by including information
about the amino acid sequence of the MHC molecule as
input to the method allowing the methods to integrate
information across multiple alleles simultaneously thus
boosting the predictive performance and potentially
extrapolate the predictions to previously un-character-
ized MHC molecules. Several benchmark calculations
have demonstrated the power of such pan-specific
methods [27] and have shown how accurate predictions
can be obtained also for alleles for which no or very
limited binding data have been identified [21,28].
One of the best performing pan-specific MHC class II

prediction method is the NetMHCIIpan method [29].
An important limiting factor for this method lies in the
need for a pre-alignment of the input training data iden-
tifying the peptide-binding core prior to the training of
the method. Such pre-alignments require sufficient data
being available for all MHC molecules included in the
training data in order to derive accurate allele-specific
predictions. It has earlier been shown that this number
of peptide binding data for MHC class II is of the order
of many hundred [3,19], which makes it very costly to
develop accurate MHC class II predictions. In order to
circumvent this, we here propose a less demanding, yet
highly efficient method to generate MHC class II predic-
tors. This method is a pan-specific version of the earlier
published allele-specific NN-align algorithm [5] and
does not require any pre-alignment of the input data.
The method hence has the potential to benefit also
from information from alleles covered by limited bind-
ing data. Here, we demonstrate its predictive power in a
series of large-scale benchmark calculations.

Materials and methods
Data
Quantitative peptide binding data covering 24 HLA-DR
molecules were obtained from the IEDB database
and combined with data from an in-house database

containing MHC class II peptide binding affinity data
obtained from a high-throughput peptide-binding
screening assay described earlier [30]. The peptide cov-
erage in the data set varied from a maximal coverage of
7685 peptide binding measurements for the DRB1*0101
allele to a minimal coverage of only 30 peptide binding
measurements for the DRB1*1404 allele (see table 1).
The peptide data were split into 5 groups used for cross
validation using the approach described by Nielsen et al.
[3] minimizing the sequence overlap between the train-
ing and test data. Each data set and the corresponding
partitions are available online at http://www.cbs.dtu.dk/
suppl/immunology/NetMHCIIpan-2.0.
A large set of MHC class II ligands from the SYF-

PEITHI database [15] (November 2009) was used as
external evaluation set. Only ligands with at least four
digit HLA-DR resolution were used. All ligands included
in the training data were excluded from the evaluation
set. The SYFPEITHI evaluation data sets consist of 1164
MHC class II ligands, restricted to a total of 28 HLA-
DR alleles (see table 2).
A second evaluation set consisted of HLA-DR class II

restricted T cell epitopes downloaded from the IEDB data-
base June 28th, 2010 [31]. Also here, only epitopes with four
digit HLA-DR resolution were used. As above, all epitopes
included in the quantitative training data were excluded.
Further, epitopes shorter than 9 or longer than 24 amino
acids were excluded, since shorter peptides do not fit the 9
amino acid core of the HLA-DR binding motif, and longer
peptide most likely are not experimentally characterized as
minimal epitopes. This leaves us with a set of 1325 epitopes
covering 42 HLA-DR alleles (see table 3).

Method
The pan-specific NetMHCIIpan-2.0 method is a hybrid
of the earlier published methods for pan-specific for

Table 1 Quantitative HLA-DR peptide binding data

Allele # # bind Allele # # bind

DRB1*0101 7685 4382 DRB1*1101 1794 778

DRB1*0301 2505 649 DRB1*1201 117 81

DRB1*0302 148 44 DRB1*1202 117 79

DRB1*0401 3116 1039 DRB1*1302 1580 493

DRB1*0404 577 336 DRB1*1402 118 78

DRB1*0405 1582 627 DRB1*1404 30 16

DRB1*0701 1745 849 DRB1*1412 116 63

DRB1*0802 1520 431 DRB1*1501 1769 709

DRB1*0806 118 91 DRB3*0101 1501 281

DRB1*0813 1370 455 DRB3*0301 160 70

DRB1*0819 116 54 DRB4*0101 1521 485

DRB1*0901 1520 622 DRB5*0101 3106 1280

Total 33931 13992

# is the number of peptide binding data for each allele, and #bind is the
number of peptides with binding affinity stronger than 500 nM.
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MHC class I and class II binding, NetMHCpan [20,21],
and NetMHCIIpan [29], and the NN-align method
recently published for allele-specific MHC class II bind-
ing predictions [5]. The overall method architecture is
similar to the NN-align method, and the manner in
which the MHC polymorphism method is incorporated

is similar to that of the NetMHCpan and NetMHCIIpan
methods.
The method was implemented as a conventional feed-

forward artificial neural network. Like the NN-align
method, the method consists of a two-step procedure
that simultaneously estimates the optimal peptide bind-
ing register (core) and network weight configuration.
Initially, all network weights were assigned random
values. Given this set of network weights, the core of a
given peptide was identified as the highest scoring of all
nonamers contained within the peptide. The score of a
nonamer peptide was calculated using the conventional
feed-forward algorithm. The network weights were
updated using gradient descent back-propagation. Given
a peptide core alignment, the weights were updated to
lower the sum of squared errors between the predicted
binding score and the measured binding affinity target
value. A peptide core was presented to the network as
described for the NN-align method including encoding
of peptide flanking regions (PFR), PFR length and the
peptide length. The MHC environment defining the
peptide binding strength was implemented in terms of
the MHC pseudo sequence constructed from 21 poly-
morphic amino acid positions in potential contact with
the bound peptide as described by Nielsen et al. [29].
Two types of sequence encodings (sparse and blosum)
were applied for the peptide-core and MHC pseudo
sequences as described by Nielsen et al. [32]. For each
peptide core, the input to the neural network thus con-
sisted of the peptide core and MHC environment resi-
dues ((9+21) × 20 = 600 inputs), the PFRs (2 × 20 = 40
inputs), the peptide length (2 inputs), the length of the
C and N terminal PFR’s (2 × 2 = 4 inputs) resulting in a
total of 646 input values. The peptide binding affinity
IC50 values were encoded to the neural network as log-
transformed values, using the relation 1-log (aff)/log
(15,000), where aff is the measured binding affinity
(IC50) in nM units [32]. Note, that we here use 15,000
as the base for the logarithmic transformation. This is in
contrast to the 50,000 used in previous works by our
group, and is chosen due to a lower sensitivity for weak
binding peptides of the high-throughput peptide-binding
screening assay described by Justesen et al. [30].
The networks were trained using 5-fold cross-validation.

Network ensembles were trained with 40 hidden
neurons. The procedure of i) identifying the optimal
peptide core, and ii) updating the network weights to
lower the predictive error was repeated for 500 cycles.
Since the “search landscape” has a large set of local
minima each with close to identical performance values,
the network training was repeated 10 times, each with
different initial configuration values. This led to signifi-
cantly improved prediction accuracy (data not shown).
In total 20 (2 encoding schemes*10 seeds) networks

Table 2 MHC class II ligands from the SYFPEITHI
database

Allele # Allele #

HLA-DRB1*0101 53 HLA-DRB1*1101 35

HLA-DRB1*0102 5 HLA-DRB1*1104 8

HLA-DRB1*0301 88 HLA-DRB1*1201 11

HLA-DRB1*0401 468 HLA-DRB1*1301 16

HLA-DRB1*0402 36 HLA-DRB1*1302 19

HLA-DRB1*0403 1 HLA-DRB1*1401 9

HLA-DRB1*0404 42 HLA-DRB1*1501 22

HLA-DRB1*0405 36 HLA-DRB1*1502 3

HLA-DRB1*0701 47 HLA-DRB1*1601 2

HLA-DRB1*0801 39 HLA-DRB3*0101 2

HLA-DRB1*0802 1 HLA-DRB3*0301 5

HLA-DRB1*0803 1 HLA-DRB4*0101 6

HLA-DRB1*0901 6 HLA-DRB4*0103 2

HLA-DRB1*1001 183 HLA-DRB5*0101 18

Total 1164

Table 3 HLA-DR restriction T cell epitope from the IEDB
database

Allele # Allele #

HLA-DRB1*0101 125 HLA-DRB1*1103 3

HLA-DRB1*0102 4 HLA-DRB1*1104 6

HLA-DRB1*0103 5 HLA-DRB1*1201 3

HLA-DRB1*0301 173 HLA-DRB1*1301 15

HLA-DRB1*0401 342 HLA-DRB1*1302 10

HLA-DRB1*0402 33 HLA-DRB1*1303 3

HLA-DRB1*0403 14 HLA-DRB1*1401 16

HLA-DRB1*0404 46 HLA-DRB1*1404 1

HLA-DRB1*0405 21 HLA-DRB1*1405 2

HLA-DRB1*0406 6 HLA-DRB1*1501 193

HLA-DRB1*0407 4 HLA-DRB1*1502 20

HLA-DRB1*0408 2 HLA-DRB1*1503 2

HLA-DRB1*0701 56 HLA-DRB1*1601 5

HLA-DRB1*0703 1 HLA-DRB1*1602 3

HLA-DRB1*0801 4 HLA-DRB3*0101 12

HLA-DRB1*0802 2 HLA-DRB3*0202 10

HLA-DRB1*0803 2 HLA-DRB3*0301 1

HLA-DRB1*0901 13 HLA-DRB4*0101 17

HLA-DRB1*1001 4 HLA-DRB4*0103 1

HLA-DRB1*1101 88 HLA-DRB5*0101 55

HLA-DRB1*1102 1 HLA-DRB5*0102 1

Total 1325
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were created for each training/test set configuration. The
binding core of a given peptide was assigned by a major-
ity vote of the networks in the ensemble.

Leave-one-out (LOO) network training and benchmark
Leave-one-(allele)-out experiments were conducted to
investigate the predictive performance of the method in
situations where binding data for a given allele was
excluded from the training. Two types of LOO experi-
ments were conducted. In the first type, peptide-binding
data for a given allele were excluded from the training
of the prediction method, and upon training, the predic-
tive performance was evaluated using the peptide bind-
ing affinity values for the HLA-DR molecule in
question. This is the LOO approach applied in the
NetMHCIIpan-1.0 method [29] and allows for a direct
comparison of this method to the method proposed
here when trained on similar data sets.
Since many of the peptides in the training data have

been measured for binding affinities to multiple alleles,
the above LOO experiment can lead to a significant
overestimation of the performance for a given prediction
method. To reduce this bias, a second type of LOO
experiment was conducted where all data representing a
given peptide was excluded from the training of the pre-
diction method. That is, if a given peptide was measured
against multiple alleles including the allele in question,
all these measurements were excluded from the LOO
training. To avoid reducing the size of the training data
too much, this second type of LOO training was per-
formed as a three-fold cross-validation for alleles char-
acterized by more than 200 data points.

Performance measures
The predictive performance was measured in terms of the
area under the ROC curve (AUC) value and Pearson’s cor-
relation coefficient (PCC). The receiver operating charac-
teristic (ROC) curve is a graphical plot of the sensitivity
versus the false positive rate (1 - specificity) as the discrimi-
nation threshold is varied. Through out this work, a binding
threshold value of 500 nM was used to classify the peptides.
The area under the ROC curve (AUC) gives an indication
of the accuracy of a prediction method. An AUC value of 1
corresponds to perfect predictions and a value of 0.5
reflects random predictions. Likewise, PCC is a measure of
the accuracy of a prediction method. It is obtained by divid-
ing the covariance of the two variables by the product of
their standard deviations. For perfect predictions PCC is 1
(or -1), and for random predictions PCC is 0.

Nearest neighbor distance calculation
The distance between two MHC alleles was estimated as
described by Nielsen et al. [29] using the relation

d s A B

s A A s B B
= −

⋅
1 ( , )

( , ) ( , ) , where s(A, B) is the BLOSUM50

similarity score between the pseudo sequences of allele
A and B, respectively. Next, the nearest neighbor dis-
tance for an allele is defined as the minimal distance to
any allele included in the training data set.

Results
Pan-specific versus allele-specific predictions
In contrast to allele-specific MHC class II prediction
methods, the pan-specific method outlined here is pro-
posed to benefit from information even from alleles cov-
ered by limited binding data. To demonstrate this, we in
table 4 show the performance values obtained by the new
NetMHCIIpan-2.0 and older NN-align method using 5
fold cross-validation. The NN-align method was trained
in an allele-specific manner as described in by Nielsen
et al. [5]. As a reference, the performance of the
TEPITOPE method is also included in the benchmark
study. The predictive performance for each HLA allele
was measured in terms of the area under the ROC curve
(AUC) value and Pearson’s correlation coefficient (PCC).
From the results in table 4, it is apparent that the

NetMHCIIpan-2.0 method significantly outperforms
both the NN-align and TEPITOPE methods (p < 0.01,
binomial test). For 9 of the 9 alleles covered by less than
400 peptide-binding measurements, we find that
NetMHCIIpan-2.0 outperforms NN-align. These results
strongly indicate that NetMHCIIpan-2.0 is capable of
benefiting from information from the multiple alleles
included in the benchmark to boost the predictive per-
formance and deliver accurate predictions also for alleles
covered by limited binding data. Only for 3 out of the
24 alleles does the NN-align perform better than
NetMHCIIpan-2.0. These alleles are all covered by more
than 1500 peptide-binding measurements. This hence
confirms the results obtained earlier for MHC class I
binding predictions namely that pan-specific predictions
are particularly beneficial when binding data are scarce
or absent [28]. What is also clear from the data in table
4 is that the NetMHCIIpan-2.0 method is capable of
maintaining its high performance also for alleles not
characterized by the TEPITIOPE method.

NetMHCpanII-1.0 versus NetMHCpanII-2.0
In the pan-specific training algorithm implemented in
the NetMHCIIpan-2.0 method, alignment and binding
affinity prediction is performed simultaneously. To
further demonstrate that this approach does indeed out-
perform the NetMHCIIpan-1.0 method where the two
steps were decoupled, we performed a series of LOO
experiments as described in Materials and methods. In
these experiments, peptide-binding data for a given
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allele were excluded from the training of the prediction
method, and upon training, the predictive performance
was evaluated using the peptide binding affinity values
for the HLA-DR molecule in question. This experiment
thus simulated prediction of binding to hitherto un-
characterized HLA-DR molecules. The first LOO experi-
ment was conducted based on the binding data using in
the original NetMHCIIpan paper covering 14 HLA-DR
alleles [29]. Details of this analysis are shown in table 5.
The average PCC and AUC values for the 14 LOO

experiments were 0.541, 0.768 and 0.606, 0.799 for the
NetMHCIIpan-1.0 and NetMHCIIpan-2.0 methods,
respectively. This difference is statistically highly signifi-
cant (p < 0.01, binomial test). Only for one allele
(DRB1*1302) did the NetMHCIIpan-1.0 method achieve
a higher performance than NetMHCIIpan-2.0. These
results thus demonstrate, that the training algorithm
implemented in the NetMHCIIpan-2.0 method leads to
significantly improved prediction accuracy compared to
the algorithm employed in the NetMHCIIpan-1.0
method.
Next, we investigated to what extent expanding the

peptide data set with broader allelic coverage and more
binding data would lead to an improved predictive per-
formance. To do this, we conducted a second series of
LOO experiments comparing the LOO predictive per-
formance of the NetMHCIIpan-2.0 method when trained
on the old data set covering 14 HLA-DR allele (termed
OLD) to its performance when trained on the extended
data set covering 24 HLA-DR alleles (termed NEW).
The peptide overlap in both datasets is high, and many
peptides have been measured for binding affinities

Table 4 Five-fold cross-validation performance of the
pan-specific NetMHCIIpan-2.0 method compared to the
allele-specific NN-align and TEPITOPE methods on the
quantitative benchmark data set

NN-align NetMHCIIpan-
2.0

TEPITOPE

Allele # # bind PCC AUC PCC AUC AUC

DRB1*0101 7685 4382 0.675 0.825 0.711 0.846 0.727

DRB1*0301 2505 649 0.690 0.855 0.709 0.864 0.718

DRB1*0302 148 44 0.272 0.659 0.525 0.757

DRB1*0401 3116 1039 0.643 0.833 0.670 0.848 0.762

DRB1*0404 577 336 0.565 0.766 0.630 0.818 0.747

DRB1*0405 1582 627 0.710 0.869 0.698 0.858 0.780

DRB1*0701 1745 849 0.718 0.855 0.740 0.864 0.777

DRB1*0802 1520 431 0.518 0.778 0.526 0.780 0.645

DRB1*0806 118 91 0.744 0.902 0.796 0.924 0.884

DRB1*0813 1370 455 0.729 0.878 0.746 0.885 0.750

DRB1*0819 116 54 0.370 0.706 0.608 0.808

DRB1*0901 1520 622 0.597 0.810 0.634 0.818

DRB1*1101 1794 778 0.756 0.873 0.777 0.883 0.793

DRB1*1201 117 81 0.699 0.860 0.764 0.892

DRB1*1202 117 79 0.695 0.866 0.769 0.900

DRB1*1302 1580 493 0.630 0.819 0.634 0.825 0.596

DRB1*1402 118 78 0.623 0.825 0.694 0.860

DRB1*1404 30 16 0.466 0.661 0.613 0.737

DRB1*1412 116 63 0.680 0.857 0.757 0.894

DRB1*1501 1769 709 0.641 0.815 0.653 0.819 0.731

DRB3*0101 1501 281 0.673 0.843 0.690 0.850

DRB3*0301 160 70 0.604 0.826 0.736 0.853

DRB4*0101 1521 485 0.701 0.854 0.675 0.837

DRB5*0101 3106 1280 0.735 0.865 0.765 0.882 0.760

Ave 33931 13992 0.631 0.821 0.688 0.846

Ave* 0.673 0.841 0.697 0.854 0.744

Ave** 0.580 0.797 0.679 0.837

# gives the number of peptide binding data for each allele, #bind gives the
number of peptides with a binding affinity stronger than 500 nM. NN-align is
the method described by Nielsen et al. [5], NetMHCIIpan-2.0 is the method
described here, and TEPITOPE is the method described by Sturniolo et al. [1].
Ave gives the per allele average, Ave* gives the per allele average of the 13
alleles characterized by the TEPITOPE method, and Ave** gives the per allele
average of the 11 allele not characterized by the TEPITOPE method. In bold is
highlighted the best performing method for each of the 24 alleles. AUC
values were calculated using a binding threshold of 500 nM. Only AUC values
are included for the TEPITOPE method since prediction values for this method
are not linearly related to the binding affinity.

Table 5 LOO benchmark comparison of the pan-specific
NetMHCIIpan-2.0 and the NetMHCIIpan-1.0 methods

NetMHCIIpan-
1.0

NetMHCIIpan-
2.0

TEPITOPE

Allele # #bind PCC AUC PCC AUC AUC

DRB1*0101 5166 3510 0.571 0.778 0.627 0.794 0.720

DRB1*0301 1020 277 0.465 0.746 0.560 0.792 0.664

DRB1*0401 1024 510 0.591 0.775 0.652 0.802 0.716

DRB1*0404 663 386 0.693 0.852 0.731 0.869 0.770

DRB1*0405 630 425 0.594 0.808 0.626 0.823 0.759

DRB1*0701 853 498 0.655 0.825 0.753 0.886 0.761

DRB1*0802 420 148 0.637 0.841 0.700 0.869 0.766

DRB1*0901 530 254 0.406 0.653 0.474 0.684

DRB1*1101 950 429 0.580 0.799 0.721 0.875 0.721

DRB1*1302 498 199 0.323 0.658 0.337 0.648 0.652

DRB1*1501 934 450 0.533 0.738 0.598 0.769 0.686

DRB3*0101 549 75 0.449 0.716 0.474 0.733

DRB4*0101 446 200 0.448 0.724 0.515 0.762

DRB5*0101 924 478 0.627 0.831 0.722 0.879 0.686

Ave 0.541 0.768 0.606 0.799

Ave* 0.570 0.786 0.639 0.819 0.718

The two methods are compared in a leave-one-out experiment on the
peptide binding data described in the original NetMHCIIpan publication [29].

# is the number of peptide binding data for each allele, #bind is the number
of peptides with a binding affinity stronger than 500 nM. NetMHCIIpan-1.0 is
the method by Nielsen et al. [29], NetMHCIIpan-2.0 is the method described
here, and TEPITOPE is the method by Sturniolo et al. [1]. Prediction values for
NetMHCIIpan-1.0 were taken from [29]. Ave gives the per allele average, Ave*
gives the per allele average of the 11 alleles characterized by the TEPITOPE
method. In bold is highlighted the best performing method for each of the 14
alleles. AUC values were calculated using a binding threshold of 500 nM. Only
AUC values are included for the TEPITOPE method since prediction values for
this method are not linearly related to the binding affinity.
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against multiple alleles. This peptide overlap can impose
a strongly bias in the benchmark evaluation [20], and to
lower this bias all peptides used to characterize a given
allele were excluded from the training of the prediction
method in the second LOO benchmark (for details see
Materials and methods). Both the OLD and NEW meth-
ods were evaluated using the peptide binding data in the
new peptide data set. The results of the extended LOO
calculation are shown in table 6.
The results presented in table 6 clearly demonstrate

that the enrichment of novel peptide binding data with
a broader allelic coverage leads to an improved predic-
tive performance of the pan-specific prediction method.
We can quantify to what degree an allele will benefit

from other alleles being present in the training data by
calculating its distance to the nearest neighbor in the
training data (see Materials and methods). Earlier work
has demonstrated that this distance measure correlates
strongly with the performance of pan-specific prediction
methods [20,21]. For 10 of the 11 alleles, where includ-
ing the novel 10 alleles has decreased the nearest neigh-
bor distance, the NEW method has a higher AUC
predictive performance compared to the OLD. For the
remaining 13 alleles, the 10 novel alleles have not
altered the nearest neighbor distance and the perfor-
mance of the two methods is similar. This strongly
underlines the essential prerequisite for accurate pan-
specific prediction methods demonstrated earlier for

Table 6 The extended LOO benchmark

OLD NEW TEPITOPE

Allele # #bind PCC AUC NN dist PCC AUC NN dist AUC

DRB1*0101 7685 4382 0.567 0.767 DRB1*0401 0.352 0.583 0.786 DRB1*1402 0.322 0.727

DRB1*0301 2505 649 0.433 0.727 DRB3*0101 0.277 0.499 0.765 DRB1*0302 0.156 0.718

DRB1*0401 3116 1039 0.563 0.787 DRB1*0405 0.066 0.594 0.804 DRB1*0405 0.066 0.762

DRB1*0404 577 336 0.592 0.806 DRB1*0401 0.091 0.595 0.804 DRB1*0401 0.091 0.747

DRB1*0405 1582 627 0.638 0.826 DRB1*0401 0.066 0.633 0.833 DRB1*0401 0.066

DRB1*0701 1745 849 0.659 0.831 DRB1*0901 0.504 0.648 0.826 DRB1*0901 0.504 0.780

DRB1*0802 1520 431 0.380 0.710 DRB1*1101 0.111 0.369 0.692 DRB1*0813 0.041 0.777

DRB1*0901 1520 622 0.539 0.757 DRB5*0101 0.431 0.517 0.762 DRB5*0101 0.431 0.645

DRB1*1101 1794 778 0.602 0.799 DRB1*1302 0.084 0.460 0.741 DRB1*1302 0.084

DRB1*1302 1580 493 0.338 0.691 DRB1*1101 0.084 0.323 0.671 DRB1*1101 0.084 0.793

DRB1*1501 1769 709 0.568 0.775 DRB1*0404 0.295 0.525 0.756 DRB1*0404 0.295 0.596

DRB3*0101 1501 281 0.339 0.672 DRB1*0301 0.277 0.374 0.702 DRB3*0301 0.223 0.731

DRB4*0101 1521 485 0.506 0.753 DRB1*0404 0.397 0.518 0.766 DRB1*0404 0.397

DRB5*0101 3106 1280 0.547 0.781 DRB1*1101 0.295 0.608 0.813 DRB1*1101 0.295

DRB1*0302 148 44 0.396 0.729 DRB1*0301 0.156 0.542 0.759 DRB1*1402 0.119 0.760

DRB1*0806 118 91 0.670 0.886 DRB1*0802 0.107 0.703 0.902 DRB1*0802 0.107

DRB1*0813 1370 455 0.505 0.735 DRB1*0802 0.041 0.340 0.666 DRB1*0802 0.041 0.884

DRB1*0819 116 54 0.567 0.789 DRB1*0802 0.107 0.566 0.813 DRB1*0813 0.083 0.750

DRB1*1201 117 81 0.626 0.786 DRB1*1101 0.445 0.609 0.798 DRB1*1202 0.045

DRB1*1202 117 79 0.623 0.814 DRB1*1101 0.399 0.713 0.879 DRB1*1201 0.045

DRB1*1402 118 78 0.570 0.793 DRB1*1101 0.148 0.659 0.846 DRB1*0302 0.119

DRB1*1404 30 16 0.393 0.594 DRB1*0404 0.311 0.646 0.679 DRB1*0806 0.240

DRB1*1412 116 63 0.640 0.845 DRB1*0802 0.180 0.738 0.897 DRB1*0813 0.139

DRB3*0301 160 70 0.395 0.738 DRB3*0101 0.223 0.545 0.765 DRB3*0101 0.223

Ave 0.527 0.766 0.554 0.780

Ave* 0.543 0.779 0.529 0.774 0.744

Ave** 0.539 0.771 0.606 0.800

The predictive performance of the pan-specific NN-align method when trained in a leave-one-out experiment and evaluated on the 24 alleles included in the
new peptide binding data set.

# is the number of peptide binding data for each allele, #bind is the number of peptides with a binding affinity stronger than 500 nM. OLD is the method
described here trained on the old peptide data set, NEW is the method described here trained on the new data set, and TEPITOPE is the method by Sturniolo
et al. [1]. NN is the nearest neighbor as defined by the pseudo sequence distance, and dist is the nearest neighbor distance calculated as described in Materials
and methods. Ave is the per allele average, Ave* is the per allele average of the 13 alleles characterized by the TEPITOPE method, and Ave** is the per-allele
average performance of the 10 alleles included in the new peptide binding data set. In bold is highlighted the best performing method for each of the 24
alleles. AUC values were calculated using a binding threshold of 500 nM. Only AUC values are included for the TEPITOPE method since prediction values for this
method are not linearly related to the binding affinity. The double line separates the 10 novel alleles from the original 14 alleles included in the development of
the NetMHCIIpan-1.0 method.
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MHC class I, namely a population of the close neighbor-
hood of un-characterized MHC molecules [20,28].

Lin benchmark
The Lin benchmark consists of binding affinities of 103
overlapping peptides to seven common HLA-DR mole-
cules (DRB1*0101, 0301, 0401, 0701, 1101, 1301, and
1501). The results of this benchmark are shown in
table 7.
The results in table 7 clearly show that NetMHCIIpan-

2.0 outperforms both the earlier NetMHCIIpan-1.0
method, as well as the other methods included in the
benchmark.

Identifying MHC class II ligands and T cell epitopes
The performance of the NetMHCIIpan-2.0 method on
the large set of SYFPEITHI ligand and IEDB T cell epi-
tope data was next investigated. The benchmark was
performed as described by Nielsen et al. [29]. The ligand
source protein was split into overlapping peptides of the
length of the ligand/epitope. All peptides except the
annotated HLA ligand/epitope were taken as negatives.
This is a very stringent assumption since suboptimal
peptides sharing the ligand binding-core are counted as
negatives even though they could be presented on the
HLA molecule. Thus, this setup is likely to underesti-
mate the predictive performance, but the effect should
be equal for all methods compared in the benchmark.
For each protein-HLA ligand/epitope pair, the predictive
performance was estimated as the AUC value. Table 8
gives a summary of the performance of this benchmark
calculation (details can be found in Additional file 1:
Table S1).
Both the SYFPEITI ligand and IEDB epitope bench-

marks show that the NetMHCIIpan-2.0 method per-
forms better than the original NetMHCIIpan-1.0
method. On the per ligand basis, the NetMHCIIpan-2.0
method significantly outperforms NetMHCIIpan-1.0 for
both data sets (p < 0.01, binomial test excluding ties). In

terms of the per-allele performance, the NetMHCIIpan-
2.0 also achieved a higher performance than the
NetMHCIIpan-1.0 method. This difference is however
not statistically significant (p > 0.1 binomial test, in both
cases). For the alleles characterized by the TEPITOPE
method, the TEPITOPE method achieves the highest
performance of the three methods for both data sets.
This difference, however, is not statistically significant
(p > 0.5 in all cases, binomial test). For alleles not char-
acterized by TEPITOPE, the NetMHCIIpan-2.0 method
significantly outperform NetMHCIIpan-1.0 for the IEDB
data set (p < 0.01, binomial test), whereas the two meth-
ods for this set of alleles achieve a similar predictive
performance when evaluated on the SYFPEITHI dataset.
We next investigated how the predictive performance

of the NetMHCIIpan-2.0 method depended on the length
of the ligand/epitope under investigation. Figure 1 shows

Table 7 Predictive performance in terms of the AUC on the Lin benchmark data set

Allele NetMHCIIpan-2.0 NetMHCIIpan-1.0 TEPITOPE Multipred_SVM SVMHC

DRB1*0101 0.883 0.847 0.919 0.860 0.860

DRB1*0301 0.716 0.668 0.718 0.800 0.690

DRB1*0401 0.846 0.815 0.745 0.650 0.750

DRB1*0701 0.878 0.852 0.715 0.700 0.740

DRB1*1101 0.884 0.821 0.824 0.780 0.830

DRB1*1301 0.729 0.715 0.718 0.630 0.720

DRB1*1501 0.838 0.791 0.737 0.620 0.660

Ave 0.825 0.787 0.768 0.720 0.750

The AUC was calculated using the following binding affinity threshold values for each of the 7 alleles: DRB1*0101, 0401, 0701, and 1501 threshold = 100 nM,
DRB1*0301, 1101, and 1301, threshold = 1000 nM. The performance values for Multipred_SVM and SVMHC were taken from Nielsen et al. [5]. TEPITOPE is the
method described by Sturniolo et al. [1]. NetMHCIIpan-2.0 is the pan-specific method described here, and NetMHCIIpan-1.0 is the pan-specific method by Nielsen
et al. [29]. For each allele, the best performing method is highlighted in bold.

Table 8 Endogenous HLA-DR ligand benchmark

SYF # NetMHCIIpan-
1.0

NetMHCIIpan-
2.0

TEPITOPE

Ave per ligand 1164 0.800 0.829

Ave per allele 28 0.788 0.797

In TEPITOPE 17 0.768 0.786 0.799

!In TEPITOPE 11 0.819 0.814

IEDB # NetMHCIIpan-
1.0

NetMHCIIpan-
2.0

TEPITOPE

Ave per
epitope

1325 0.729 0.751

Ave per allele 42 0.759 0.781

In TEPITOPE 20 0.745 0.747 0.755

!In TEPITOPE 22 0.772 0.812

NetMHCIIpan-1.0 is the method described by Nielsen et al. [29], NetMHCIIpan-
2.0 is the pan-specific method described here, and TEPITOPE is the method
described by Sturniolo et al. [1]. Ave per ligand/epitope gives the average
AUC over the 1164/1325 ligands/epitopes in the benchmark data set. Ave per
allele gives the average over the per allele averaged AUC values. In TEPITOPE
gives the per allele average of the subset of alleles characterized by the
TEPITOPE method, and !In TEPITOPE give the per-allele average performance
of the alleles not characterized by the TEPITOPE method. AUC values were
calculated as described in the text. For each benchmark subset, the best
performing method is highlighted in bold.

Nielsen et al. Immunome Research 2010, 6:9
http://www.immunome-research.com/content/6/1/9

Page 7 of 10



a histograms of the average AUC values for the NetMH-
CIIpan-2.0 (named 2.0) and NetMHCIIpan-1.0 (named
1.0) methods as a function of the ligand/epitope length
for the SYFPEITHI and IEDB data sets, respectively.
Figure 1 clearly demonstrates that the NetMHCIIpan-

2.0 method, for the majority of peptide lengths, outper-
forms the NetMHCIIpan-1.0 method. Only for very
short peptides (length equal to 9 for the SYFPEITHI
data set and length equal to 10 for the IEDB data set)
does the NetMHCIIpan-1.0 achieve the highest AUC
value. What is also clear for the IEDB data set is that
both methods achieve their highest predictive perfor-
mance for peptides of length less than 15 amino acids.
The average AUC for epitopes with a length less then
15 amino acids is 0.823. This values is significantly
higher than the average AUC for epitopes with a length
greater than 15 (0.704, p < 0.005, t-test). This difference
is not observed for the SYFPEITHI ligand data set,
hence strongly suggesting that the longer epitopes in the
IEDB data set are not “true” epitopes in the sense of
defining the minimal HLA restriction element.

Discussion
Development of accurate prediction algorithms for
MHC class II binding is complicated by the fact that the
MHC class II molecule has an open binding cleft, and
that peptide binders are accommodated in the binding
cleft in a binding register that a priori is unknown.
Training of methods for prediction of peptide-MHC
class II binding hence rely on either a two step

procedure where first the binding register is identified
and next the aligned peptides are used to train the bind-
ing prediction algorithm or a procedure where these two
steps are integrated and performed simultaneously.
We have earlier shown that developing allele-specific

prediction methods for MHC class II binding using the
latter approach leads to higher prediction accuracy [3,5].
We have further for MHC class I demonstrated that
training the predictors in a pan-specific manner, incor-
porating all binding data across multiple MHC molecules
simultaneously in the training, leads to a significant boost
in the predictive performance in particular for MHC
molecules characterized by few or no binding data
[20-22,28].
Based on these findings, we have in this paper devel-

oped a pan-specific method for prediction of MHC class
II binding affinities. The method was trained on binding
data covering multiple MHC class II simultaneously,
and does not require any prior alignment or binding
register-identification. The method was evaluated in sev-
eral large-scale benchmarks and shown consistently to
outperform all other methods investigated, including
state-of the-art allele-specific (NN-align [5]) and pan-
specific (NetMHCIIpan [29]) methods, as well as and
the well-known TEPITOPE method [1]. In particular, it
was demonstrated that the proposed method due to its
pan-specific nature could boost performance for alleles
characterized by limited binding data, and in such cases
significantly out-perform allele specific methods. The
method thus demonstrates great potential for efficient

Figure 1 Histogram of the predictive performance measured in terms of the AUC value for the ligands/epitopes in the SYFPEITHI/IEDB
dataset as a function of the peptide length. 2.0 refers to the pan-specific method developed here, and 1.0 refers to the NetMHCIIpan-1.0
method. SYF refers to the SYFPEITHI ligand data set, and IEDB refers to the IEDB T cell epitope data set.
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boosting of the accuracy of MHC class II binding pre-
diction, as accurate predictions can be achieved for
novel alleles at a highly reduced experimental cost, and
pan-specific binding predictions can be obtained for all
alleles with known protein sequence by a method
trained using data with limited allelic coverage.
When benchmarked on large data sets of know HLA-

DR ligands and epitopes, the method was shown to have
a predictive performance comparable to that of TEPI-
TOPE for alleles covered by this method, and maybe
more important maintain this high performance also for
alleles not described by the TEPITOPE method.
For MHC class I, we have earlier demonstrated that a

pan-specific predictor can benefit from being trained on
cross-loci (and cross-species) peptide binding data [20].
The development of a cross-loci model for HLA class II
is complicated by the fact that the HLA-DRA molecule
is close to monomorphic (only two allelic version exists).
This is in contrast to HLA-DP and HLA-DQ where
both the a and b chains are highly polymorphic. More-
over, the structures of the HLA molecules are less con-
served across the three loci for class II compared to
class I, and finally very limited peptide binding data
have been generated characterizing the different HLA-
DP and DQ molecules. As of September 2010, only five
HLA-DP and six HLA-DQ alleles have been character-
ized in the IEDB database with more than 200 peptide-
binding measurements [31]. Nonetheless, large amounts
of peptide binding data for the HLA-DP and HLA-DQ
loci will most likely become available in the near future
providing a broader allelic coverage, and future evalua-
tions will demonstrate if also MHC class II binding pre-
diction algorithms using training algorithms like the one
outlined in this work, will benefit from pan-specific
training across the different loci.
The method and benchmark data sets described in

this work are available at http://www.cbs.dtu.dk/ser-
vices/NetMHCIIpan-2.0 (method) and http://www.cbs.
dtu.dk/suppl/immunology/NetMHCIIpan-2.0 (bench-
mark data).

Additional material

Additional file 1: HLA-DR ligand and T cell epitope benchmark. The
per-allele AUC performance values of the NetMHCIIpan-1.0, NetMHCIIpan-
2.0, and TEPITOPE methods on the HLA-DR ligands and T cell epitope
benchmark data sets.
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