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Abstract
Infectious diseases cause over 300 million illnesses and more than 5 million deaths each year worldwide. 

Understanding how components of the host immune system function to control disease-causing pathogens is 
critically important to develop strategies for preventing and controlling these diseases. With the discovery of innate 
immune receptors, we are beginning to appreciate the important role of innate immunity in the defense against 
infectious diseases. NK cells are a critical cell population in innate immunity, providing first line of defense against 
a variety of pathogens. NK cells mediate protection by direct killing of infected target cells and producing cytokines 
(mainly IFN-γ and TNF) that shape innate and adaptive immune responses. Recent studies have focused on the 
mechanisms by which NK cells recognize and respond to viruses, bacteria and parasites, and also the role of NK 
cells in modulating adaptive immune responses. 
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Introduction
Natural killer (NK) cells are an important component of innate 

immunity, and serve as a crucial first line of defense against a diverse 
range of pathogens, such as viruses, bacteria and parasites [1-6]. Derived 
from the bone marrow, NK cells have wide tissue distribution, with high 
frequencies of mature NK cells in lung, liver, blood and spleen. They 
are generally found at low frequencies in lymph nodes and mostly with 
immature phenotype, however, following local stimulation, mature 
NK cells can accumulate in these sites [7,8]. NK cell responses are 
regulated by a balance of activating and inhibitory signals transmitted 
by cell surface receptors. Unlike B- and T-cell antigen receptors, 
NK cell receptors are encoded in the germ-line and do not undergo 
somatic recombination. Extensive work has been done to delineate the 
responses and functions of NK cells during pathogen infections. The 
best knowledge of NK cell function in the control of viral infections in 
vivo came from studies of murine cytomegalovirus (MCMV) infection. 
In the resistant C57BL/6 (B6) mice, NK cell activating receptor Ly49H 
recognizes m157-a viral encoded protein expressed on infected cell 
surface, which triggers the cytolytic function of NK cells [9,10]. The 
exact molecular mechanisms of NK cells during other viral infections 
are less clear. Further, much less is known about the responses and 
functions of NK cells during bacterial and parasitic infections. 
Moreover, NK cells are a heterogeneous population composed of cells 
that express overlapping subsets of activating and inhibitory receptors, 
studies have shown that the effector mechanisms that NK cells use 
may differ in different organs during pathogen infections [11-13]. 
Furthermore, accumulating evidences show that NK cells are a crucial 
link between innate and adaptive immune system via cytokine release 
and cell-cell interaction, which participate in the shaping of adaptive 
immune response [3,7,14]. This review highlights recent studies on 
the role of NK cells in the control of viruses, bacteria and parasites, 
and underscores the important role of NK cells playing in the defense 
against infectious diseases. 

NK cell Recognition and Activation
NK cell function is regulated by inhibitory and activating receptors 

[15,16]. NK cell inhibitory receptors recognize a wide variety of self-
molecules. Upon ligand binding, NK receptors having immunoreceptor 
tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic domain 
prevent NK cell effector function. The Ly49 inhibitory receptors in 
rodents and the inhibitory killer cell immunologobulin-like receptors 
(KIR) in primates recognize the MHC class I molecules, the CD94-
NKG2A heterodimers in both rodents and primates recognize HLA-E 
(Qa-1b in mice), a nonclassical MHC class I molecule which binds 
peptides derived from leader segments of other class I proteins [17,18].

Activating receptors on NK cells can be broadly divided into 
those that recognize MHC-class-I-like ligands (human KIRs, murine 
Ly49 families, and CD94-NKG2s) and those that do not (NKG2D, 
2B4, NKp30, NKp44 and NKp46) [19]. The activating receptors of the 
human KIR and murine Ly49 families are highly homologous to their 
inhibitory counterparts but have truncated cytoplasmic domains lacking 
ITIMs. These molecules associate with immunoreceptor tyrosine-based 
activation motif (ITAM)-bearing adapter molecules such as DAP12 and 
FεRIγ [20,21]. Other activating receptors, including NKG2D, associate 
with DAP10, an adapter protein containing an activating motif YXXM 
[22]. In rodent, an NKG2D isoform generated by alternative splicing 
can also associate with the DAP12 adapter protein in activated mouse 
NK cells [23,24].

The inhibitory NK receptors (mainly KIR, Ly49, CD94/NKG2A) 
recognizing self-MHC class I play a predominant role in NK cell 
tolerance to self. The ”missing self hypothesis” states that NK cells 
scrutinize target cell MHC expression and only respond to target 
cells lacking the expression of MHC I [25]. The inhibitory receptor/
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MHC I interaction allows them to gain full functionality by directly 
activating or modifying other signals for developing functional NK 
cells. Recent works support that NK cell education operates as a 
rheostat, tuned by a quantitative influence on individual NK cells by 
the MHC class I alleles present in vivo [26]. The inhibitory input that 
an individual NK cell receives during education quantitatively tunes the 
responsiveness of individual NK cells. The higher the inhibitory input 
during education, the more likely it is that it will pass the threshold 
to respond (i.e. degranulation and IFN-γ expression) under given 
conditions of stimulation [26]. The role of activating receptors in 
human NK cell education has also been discovered recently. Fauriat 
C et al. found that NK cells expressing KIR2DS1 are hyporesponsive 
against cellular targets from donors homozygous for HLA-C2, the 
ligand of KIR2DS1. These results suggest that the education of human 
NK cells via activating receptors is a mechanism to secure tolerance that 
complements education via inhibitory receptors [20]. 

The effector function of NK cells is regulated by the signaling balance 
of activating and inhibitory receptors. When activating receptor/ligand 
interactions predominate over inhibitory receptor/ligand signals, NK 
cells are activated and target cells would be lysed. On the other hand, 
NK cells function is inhibited when activating receptor/ligand signals 
are weaker than inhibitory receptor/ligand signals [27-29]. 

NK cell effector functions are stimulated through direct contact 
with activated dendritic cells (DCs) in vivo [30]. In fact, DC/NK-cell 
interaction is bi-directional and complex, as it could result not only NK 
cell activation but also in DC maturation or apoptosis, depending on 
the activation status of both players [31]. Upon stimulation by various 
pathogens or by TLR ligands, DCs secrete several cytokines such as IL-
12, IL-18, IL-15 and type I interferons (IFN-I) which trigger NK cell 
effector function. DC-derived IL-12 stimulates IFN-γ production by 
NK cells in different systems [31-33]. Il-18 is known to synergize with 
IL-12 to induce IFN-γ production by NK cells [31]. DCs use IL-15Rα 
to present IL-15 in trans to NK cells, which is important to trigger NK 
cell proliferation [34-36]. Lastly, NK cell activity is controlled by IFN-I 
at various levels. NK cell function cannot be elicited in IFNAR-deficient 
mice after viral or bacterial infections or injection of TLR ligands [36,37]. 
IFN-I can be produced by all DC subsets. More recently, studies from 
Diefenbach’s group have shown that system failure of mononuclear 
phagocytes such as DCs to produce IFN-I in response to microbial 
stimulation in germ-free mice results in defective NK cell responses 
[38]. In addition, optimal NK cell activation by DCs also requires direct 
cell-cell contacts [30,32]. On the other hand, activated NK cells can 
induce DC maturation, while immature DCs are susceptible to NK 
cell mediated cytolysis while mature DCs are protected [31,39]. The 
NK cell activating receptor NKp30 appears to play a central role in DC 
maturation or apoptosis induced by NK cells [33,40,41].

NK cells and Viral Infection 
NK cells play an important role in the control of some, but not 

all, mouse and human viruses. NK cells can respond to infection 
either directly or indirectly. They respond directly by recognizing 
virus-infected cells, and indirectly by interacting with DCs, which 
express Toll-like receptors (TLRs) and secrete cytokines in response to 
encounter with pathogens. NK cells use two main effector mechanisms 
to control viral infections: the secretion of IFN-γ and direct lysis of 
infected cells through the granule-exocytosis pathway. 

NK cell Control of MCMV Infection
NK cells are critical for control of the mouse pathogen MCMV 

[42-44]. In resistant B6 mice, NK cells recognize MCMV-infected cells 
mainly by the activating receptor Ly49H [16]. MCMV encodes an MHC 
class I-like glycoprotein m157, which is expressed on the surface of 
infected cells and is directly ligated by Ly49H [9,10]. Upon recognition 
of MCMV-infected cells via Ly49H, NK cells secrete cytokines, such as 
IFN-γ and TNF-α, and kill infected cells by the release of lytic granules 
that contain perforin and granzymes. Moreover, during a later phase of 
infection, Ly49H+ NK cells selectively proliferate, expand from 50% of 
all NK cells to 90% of all NK cells [45]. Mutant virus with m157 deletion 
abolishes Ly49H+ NK cell activation after viral infection, gains virulence 
in B6 mice [46]. Further, Ly49H deficient mice in B6 background are 
susceptible to MCMV infection, while remain resistant to Leishmania 
major and ectromelia virus infection [47]. Mouse strains are either 
resistant or susceptible to MCMV infection. BALB/c mice and FVB/N 
mice that do not express Ly49H on NK cell surface are susceptible to 
MCMV infection. Ly49HB6 bacterial artificial chromosome transgenes 
transfer virus resistance in BALB/c and FVB/N mice, and the resistance 
is correlated with the protein expression level of Ly49H on NK cells 
[48]. These studies demonstrate Ly49H as a pivotal factor in resistance 
to MCMV. 

New Zealand White (NZW) mice are resistant to MCMV infection, 
and the resistance is also dependent on NK cells as NK cell depletion 
results in increased virus titers in multiple organs [49]. New Zealand 

NZW and NZB NK cells display comparable levels of Ly49-related 
(anti-Ly49H mAb 3D10+) receptors. However, the NK cell mediated-
resistance in NZW mice is independent of Ly49H and m157 because 
NZW NK cells Ly49H and other receptors do not bind MCMV-
encoded m157. Backcross NZW mice with MCMV-sensitive NZB 
mouse strains show resistance is mediated by multiple gene products, 
which remain to be identified [49]. These results indicate that NK cell 
control of viral infection in NZW genetic system differ from Ly49H-
dependent, dominant control previously characterized for the B6 and 
BALB/c genetic system. 

 

Another MCMV-susceptible mouse strain 129/J mice lack Ly49H 
but express two highly related molecules: an inhibitory Ly49I receptor 
and an activating Ly49U [51]. MCMV m157 binds to the inhibitory 
Ly49I receptor, preventing NK cell control of MCMV [9]. MCMV 
encoded m157 may have evolved to provide a selective advantage for 
the virus by engaging an inhibitory NK cell receptor to prevent NK cell 
activation. It is intriguing to note that the Ly49I alleles from B6 and 
129/J mice both bind selectively to H-2Kd, whereas the Ly49I receptor in 
B6 mice fails to bind m157. Meanwhile, the activating Ly49H receptor 
does not recognize any known H-2 ligand, but binds to m157 with high 
affinity. The observations that m157 binds to both an inhibitory and 
a highly homologous activating Ly49 receptor suggest the possibility 
that Ly49H evolved from the inhibitory receptor as a consequence of 
selection by the pathogen [9,52]. 

Another NK cell activating receptor NKG2D also plays an 
important role in the NK cell mediated-protection during MCMV 

Black (NZB) mice are susceptible to MCMV infection even though 

NK cells are also required for the resistance to MCMV in Ma/
My mice, Ma/My mice lack the Ly49H receptor, another activating 
receptor Ly49P encoded on the NK cells in Ma/My mice recognizes 
the MHC class I molecule H2-Dk in complex with the viral protein 
m04 [50]. Different from Ly49H in B6 mice that directly recognize 
m157 protein encoded by MCMV, Ly49P recognizes MCMV-infected 
cells requiring H2-Dk peptide-binding platform. These findings reveal 
the importance of activating NK cell receptor-MHC class I-peptide 
complex interactions in the recognition of viral infections. 
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infection. NKG2D interacts with three different cellular ligands: the 
retinoic acid early inducible (RAE)-1 family of proteins [53]; the minor 
histocompatibility antigen H60 [54,55], and the murine UL16-binding 
protein-like transcript (MULT)-1 glycoprotein [56,57], all of which are 
regulated by MCMV. The MCMV m145-encoded glocoprotein regulates 
MULT-1 by preventing plasma membrane residence of MULT-1 [58]. 
The MCMV m155 protein specifically down-regulates H60 without 
affecting expression of RAE-1 and MULT-1, an MCMV mutant virus 
lacking m155 is severely attenuated in BALB/c mice [59]. The MCMV 
m152-encoded gp40 glycoprotein specifically down-regulates the cell 
surface expression of all RAE-1 proteins, an m152 deletion mutant 
virus is less virulent in vivo compared with the wild-type virus [60,61]. 

The ability to generate antigen-specific memory responses 
is classically regarded as a hallmark of the cells of the adaptive 
immune system. However, recent studies have shown the NK cells 
also have adaptive immune features–can be long-lived and generate 
enhanced responses on secondary encounter with antigen [62-66]. 
During MCMV infection in B6 mice, Ly49H+ NK cells preferentially 
proliferate. Following viral clearance, those effector Ly49H+ NK cells 
undergo a contraction phase resulting in a long-lived memory NK cell 
pool. These memory NK cells express higher level of Ly49H, KLRG1, 
CD43 and Ly6C, and a decreased expression of CD27 which indicate 
that they are more mature than naïve NK cells. More importantly, when 
adoptively transferred into MCMV-susceptible newborn mice, the 
memory NK cells significantly protect the newborn mice compared 
with an equivalent number of naïve NK cells [66]. The memory NK 
cells generated during MCMV infection clearly demonstrate protective 
properties which can be parallel with that of the memory CD8 T cells. 
Understanding the mechanisms and the properties of NK cell memory 
during viral infections and vaccinations will have major implications 
on our approach to vaccination strategies for the generation of 
immunological memory against infectious pathogens. 

NK cell Control of Mousepox
Mousepox is another viral disease where an essential role of NK 

cells in the protection is well established. Mousepox is caused by the 
mouse Orthopoxvirus (OPV) ectromelia virus (ECTV). Mouse strains 
can be generally divided into two groups following ECTV infection. 
Resistant mouse strains such as B6 and 129/J; susceptible mouse 
strains including DBA/2, DBA/2J, A/J, and BALB/c. To understand the 
genetic mechanisms involved in mousepox resistance, Brownstein et al. 
infected a panel of B6 Χ DBA2/J recombinant inbred strains of mice 
and mapped four genes involved in the B6 mice resistance to mousepox 
(Rmp1–Rmp4) [67]. Rmp1 resides in the natural killer (NK) complex 
(NKC) on chromosome 6 [68]. In recent years, the mechanisms of NK 
cell-mediated resistance to mousepox are beginning to be uncovered. 
In resistant B6 mice, the resistance to mousepox requires the direct 
cytolytic function of NK cells, as well as their ability to boost the 
adaptive T cell responses [7]. Further, we identified NK cell activating 
receptor CD94-NKG2E specifically recognize ECTV-infected cells via 
the targets expressing a specific peptide(s) (either a viral peptide or 
a peptide derived from an infection-induced cellular protein) bound 
to the non classical MHC class I Qa-1b molecular. Another NK cell 
activating receptor NKG2D acts as a co-stimulator to boost optimal 
NK cell cytolytic function [69]. However, the peptide(s) bound to the 
Qa-1b molecular remain unidentified. Importantly, different from the 
recognition of MCMV by Ly49-activating receptors, the CD94-NKG2 
system is exquisitely conserved between rodents and primates [70], the 
involvement of activating CD94-NKG2 receptors during other viral 
infections deserves further in depth investigations. 

Another important observation in the mousepox model is that the 
resistant B6 mice gradually lose their natural resistance to mousepox as 
they age. Surprisingly, the main reason for the loss of resistance is not 
of intrinsically defective T cell responses. Instead, the primary reason 
is because of defects in NK cell responses in the aged mice. In the aged 
mice, the percentage of total and mature NK cells decreases in blood 
and spleen, after ECTV infection, the aged NK cells also have defects 
to migrate to the local draining lymph node to control systemic virus 
spread, which results in increased early virus replication and spread as 
well as high mortality rate in the aged mice [8]. These results highlight 
the importance of NK cells in the control of age-related infectious 
diseases [71]. Further studies are needed to fully identify NK cell 
functional changes during physiological ageing process and investigate 
the mechanisms underlying these changes. 

NK cell Control of Influenza Virus Infection
Extensive evidence supports an important role for NK cells during 

influenza virus (flu) infection. Using anti-asialo GM1 or anti-NK1.1 
antibody PK136 to deplete NK cells leads to increased morbidity and 
mortality in mice with flu infection [72,73]. During the early days of 
flu infection, NK cells in the lungs become activated and demonstrate 
high cytotoxic activity followed by production of anti-viral cytokine 
IFN-γ [72,74]. Furthermore, NKp46, an activating NK cell receptor that 
recognizes flu haemagglutinin (HA) is critical for NK cell mediated-
protection against lethal flu infection in mice [75,76]. 

In contrast, a recent study reported that increased survival in 
the NK cell depleted wild-type mice or IL-15-/- mice which lack NK 
cells due to deficiency of IL-15, a cytokine important for NK cell 
maintenance was associated with significantly lower lung lesions as well 
as reduced pulmonary inflammation following lethal flu infection [77]. 
This study suggested that in some settings, NK cells might contribute to 
the pathogenesis of flu infection. The discrepancy of the results might 
be due to a difference in the challenge virus dose, mouse strains used in 
those studies. Moreover, even though the authors also used anti-asialo 
GM1 antibody which will not deplete NKT cells to exclude the role of 
NKT cells as anti-NK1.1 antibody also deplete NKT cells in B6 mice 
[77], further in depth studies need to be done to explore the role of 
NKT cells in the pulmonary inflammation during flu infection because 
NKT cells numbers are also greatly reduced in IL-15-/- mice [78] and 
NKT cells have been shown to exacerbate pulmonary inflammation 
[79-81]. Nonetheless, NK cells clearly play an important role during flu 
infection. Further studies are required to fully dissect the function of 
NK cells in the defense against flu infection. 

NK cell Control of Some Human Viral Infections
Human peripheral NK cells comprise 5-20% of peripheral blood 

mononuclear cells and can be divided into two distinct subsets 
characterized by their relative expression of the cell surface markers 
CD56 and CD16 [82,83]. The CD56brightCD16- subset, which constitutes 
less than 10% of peripheral-blood NK cells, has robust cytokines 
production as IFN-γ, plays an important role in regulating the 
adaptive immune function but has weaker cytotoxicity compared to 
CD56dimCD16+ subset, which is the terminal differentiated population 
with high cytolytic function [84,85]. In addition to the conventional NK 
cells, a population of CD56-CD16+ NK cells have been found in human 
immunodeficiency virus (HIV) or hepatitis C virus (HCV) infected 
patients, which express a similar receptor profile to CD56low NK cell, but 
have impaired cytolytic function and poor cytokine production upon 
target cells recognition [86-89].
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NK cells are directly involved in HCV infection. In chronic HCV 
patients, the frequency of circulating NK cells is reduced compared 
with healthy controls, and is accompanied with subset skewing, with 
the enrichment of CD56bright subset and a terminally differentiated 
hypofunctional CD56-CD16+ NK cell subset [90-95]. The dysfunctional 
CD56- NK cells expanded during chronic HCV infection is associated 
with an impaired ability to respond to antiviral treatment with IFN-α 
and ribavirin [95]. Jinushi M et al. have demonstrated that NK cells from 
chronic HCV-infected donors (HCV-NK) were incapable of activating 
DCs, HCV-NK also showed higher expression of CD94/NKG2A and 
produced IL-10 and TGF-β when cultured with hepatic cells expressing 
HLA-E, a ligand for CD94/NKG2A [96]. Further, studies suggest that 
particular combinations of NK cell inhibitory receptor KIR2DL3 and 
its ligand HLA-C1 are associated with the clearance of HCV infection 
[97]. Moreover, lower frequencies of NKp30+NKp46+, CD161+, and 
NKG2D+ NK cells have been recently associated with the ability to clear 
HCV following acute infection [98]. Oliviero B et al. observed that 
different NK cell phenotypic and functional features were associated 
with different treatment outcome in chronic HCV patients [99]. In the 
patients achieved sustained virological response (SVR) with treatment 
of pegylated interferon α/ribavirin, their NK cells displayed higher 
perforin content, lower CD16 expression and higher proportion of 
CD56dim/CD16- cells compared with NK cells from non-responder. 
Moreover, SVR patients displayed higher natural and antibody-
dependent NK cell cytotoxicity [99]. These results indicate that early 
NK cell activation and robust cytolytic function are important in the 
rapid IFN-α induced elimination of HCV-infected hepatocytes [99]. 

NK cells also involve in the control of HIV infection, through 
several pathways such as through secreting perforin and granzyme B 
to kill target cells; the Fas–FasL pathway to induce apoptosis of infected 
cells; production of cytokines to regulate immunity; and antibody-
dependent cell-mediated cytotoxicity (ADCC) to lyse infected cells 
[100]. NK cell surface receptors profile is associated with different 
clinical conditions in HIV patients. In patients with late stage HIV 
infection, their NK cells are found to contain fewer cytotoxic NK 
cells with higher expression of inhibitory receptor NKG2A [101]. 
Furthermore, certain HLA-B antigens have been associated with lack 
of progression to Acquired Immune Deficiency Syndrome (AIDS) 
after HIV infection [102]. Subsequent studies observed a protective 
effect of the combined presence of KIR3DS1 and HLA-Bw4-I80 alleles 
in patients with chronic HIV-1 infection [103,104]. Further analysis 
revealed that an increased NK cell KIR3DS1 count generated by copy 
number variants of KIR3DL1/DS1 was associated with a lower viral set 
point in the presence of their appropriate ligands. These results suggest 
that the relative amounts of these activating and inhibitory KIRs play a 
role in regulating the peripheral expansion of highly antiviral KIR3DS1+ 
NK cells, which may influence the disease progress following HIV-
1 infection [105]. Recently, Apps R et al. have shown that increasing 
HLA-C expression was associated with protection against multiple 
outcomes in HIV infection, and the protective mechanisms conferred 
by higher HLA-C expression level occurs partly through an enhanced 
CTL-mediated immune response [106]. However, it remains to be 
determined whether higher HLA-C expression also affects NK cell 
responses in HIV infection. 

NK cells and Bacterial Infection
The importance of NK cells in protection against bacterial infection 

has been controversial. It might depend on different infection dose, 
infection site and also the type of inflammatory response elicited 
by different pathogens. NK cells respond to bacterial infection by 

direct lysing of infected host cells or secreting cytokines to promote 
inflammation. In addition, NK cell derived IFN-γ can activate 
macrophages to destroy bacteria. Similarly, macrophages are stimulated 
to produce NK cell activating cytokines IL-12 and TNF-α when 
exposed to bacteria, and in turn activate the NK cells to kill these target 
pathogens [107-109].

In B6 mice infected with Mycobacterium tuberculosis (Mtb), the 
causative agent of human tuberculosis (TB), activated NK cells increase 
in the lung, and are capable of producing IFN-γ and perforin. However, 
in vivo depletion of NK cells has no influence on bacterial load within 
the lung [6]. These findings indicate that NK cells are activated during 
the early response to pulmonary TB and are a source of IFN-γ, even 
though removal of NK cells does no substantially alter the host control 
of bacterial burden, NK cells might reduce immunopathology or favor 
development of protective immune responses. In support of this, Feng 
C et al. found that NK cell-derived IFN-γ differentially regulated 
T-independent resistance and granulocyte function in Mtb infection 
[110]. Human NK cells lyse Mtb-infected monocytes and alveolar 
macrophages through the NKp46 receptor and NKG2D [111,112]. More 
recently, when exposed to autologous monocytes and gamma-irradiated 
Mtb, human NK cells are found to produce IL-22, which inhibits 
intracellular mycobacterial growth by enhancing phagolysosomal 
fusion [113]. Further, NK cells lyse Mtb-expanded CD4+ regulatory T 
cells (Tregs) in vitro [114]. Using B6 mice model first vaccinated with 
Bacillus Calmette-Guerin (BCG), followed by challenge with virulent 
Mtb, Dhiman R et al. showed that NK cells contribute to the efficacy 
of vaccination against Mtb infection by producing Il-22 and also by 
direct lysis of inhibitory Tregs that expanded after BCG immunization, 
induces optimal protective immunity through enhancing Ag-specific T 
cell responses after challenge with Mtb [14]. 

Innate immune responses are rapidly triggered upon Listeria 
monocytogenes (LM) infection and are essential for host survival 
[115,116]. NK cells represent an important source of IFN-γ at the 
infectious loci containing infected microphage and inducible nitric 
oxide synthase-producing DCs (TipDCs) [117-119]. However, NK 
might not involve in the clearance of LM [120]. As suggested in recent 
studies, CD8 T cells, rather than NK cells, play a more important role in 
immunity against LM [121]. In addition, type I IFN is found to hinder 
host control of LM [122-124]. NK cells are activated by type I IFN, so 
it is possible that NK cells worsen disease rather than protect from LM 
infection. 

NK cells are also involved in control of other bacterial infection. 
Mice deficient in the RAG2 and common γ-chain genes (RAG-/-γc-/-) 
lack B, T and NK cells and serve as a good model to evaluate the 
function of these cells in immune defense against bacterial infection. 
RAG-/-γc-/- mice infected with Shigella flexneri have higher bacterial 
titers and compromised survival compared with RAG-/- mice (lack B 
and T cells, but have NK cells), suggesting that IFN-γ produced by NK 
might limit infection [125]. IL-15-/- mice deficient in NK cells are highly 
susceptible to pulmonary staphylococcal infection. In addition, WT 
mice depleted of NK cells are similarly susceptible to staphylococcal 
infection suggest a critical role for NK cells in host defense against 
pulmonary extracellular bacterial infection [126].

NK cells and Parasitic Infection
Malaria is a serious infectious disease, caused by infection with 

Plasmodium parasites. Immunity against P. falciparum, the most 
dangerous malaria-provoking agent, develops with age over the 
course of multiple infections and the humoral immunity is crucial 
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Figure 1: Strategies of viruses to evade NK cell-mediated immune surveillance. A) Upon recognition of virus-infected cells by activating NK cell receptors, NK 
cells secrete cytokines and kill infected cells to control viral infection. However, viruses have evolved strategies to evade NK cell immune surveillance, such as listed in 
B-E. B) Viruses encode their own MHC class I homolog to inhibit NK cell function through binding to NK cell inhibitory receptors. C) Viruses encode anti-inflammatory 
cytokine IL-10 mimicry to suppress NK cell function. D) Viruses encode soluble ligands binding to NK cell activating receptor NKG2D to block NK cell recognition of 
infected cells. E) Viruses directly infect NK cells resulting impaired NK cell function and NK cell apoptosis.

Recently, associations of killer immunoglobulin-like receptors 
(KIRs) on NK cells with the incidence of malaria pathogenesis have been 
characterized. Comparison of KIRs between Plasmodium-positive and 
Plasmodium-negative Melanesian individuals in the Solomon Islands 
revealed the trend of parasitic positive individuals to be KIR3DL1/
KIR3DS1 heterozygous in pair with KIR2DS4 nondeleted variants in a 
set of KIR genes in heritable as the AB genotypes [137]. Hirayasu K, et al. 
found that the combination of KIR2DL3 and its cognate HLA-C1 ligand 
was significantly associated with the development of cerebral malaria 
when compared with non-cerebral malaria, which indicates that the 
NK cell repertoire shaped by the KIR2DL3 -HLA-C1 interaction shows 
certain functional responses that facilitate development of cerebral 
malaria [138]. 

Strategies of Virus to Evade NK cell Immune Surveillance 
The eventual outcome of a specific pathogen infection is determined 

by the battle between host and invading pathogen. Some viruses have 
evolved strategies to evade NK cell mediated–immune surveillance 
(Figure 1). 

Viral-encoded Proteins Bind to NK cell Inhibitory 
Receptor

NK cell activation is inhibited by inhibitory signals provided 
through interaction of receptors on NK cells with self-MHC class I 
products. Some viruses encode decoy proteins for NK cell inhibitory 
receptors. Both human and mouse CMV encode their own MHC class 

for protection from severe disease. Interactions between NK cells, 
infected erythrocytes (iRBC) and other immune cells lead to specific 
NK cell responses to P. falciparum [6,127]. NK cells derived from 
malaria-naïve or infected individuals are shown having cytolytic 
activity against P. falciparum-iRBCs that is possibly mediated by Fas 
and Granzyme B [128,129]. Mavoungou E, et al. have shown that 
the interaction of Duffy binding-like (DBL)-1 alpha domain of P. 
falciparum-infected erythrocyte membrane protein-1 (PfEMP-1) and 
NK natural cytotoxicity receptor (NCR) NKP30 is the key recognition 
mechanism leading to parasite killing by NK cells [130]. Recently, 
another study indicates that presence of Hsp70 and absence of HLA-E 
on the membrane of iRBC prompt NK cell cytotoxicity toward infected 
host cells [131]. 

In addition to their up-regulation of CD69 and CD25 activation 
markers after contact with RBC infected by several different strains of 
P. falciparum, NK cells are one of the first cells to produce IFN-γ in 
response to P. falciparum infection [6,127]. IFN-γ production by human 
NK cells cultured with iRBCs is dependent on IL-12 and IL-18 derived 
from myeloid cells in cultures [6]. Moreover, the magnitude of IFN-γ 
released by NK cells is known to be heterogeneous among individuals, 
possibly influencing susceptibility to disease [127]. Cerebral malaria is 
a major, life-threatening complication of P. falciparum malaria, and has 
a high mortality rate [132]. IFN-γ is known to be potentially involved 
in the pathogenesis of cerebral malaria [133-135]. NK cell depletion 
resulted in significant protection against cerebral malaria, suggesting 
involvement of NK cell activity in its pathogenesis [136]. 
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Concluding Remarks
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