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Gene therapy, the targeted insertion of DNA coding for a 
therapeutic gene into the nuclei of diseased cells or tissues followed by 
its expression, is one of the most promising new therapies for a host of 
diseases and conditions [1]. The first gene therapy product, Gendicine 
(adenoviral vector-based) was approved in China in 2003 for head 
and neck cancer. On July 24, 2012 the European Medicines Agency 
approved the adeno-associated viral (AAV) gene therapy, Glybera by 
uniQure, for lipoprotein lipase deficiency, an orphan disease. Recent 
progress towards patient use indicates that there is still more work 
ahead for developing approved products for other indications. More 
than 1,800 gene therapy clinical trials have been carried out in the past 
25 years, including the currently in-progress of about 400 studies [2]. 

As recent reports of encouraging progress are emerging with 
viral vector-based therapies, the field is developing more confidence 
in gene therapy applications. For example, uniQure is developing the 
GDNF (glial cell derived neurotrophic factor) gene in their AAV-2 
delivery vector (NCT01621581) and Oxford Biomedica reported Phase 
1/2 clinical trial results with ProSavin, a tricistronic lentivirus-based 
vector encoding tyrosine hydroxylase, L-amino acid decarboxylase 
(AADC), and cyclohydrolase 1, both aimed at restoring dopamine 
production in patients with advanced Parkinson’s disease [3]. 
MYDICAR®, an AAV-based sarcoplasmic reticulum calcium ATPase 
(SERCA2a) gene therapy, being developed by Celladon to restore 
SERCA2a enzyme levels, is currently in clinical trials for evaluating 
its efficacy in improving left ventricular function and remodeling in 
NYHA class III or IV chronic heart failure patients [4]. This study 
received ‘breakthrough therapy designation’ from U.S. Food and Drug 
Administration (FDA) through the FDA Safety and Innovation Act of 
2012 (FDASIA) to expedite drug development and review of innovative 
new medicines that address certain unmet medical needs for serious 
or life-threatening diseases or conditions. The administration of these 
treatments is not trivial and involves bilateral, convection-enhanced 
delivery through an implanted catheter to the putamen, intrastriatal 
injection or intracoronary infusion, respectively.

In spite of the tremendous progress, future challenges in gene 
therapy treatments include the development of gene delivery vectors 
with targeting ability, controllable, high and prolonged transfection 
efficiency, improved safety and less complicated or non-invasive 
administration methods. Novel non-viral delivery systems represent 
options for gene therapy that could fulfill these mentioned requirements. 
However, non-viral systems are not yet effective and specific enough 
for clinical applications and improvements in both the structure and 
function of these systems are required. Non-viral gene delivery vectors 
are an extensive class of man-made complexes or nanoparticles (NPs) 
composed of a nucleic acid cargo, typically a plasmid, with one or more 
soft matters such as cationic lipids (DOTAP, DOTMA), surfactants, 
biologicals (gelatin, chitosan), metals (gold, magnetic iron) and 
synthetic polymers (PLG, PEI, PAMAM). This engineering flexibility 
provides several key advantages over viral delivery vectors, principally 

reduced immunogenicity resulting from their biologically inert 
material composition and reduced production costs. Moreover, this 
“bottom-up” design allows researchers to customize their composition 
and incorporate specific moieties to suit a wide range of applications.

Development of nano-sized delivery systems requires the 
understanding of a comprehensive set of parameters and the 
construction of fine-tuned particles capable of significantly more 
“intelligent” functions compared to traditional dosage forms. Among 
the many important properties, morphology and internal structure of 
nanoparticles play a significant role in their functional performance. 
At the cellular level, a multitude of parameters are of interest for 
fine-tuned customization. Important considerations in individual 
nanoparticle design for enhanced cellular interaction and drug delivery 
are size, surface charge, surface area, shape, surface coatings, stability 
and structure of particles. An interesting consideration in NP design is 
the size and shape of particles. Smaller particles less than 150 nm are 
typically taken up to a greater extent into cells, which has been shown 
for NPs made from various biomaterials. Until recently, all delivery 
systems studied were mostly spherical. The structure of lipoplexes 
has been the focus of both theoretical and experimental studies that 
examine the relationship between the morphological characteristics 
of lipoplexes and their functional activity. These various structural 
forms have been revealed in numerous studies using diffraction or 
magnetic resonance methods; however, the lack of understanding of 
the relationship between transfection and the nature of complexes 
has also necessitated determining other physical characteristics using 
various methods. A non-spherical particle shape (filament, ellipsoid, 
cube, rod, triangle, pentagon, disc) may provide significantly improved 
interactions with cells [5-10]. The relationship between the structure of 
DNA complexes and gene delivery has been of considerable interest in 
the past few years from both theoretical and experimental standpoint. 
The importance of the thorough understanding of particle properties is 
widely recognized [11,12], however, in practice there is still much to be 
done to fully detail out all relevant characteristics of old and new systems. 
NP biocompatibility, including pharmacokinetics of absorption, 
targetability, clearance and toxicity, is the direct result of the sum of the 
physicochemical features carefully designed under established dosage 
form design and newly developing nanopharmaceutics principles.

For selected applications, the route of administration can be 
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needle-free [13-16], although in most cases gene delivery systems are 
administered by injection. In the next few years new technologies will 
allow non-invasive administration methods, especially into the skin, 
eye, and mucus membranes, which will provide more effective treatment 
modalities, patient acceptance and potentially self-administration.
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