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Introduction
Within both conventional bulk pharmacology and 

nanopharmacology, natural source botanical extracts used in 
traditional forms of complementary and alternative medicine 
(CAM) have emerged as potential direct therapeutic agents for 
conditions including cancer [1-5], infectious diseases [6-8], diabetes 
mellitus [9,10],and stress-related disorders [11,12]. In conventional 
nanomedicine, various botanical extracts have also demonstrated the 
capacity to generate bioactive silver [2,13-17], gold, [18-20] and silica 
[21,22] nanoparticles (NPs) from their respective precursor materials. 
Merely agitating a solution of sodium chloride will also generate NPs 
and embed them into glassware in contact with the solution [23].

Within systems of CAM, Gelsemium sempervirens (GELS) from the 
Loganiaceae plant family is one of the more widely studied botanical 
agents. GELS is used clinically in both traditional Ayurvedic herbal 
medicine and homeopathy [24,25]. Gelsemium (GELS) botanical 
extracts prepared as a homeopathic medicines (HMs) reportedly 
exhibit anticancer [26,27], analgesic [28], and anxiolytic effects [29,30]. 
Gelsemium encapsulated in poly (lactide-co-glycolide) (PLGA) 
nanoparticles (NPs) exhibits enhanced cellular uptake and pro-
apoptotic effects in a skin cancer cell line [27]. Gelsemium–generated 

silver nanoparticles also exert anticancer effects in vitro [2]. Finally, 
homeopathically-prepared GELS per se in potencies up to 30C can 
modify gene expression patterns of human neuronal cells in culture 
[31,32].

In part to reduce the risks of herbal toxicity from some of the plant’s 
constituent alkaloids in their more concentrated plant extract form, 
some investigators have focused on the far less toxic homeopathic 
rather than herbal extract forms of Gelsemium for clinically-relevant 
investigation. Potencies of GELS are widely used in homeopathic 
clinical care for treatment of acute conditions such as symptoms of 
influenza infections [33] or public speaking anxiety [34]. In addition to 
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Abstract
Multiple studies have observed nanostructures in traditionally-manufactured homeopathic medicines. 

Homeopathy is a 200-year-old system of complementary and alternative medicine used worldwide. The nature of 
homeopathic medicines has historically stimulated much debate. The present placebo-controlled study extended 
previous work to characterize nanoparticles (NPs) in homeopathically-prepared Gelsemium sempervirens (GELS), 
a natural botanical source with previously-documented anxiolytic, analgesic, and anticancer properties. An 
ethanolic GELS herbal extract was serially diluted and succussed (agitated) in a 95% ethanol-water diluent solvent 
in glass vials, following Homeopathic Pharmacopoeia of the U.S. guidelines. GELS (VERUM, at homeopathic 
potencies of 6C, 30C, 200C, each n=3 vials), succussed controls (SUCC-CONT, at homeopathic potencies of 6C, 
30C, 200C, each n=3), and one set of unsuccussed solvent control vials also used natural cork (Quercus suber) 
stoppers (UNSUCC-cork, n=3). A final set of unsuccussed solvent controls used silicone stoppers (UNSUCC-
silicone, n=3). Analytical methods included nanoparticle tracking analysis (NTA), zeta potentials, and UV-Visible 
spectroscopy. NTA revealed >4 x 108 nanoparticles per milliliter  in all VERUM, SUCC-CONT, and UNSUCC-cork 
vials, significantly more than the UNSUCC-silicone controls. Particle sizes were polydisperse, significantly larger 
in the VERUM 30C at 129.8 nanometers versus SUCC-CONT at 6C, 30C, 200C and the UNSUCC-cork controls. 
Zeta potentials consistent with greater particle stability were significantly most negative in the VERUM GELS 200C 
(-47.75 mV). Within the UV-vis wavelength range 300-400 nm, the SUCC-CONT 30C exhibited significantly higher, 
whereas UNSUCC-silicone stopper controls had significantly lower, mean absorbance than all other samples. 
Taken together, the data suggest that traditional homeopathic methods involving succussions release not only 
the previously-shown silica from glassware walls, but also  Quercus suber  materials from natural cork stoppers 
to stabilize NPs in solution. With verum source material Gelsemium, additional NP size growth and surface 
stabilization can occur. Further study of homeopathic manufacturing materials and methods and their biological 
correlates is indicated. 
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other evidence for analgesic and anxiolytic effects from the Gelsemium 
herbal extract [25,35,36], recent research has demonstrated that 
homeopathically-prepared Gelsemium has effects on not only human 
neuronal cell gene expression [32,37], but also neuronal function [28]. 
Modulatory effects of homeopathically-prepared medicines on patterns 
of gene expression appear to generalize across not only Gelsemium 
HMs, but also HMs from other sources [38-40]. Homeopathy is an 
over 200-year-old system of CAM used worldwide [41,42], the nature 
of whose medicines has historically stimulated vigorous debate.

To manufacture Gelsemium in traditional homeopathic potencies, 
the raw plant source is typically first prepared as an ethanolic herbal 
extract of the botanical material. Next, the botanical extract is put as 
a liquid into a process of serial dilutions in solvent (ethanol-water 
or water). The ratio of source material to solvent is usually 1:10 (X 
potencies) or 1:100 parts (C potencies). In classical homeopathic 
manufacturing, as outlined by German physician-chemist founder 
Samuel Hahnemann MD in the 1800’s [43], each dilution step is 
followed by intense mechanical agitation (succussions) either manually 
(e.g., 10-20 or more repeated succussions/step) or, now sometimes 
by vortexing, within a stoppered glass container. By standardized 
protocols dictated by national regulatory agencies such as the German 
or United States pharmacopoeias, each serial dilution-succussion step 
generates a consecutively higher homeopathic potency. 

Both source nanoparticles [44-52] and various forms of silica from 
inside walls of glass containers [48,49,53,54] result. Gas nanobubbles 
formed by succussions may also play a role in the manufacturing 
process by surrounding and facilitating transfer of the solute particles 
from a given preparation step to the next, in glass or plastic vials 
[51,55,56]. Thus, as in mainstream NP generation techniques [23,57-
63], mechanical milling and/or liquid agitation/attrition methods 
contribute to formation of the final product in HM manufacturing 
[4,64-66].

Against the validity of homeopathy, skeptics usually object that the 
serial dilutions ultimately remove any remaining bulk source molecules 
past 24X or 12C (where Avogadro’s number is 6.023 × 1023). As noted 
elsewhere, however, the dilution controversy may apply only to 
removal of bulk but not of nanoscale forms of materials [51]. Multiple 
laboratories in different countries have demonstrated the presence 
of not only nanostructures in homeopathically-prepared medicines 
[44-47,49,51,52,67-69], but also unique electromagnetic [70,71] and 
optical properties [72,73] of HMs at high potencies (highly diluted and 
extensively succussed) versus controls. 

The initial NP report from Chikramane et al. [44] showed 
transmission electron microscopic (TEM) and inductively-coupled 
plasma-atomic emission spectroscopy (ICP-AES) evidence for source 
metal nanoparticles (gold, zinc, copper, tin, platinum, silver) in HMs. 
Sizes ranged from 5 nm or less for individual NP up to aggregates of 2000 
nm sizes at 6C, 30C, and 200C potencies. Using nanoparticle tracking 
analysis, we recently replicated and extended NP findings in samples 
of traditionally-made homeopathically-prepared silver (Argentum 
metallicum 6C, 30C, 200C) versus succussed and unsuccussed controls 
[69]. In the latter study, however, we found evidence consistent with 
the possible release of not only silicates from glassware, but also natural 
cork stopper organic materials (Quercus suber oak tree bark botanical 
extract) into solution during succussion procedures in verum and 
succussed control samples. 

Quercus extract and quercus-generated metal NPs are biologically 
active with antioxidant and anti-cancer effects [16-18,74-76]. Another 

type of plant extract, e.g., Equisetum telmateia, also used in herbal and 
homeopathic medicine, can generate silica NPs from silicate precursors 
in solution [21,22]. Similarly, other investigators have demonstrated 
the ability of Gelsemium sempervirens plant extract to generate silver 
NPs with anti-cancer properties [2]. Taken together, the findings raise 
a question as to the relative contributions of verum source materials 
from plants, e.g., from Gelsemium sempervirens, in addition to and 
apart from Quercus suber in traditionally-used natural cork stoppers 
for making biologically-active HMs. 

Not all modern homeopathic manufacturers use cork stoppers. 
However, the physician-chemist founder of the field, Samuel 
Hahnemann MD, developed homeopathy in the late 1700’s to mid-
1800’s [43], when glass or natural cork stoppers would have been the 
main material available for bottle closure during agitation procedures, 
storage, and transport [77].

The purpose of the present study was to extend previous empirical 
findings of nanostructures in homeopathically-manufactured 
medicines to Gelsemium sempervirens, using nanoparticle tracking 
analysis (NTA). For further characterization, we also examined 
nanoparticle zeta potentials and ultraviolet visible spectroscopy 
patterns in all samples. In specific, we evaluated (a) verum Gelsemium 
HMs versus succussed controls at potencies below (6C) and above 
(30C and 200C) Avogadro’s number for bulk form dilution; and (b) 
compared two different sets of unsuccussed controls with natural cork 
versus silicone stoppers. Because of our prior nanoparticle findings with 
cork-stoppered samples [69], an additional exploratory hypothesis was 
that control vials with modern silicone stoppers would not contain the 
same concentrations, sizes, and/or zeta potentials of NPs as did those 
with traditionally-used cork stoppers.

Materials and Methods
Design

As recommended by previous investigators [78], the study design 
was randomized and blinded for the analytic laboratories involved. 
Analytic laboratories were not informed of hypotheses related to the 
study. Study design included making triplicate samples in separate 
vials of 8 different types of samples. That is, samples included not 
only verum homeopathically-prepared Gelsemium sempervirens 6C 
(V6, n=3), 30C (V30, n=3), and 200C (V200, n=3) potencies; but also 
succussed solvent controls made at 6C (SC6, n=3), 30C (SC30, n=3), 
and 200C (SC200, n=3) potencies; unsuccussed solvent controls with 
natural cork stoppers (UC-Cork or UC-C, n=3); and unsuccussed 
solvent controls with silicone stoppers (UC-Silicone or UC-S, n=3). 

To control for any effects of the shipment process itself, the 
total number of vials per box shipped by overnight courier from the 
manufacturer (Hahnemann Laboratories, San Rafael, CA) in the same 
packaging together to each of the two different analytic laboratories 
was thus 24. Each number-coded sample vial from the same box of 
samples was run through the analytic nanoparticle tracking analysis 
(NTA) and zeta potential tests in triplicate at Northwestern University 
(Evanston, IL). A separate box of samples made at the same time as 
those shipping to Northwestern University was shipped and evaluated 
using UV-vis spectroscopy at Nanocomposix (San Diego, CA).The 
manufacturer made all placebo samples before making the verum 
samples to minimize risk of cross-contamination. Each test vial was 
assigned and labelled with a randomized unique code number (see 
below).
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Randomization and blinding

The first author (IB) created a spreadsheet of vial contents and 
materials for the study and assigned a unique random vial code number 
to each sample using the list randomizer program at http://random.
org. The manufacturing pharmacy implemented the code assignments 
with code numbered labels without any other identifying information 
on each vial. Only the PI and manufacturing pharmacy had access to 
the list of the actual contents of each randomized, number-coded vial.

 Previously, using a similar design, we observed nanoparticles 
in homeopathically-prepared, silver-derived verum medicines 
(Argentum metallicum) at 6C, 30C, and 200C with some higher 
particle concentrations, larger sizes, and more negative zeta potentials, 
different from those of succussed control solvent and/or unsuccussed 
solvent [69]. In the latter study, verum and control samples also 
showed complex UV-vis spectroscopic data that raised the possibility 
of contaminants in solution from organic materials such as the natural 
cork stoppers (Quercus suber) used during traditional manufacturing 
and storage. As a result, we expanded our previous design from the 
Argentum metallicum study to include not only the traditional cork 
stoppers in one set of unsuccussed controls, but also non-cork silicone 
stoppers in a different set of unsuccussed solvent controls.

Test materials

The Gelsemium sempervirens verum homeopathic medicines and 
the succussed and unsuccussed placebo solvent controls were made 
by Hahnemann Laboratories (San Rafael, CA, http://hahnemannlabs.
com/), a commercial FDA-regulated U.S. homeopathic pharmacy 
specializing in supplying custom-made HMs to practitioners. 
Manufacturing procedures were done under clean-room procedures 
with HEPA air filters at room temperature and pressure in accord 
with the Homeopathic Pharmacopoeia of the United States (HPUS). 
The manufacturing methods followed the historical original methods 
and materials outlined by the physician-chemist founder of the field, 
Samuel Hahnemann, MD [43,79]. 

 Diluent solvent for all samples was 95% v/v pharmaceutical grade 
ethanol (Pharmco-AAPER, USA, phenol-capped jug) in double-distilled 
water. Because of industry-standard manufacturing procedures for 
lower potencies (e.g., 6C) versus higher potencies (e.g., 30C, 200C), the 
current samples were made using (a) a different new glass vial for each 
serial dilution and succussion step up to 6C (Hahnemannian method); 
but (b) the same glass vial for each serial dilution and succussion step 
beyond 15C to make 30C and 200C potencies (Korsakovian method). 
This pharmacy also uses a standardized mechanical arm (Quinn 
Potentizer) to perform repeated succussions of potentized medicines 
and succussed controls.

 We chose this pharmacy because of our previous clinical and 
electroencephalographic studies in human subjects showing detectable 
differences in effects between multiple participant-individualized 
verum and control agents [80,83] as well as verum-placebo differences 
for two other of their custom-made products (mineral and plant 
sources), in Raman and UV-vis spectroscopic patterns as part of a basic 
science exploratory study [84]. However, none of our previous studies 
had specifically investigated homeopathic Gelsemium sempervirens.

To make and store samples, the manufacturer used clear 
borosilicate pharmacy quality glass 8 ml vial containers (Acme Bottle 
and Glass Co., Inc, Paso Robles, CA USA) with natural cork stoppers 
(size 3, Zandur, Nottingham, PA USA) for their sample production 
of each 5.5 milliliter sample of verum, succussed controls, and one set 

of unsuccussed controls. The remaining set of 3 unsuccussed controls 
used the same source for vials and solvent but were closed with silicone 
stoppers. Each vial was covered with parafilm and packed securely 
prior to shipment to prevent leakage. 

Analytic procedures

Core laboratories at Northwestern University (Evanston, IL) 
performed the nanoparticle tracking analysis (NTA) and zeta 
potential testing. Separately, Nanocomposix (San Diego, CA) carried 
out UV-vis spectroscopy on a parallel set of samples number-coded, 
made, packaged, and shipped to them at the same time as the full 
set sent to Northwestern University. Both analytical laboratories 
received 3 randomized samples of each of the 8 types of samples. As 
a result, all analytic tests were performed under blinded conditions. 
At the laboratories, in accord with homeopathic manufacturer 
recommendations, samples were stored at room temperature away 
from direct sunlight [85]. Based on clinical standards and past research 
[86], laboratories were asked to minimize the exposure of the samples 
to any extraneous electromagnetic sources during storage.

Nanoparticle tracking analysis:  As in our previous study [69], 
NTA was performed in triplicate on each of the samples using the 
NanoSight LM 10-HS, with software version 2.3 (NanoSight/Malvern, 
Malvern Worcestershire, UK) at the Northwestern University Keck 
Biophysics Core Facility, Evanston, IL USA. Particle size range 
detection is 10-1000 nm or larger per the manufacturer’s manual. 
Advantages of NTA technology include (a) reducing the risk of sizing 
artifacts from evaluation of polydisperse mixtures of large and small 
particles, e.g., a problem to which dynamic light scattering is prone 
[87]; and (b) avoiding drying artifacts, e.g., to which transmission 
electron microscopy is prone, by retaining samples in as-manufactured 
liquid form for analysis.

Zeta potential measurements: The samples at Northwestern 
University were then locally moved from the NTA Keck Biophysics 
Core Laboratory directly to the Equipment Core Facility of the 
Simpson Querrey Institute at Northwestern University for additional 
characterization. The zeta potential assessments were performed in 
triplicate using a Zetasizer Nano ZSP (Malvern Instruments, Inc, USA) 
at 25°C with a scattering angle of 173°. Limits of particle size detection 
for this instrument per the manufacturer manual range from 0.3 nm 
to 10 µm.

Ultraviolet visible spectrometry (UV-Vis): Nanocomposix (San 
Diego, CA) performed the UV-Vis absorbance testing on all sample 
vials. The instrument was an Agilent 8453 UV-visible spectrometer. 
Testing was performed in a quartz cuvette with a 1 cm path length. 
Data reported encompassed the wavelength range of 190 to 1100 
nanometers (nm).

Statistical analysis 

Statistical analyses used Statistica Academic 12.5 software and 
included analyses of variance over all 8 possible types of samples 
(verum 6C, 30C, 200C; succussed controls 6C, 30C, 200C; unsuccussed 
controls/cork stoppers; unsuccussed controls/silicone stoppers), with 
post-hoc Tukey tests for subgroup comparisons when indicated. 
Planned comparisons were to compare triplicate tests on all verum 
and succussed control samples at each potency against unsuccussed 
controls as well as comparing verum and succussed control samples 
with one another at each of their respective three different homeopathic 
potencies.

http://random.org
http://random.org
http://hahnemannlabs.com/
http://hahnemannlabs.com/
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Results
Nanoparticle tracking analysis  

NTA revealed polydisperse nanoparticles at detectable average 
concentrations (particles/milliliter (ml)) in most samples other 
than the unsuccussed controls with silicone stoppers ( Figure 1). To 
facilitate reporting the post-hoc tests, the following abbreviations are 
used: V6=verum Gelsemium sempervirens (Gels) 6C, V30=verum 
Gelsemium sempervirens 30C, V200=verum Gelsemium sempervirens 
200C; SC6=succussed (Succ) control 6C; SC30=succussed control 
30C; SC200=succussed control 200C; UC-C=unsuccussed controls 
with natural cork stoppers; UC-S=unsuccussed controls with silicone 
stoppers (Unsucc), where E=exponent of 10.

Over all samples for concentration of nanoparticles per milliliter, 
vial contents and stopper type samples were significantly different 
(F(7,58)=3.7, p=0.00225). Post-hoc Tukey tests showed that the UC-S 
had significantly fewer NPs than the succussed controls with cork 
stoppers at all 3 potencies (6C (p=0.01), 30C (p=0.008), 200C (p<0.01), 
with a trend toward fewer NPs in the UC-S than the verum Gelsemium 
200C (with cork stoppers) (p=0.076) or the unsuccussed controls with 
cork stoppers (p=0.059).

Particle sizes also differed between types of contents and stoppers 
(Figure 2), with an overall mean of 95.99 SD 31.57 nm and a range 
over all samples between 73.56 nm (Unsuccussed Control with Cork 
stoppers) to 129.78 nm (Verum Gels 30C). 

Over all samples for NP mean sizes, vial contents and stopper 
types were significantly different (F(7,58)=4.19, p=0.00085). Among 
the natural cork stoppered type of samples, post-hoc Tukey tests 
revealed that the Verum 30C samples contained significantly larger 
concentration-weighted mean size particles than did Succussed 
Controls at all potencies [SC6 (p=0.01), SC30 (p=0.02), SC200 
(p=0.008)], and the UC-CORK stopper (p=0.0008) samples. There 
was a trend for Verum 200C samples to contain larger NPs than the 
UC-CORK stopper (p=0.08) samples. Compared with Verum 30C, the 
Verum 6C samples showed a trend toward being smaller sized (p=0.10).

To illustrate the polydispersity of the NPs, Figure 3 shows exemplar 
NTA particle sizes/relative intensity 3D plots for one of each type of 
sample and stopper vial tested.

Particle surface stability as indicated by negative zeta potential 
mean values was poorest in the UC-Silicone stopper samples ( -5.6 

mV) and best in the Verum Gels 200C (V200, -47.8 mV) (overall F 
(7,58)=18.7, p=0.00000) (Figure 4).

Post-hoc Tukey tests on the zeta potential data indicated that 
particles in the Unsuccussed Controls with Silicone stoppers (UC-
Silicone) were significantly less stable than those in all of the sample 
types with cork stoppers, including V6, V30, v200, SC6, SC30, SC200, 
and UC-CORK (all comparisons, p<0.001). Zeta potentials for the 
Verum Gels 200C samples were significantly more negative than those 
in most of the other samples (p<0.05) except for a trend versus the 
Verum Gels 6C (p=0.09) and no difference from the SC30 (p=0.22, ns). 
Within the succussed controls, the SC30 exhibited a trend toward more 
negative zeta potentials than the SC6 samples (p=0.058).

Finally, for additional perspective to compare with the test vials 
described above, the contents of the same large glass ethanol jug source 
with phenol cap that provided the ethanol diluent used in the test vial 
samples were evaluated. The jug ethanol’s particle concentration by 
NTA was 0.061E8; mean particle size was larger at 172 nm than the test 
vial particle contents; and jug ethanol’s zeta potential exhibited poor 
stability (-5.58 mV) (similar to the NC-Silicone stopper samples’ mean 
zeta potential). 

Ultraviolet visible spectroscopy

 All succussed and unsuccussed samples with cork stoppers 
exhibit absorbance in the 280-380 nm regions with similar integrated 
absorbance values. This absorbance is most likely due to organic 
compounds being extracted from the cork (Quercus suber) stoppers 
employed, as supported by the absence of absorbance in this region 
when silicone stoppers were used in one set of unsuccussed controls. 
The apparent peak around 202 nm in most samples likely reflects an 
artifact due to subtraction of a high solvent blank absorbance value 
from high sample absorbance values, as all samples showed high 
absorbance in the far ultraviolet region.

On statistical analysis, UV-vis (Figure 5) revealed that analytic 
laboratory dilution-corrected mean absorbance in the wavelength range 
of 200-400 nm was significantly higher for the succussed control 30C 
samples (with cork stoppers) as greater outliers than for all other types of 
vials (Overall F(7,4768)=200.5 p<0.00001; paired comparisons between 
SC30 and each other type of vial were all significant at p=0.000032; in 
addition, V30>SC6, p=0.026; SC200>Unsucc Control-CORK stopper, 

10bparticles/ml)

G
el

s 
6C

G
el

s 
30

C

G
el

s 
20

0C

S
uc

c 
C

on
tr

ol
 6

C

S
uc

c 
C

on
tr

ol
 3

0C

S
uc

c 
C

on
tr

ol
 2

00
C

U
ns

uc
c 

C
on

tr
ol

 -
 C

O
R

K

U
ns

uc
c 

C
on

tr
ol

 -
 S

ili
co

ne

Vial Contents and Stopper Type

0

2E8

4E8

6E8

8E8

1E9

1.2E9

1.4E9

1.6E9

C
on

ce
nt

ra
tio

n 
(p

ar
tic

le
s 

pe
r 

m
l)

 

Figure 1: Particle concentration by vial contents and stopper type 
(F(7,58)=3.7, p=0.00225). All verums and succussed controls had natural 
cork stoppers. (Note: a x Eb= a x).
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Figure 2: Concentration Weighted Mean Particle Size (nanometers, nm).
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p=0.03). Most samples had absorbance maxima at approximately a 200 
nm wavelength. For the narrower wavelength band of 200-300 nm, the 
overall comparison across all types of contents and stoppers was again 
highly significantly, but with only SC30 samples exhibiting greater 
absorbance than all other samples (overall F(7,2368)=161.4, p<0.0001; 
SC30>all other sample types and stoppers, p=0.000032). 

Within the narrower but higher wavelength band of 300-400 nm, 
Figure 6 shows that absorbance remained significantly greater for the 
Succussed Controls 30C (overall F(7,2368)=189.59, p<0.0001; with 
SC30> all other sample types (post-hoc Tukey tests, p=0.000032). The 
V30 also had significantly higher absorbance than did the SC6 and the 
UC-CORK (respectively, p=0.0004; p=0.008).

In addition, the Unsuccussed Controls with Silicone stoppers 
exhibited significantly lower UV-vis absorbance between 300-400 nm 
wavelengths, compared with all other types of samples (p=0.009 or 
less). On further subanalysis, the lower UV-vis absorbance between 
300-400 nm wavelengths for the UC-Silicone samples was significant 
in comparison with all or most other types of samples, especially for 
wavelengths from 300-325 nm (UC-Silicone<all other sample types 
except SC6), 325-350 nm (UC-Silicone< all other sample types), and to 
a lesser extent, 350-375 nm (UC-Silicone<all except V6, SC6, and UC-
CORK). Within the 375-400 nm wavelength band, the latter type of 
finding was significant only for UC-Silicone showing lower absorbance 
versus the SC30 (p=0.000032). Examining absorbance for wavelengths 
in 100 nm increments from 400-1000 nm, the highest absorbance 
for the SC30 samples and the lowest absorbance for the UC-Silicone 
samples persisted as significant findings against all other types of 
samples. 

Although smaller in magnitude than the pattern for succussed 
controls across the three different homeopathic potencies, there was a 
similar low-high-low pattern of highest absorbance within the verum 
samples for V30 versus V6 and V200. Within the verum samples, 
the pattern first became significant at wavelengths of 400-500 nm 
(V30>V6, p=0.007 and V30>V200, p=0.005) and persisted in the 100 
nm wavelength analyses through 900-1000 nm (V30>V6, p=0.000032; 
V30>V200, p=0.000042).

Figure 7 illustrates exemplar UV-vis spectroscopic graphs by 
wavelength for one of each type of sample and stopper vial tested. Apart 
from the maximum peaks close to 200 nm wavelengths in the different 
sample types, many samples exhibited smaller shoulders at wavelengths 
of approximately 290 nm and 330 nm. In contrast, the unsuccussed 
controls with silicone stoppers showed almost no absorbance between 
300-400 nm, consistent with absence of the organic material otherwise 
seen in all of the verum Gelsemium, succussed control, and unsuccussed 
cork- stoppered samples.

Discussion
As in previous studies across multiple laboratories [44-47,49-52,67-

69], the current data again demonstrate that traditional homeopathic 
materials (glass containers, natural cork stoppers, ethanol-water 
diluents) and/or manufacturing methods (serial dilutions followed by 
multiple succussions) generate nanostructures in liquid ethanol-water 
solutions (verums, succussed controls, and unsuccussed controls with 
cork stoppers). Succussions per se, even in ethanol-water solvent-
only controls in glassware with corks (Succussed Controls), appear 
to generate the largest number of NPs, albeit with smaller, less stable 
particles compared with verum Gelsemium samples. Such findings 
could have biological relevance. For instance, other investigators have 
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Each Type Zeta Potentials.
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Figure 4: Zeta Potentials (mV, millivolts) by Vial Contents and Stopper Type.
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Figure 5: Analytic Laboratory Dilution-Adjusted UV-Vis Mean Absorbance in 
wavelength range of 200-400 nm.
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Figure 6: Maximum UV-vis Absorbance by Vial Contents and Stopper 
Type in the Wavelength Range 300-400 nm.  Dilution correction was for 
sample dilution by analytic lab at the time of the UV-vis testing, not original 
manufacturer’s preparation.
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Figure 7: UV-Vis Spectroscopy Exemplar Graphs by Sample Contents and 
Stopper Type.
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observed biological wound healing activity in fibroblast cell cultures 
for succussed solvent controls at a magnitude higher than that of 
unsuccussed controls, though less than that of verum combination 
botanical source HMs [88].

The verum Gelsemium HM samples in the present study were 
unique, even if not globally different from all of the control samples. 
NPs in the present verum Gelsemium samples differed in specific 
characteristics from the control samples. Such differences included 
(a) larger NP mean sizes (130 nm) in the verum Gels 30C potency 
compared with all of the succussed controls and the unsuccussed 
controls with natural corks; and (b) the most stable negative zeta 
potentials for the verum Gels 200C potency (-47.75 mV) compared 
with other types of samples. Both of the latter findings suggest the 
possibility that the verum botanical material and the natural cork 
stopper contaminants from Quercus suber could have served to foster 
formation of larger, specific, stable verum nanostructures than in the 
controls [16-18]. Plant extracts including some from oak tree sources, 
are well established agents for generating nanoparticles from metal or 
silica precursors in solution [2,16,18,22,76,89-92].

For context, in our previous study [69] of homeopathically-
prepared silver (Argentum metallicum) at 6C, 30C, and 200C, the 200C 
verum NPs were highest in particle counts. All of the silver-source 
verum potencies were significantly larger sized, with more negative 
zeta potential values than the unsuccussed controls with natural corks 
(no silicone stopper condition was done in the prior study). In fact, 
the present patterns of zeta potentials across the 6C to 30C to 200C 
potencies in the current Gelsemium study for verums versus succussed 
controls were similar to those in our previous study of homeopathic 
silver verum medicine potencies and their respective succussed 
controls [69]. 

The primary difference in manufacturing methods between 
Argentum metallicum silver- and Gelsemium-derived HMs is that the 
bulk silver, but not the bulk Gelsemium, was triturated in dry lactose 
(mechanical grinding or milling) extensively to make the initial potency 
prior to introduction into the homeopathic serial dilution-succussion 
process. Trituration or grinding may have generated a given sized core 
silver NP onto whose surface the other materials, including triturated 
lactose, in solution adsorbed. In contrast, plants like Gelsemium enter 
into a liquid phase immediately as ethanolic herbal extracts (mother 
tinctures) for subsequent dilution-succussion processing into higher 
potencies. Core NPs from plant materials might be more variable in 
sizes and shapes, susceptible to further size reductions with additional 
succussions [50] compared with lactose-stabilized metal source core 
silver NPs. At the same time, intense ball milling or agitation in liquids 
can generate increasingly smaller silica NPs from its larger silicate 
precursors or from rice husk ash [59,60,93].

The present findings on botanical Gelsemium source HMs raise 
testable hypotheses for further study. For example, does the HM 
verum source material seed specific NP formation, generating a core 
for unique hybrid nanostructures? If so, silver and other metal-derived 
particles may be more size-consistent [44] than Gelsemium exosomes 
in serving as such a core across homeopathic potencies. Then the NP 
hybrid shell would form from adsorption of silica [94] made from 
silicates released over successive potencies by repeated succussions 
of glassware [49,53,95] and any other materials in the ethanol-water 
diluent solution, [51,96] e.g., including cork (Quercus suber extract) 
proteins and nucleic acids from natural cork stoppers (if used during 
manufacturing and storage [97]. At the same time, silica NPs could 
also form from the silicates succussed into solution, [21,98] with 

their nanostructures templated [99] and/or directed in part by the 
Gelsemium extract in the verums [2,21] as well as by the Quercus suber 
extract from the corks in vials with cork stoppers, cf. [17].

The more stable negative zeta potential values for the Gelsemium 
verums in this study and in our previous study of silver HMs versus 
controls [69] are consistent with adsorption of botanical and related 
organic materials [2] and perhaps silica [94] onto the nanoparticle 
surfaces. In turn, the resulting hybrid nanomaterials may serve as the 
solute-induced nanostructures and aggregates reported in homeopathic 
medicines by independent laboratories [49,67,100]. Any subsequent 
effects of these nanostructures on the structure of surrounding water 
at the nanoscale deserves additional study [45,100]. Studies using 
various technologies suggest a complex ordering of the surrounding 
fluid medium in contact with homeopathically-prepared medicines 
[73,101,102]. Compared with controls, disrupting the order within 
verum homeopathic materials in liquid form releases a measurable 
excess of heat and/or light [70,73,103]. 

Organic materials, e.g., food sources (herbs such as ginger, 
vegetables such as carrots, fruits such as grapes, or milk), can generate 
their own nanoscale structures, i.e., exosomes, with biological effects 
on animal tissues [104-106]. Notably, one study of HMs from botanical 
extracts found that repeated homeopathic succussions can progressively 
reduce the size of the plant herbal extract particles in solution into 
nanosizes as small as 14 nanometers [50]. Such an observation overlaps 
in part findings from studies in conventional nanotechnology on the 
ability of another method of agitation of solutions, i.e., sonication, to 
generate nanoparticles from organic materials [59] or salt solutions 
(NaCl, KI) [23]. In the present study, exosomes from the ethanolic 
extract of Gelsemium could have formed and transferred within the 
low potencies (6C) from the verum extract and from the Quercus suber 
materials released into solution of all cork-stoppered vials.

For research on HMs, zeta potential is emerging as a key variable 
indicating particle stability from surface properties of a given type of 
nanoparticle. The surface properties of NPs can change with adsorption 
of proteins in solution [107-109]. Consequently, adsorption of plant 
proteins from verum Gelsemium sempervirens and/or from Quercus 
suber released by the cork stoppers into verums and the controls 
stoppered by natural corks could have modified the NP zeta potentials 
measured. Ives et al. [53] demonstrated that multiple succussions of 
plain solvent per se in borosilicate glassware can change the pH of the 
solution, initially in an alkaline direction by releasing sodium that forms 
sodium bicarbonate. Further succussions later stabilized the solution 
closer to neutral pH [53]. Protein adsorption, ionic environment, and 
changes in pH are known to modulate NP zeta potential values [107-
110] as well as foster transitions between gel and nanoparticle states 
[111]. Quartz (silica-based glassware), but not polystyrene, cuvettes 
reportedly participate in propagating and amplifying the homeopathic 
“signal” in HM potencies [112].

If HMs involve adsorption of mixed types of nanomaterials onto 
one another as previously proposed [64], zeta potential measurements 
may be one useful technology for assessing successful generation 
of stable NPs in HMs from particular source and manufacturing 
materials. Zeta potentials, pH measurements, and other fundamental 
variables that change or reflect changes on NP surfaces may also assist 
in studying the impact of additional variations of the container and 
stopper materials [95,113] and solvent reagents [114,115] in making 
HMs.

The ability of glass, rubber, plastic and other packaging materials to 



Citation: Bell IR, Muralidharan S, Schwartz GE (2015) Nanoparticle Characterization of Traditional Homeopathically-Manufactured Gelsemium 
sempervirens Medicines and Placebo Controls. J Nanomedine Biotherapeutic Discov 5: 136. doi:10.4172/2155-983X.1000136

Page 8 of 13

Volume 5 • Issue 3 • 1000136
J Nanomedine Biotherapeutic Discov
ISSN: 2155-983X JNBD an open access journal 

introduce bioactive particles and nanostructures into liquid medicines is 
well known, even in conventional pharmacy [54,95,113,116,117]. Silica 
NPs from glassware can induce protein aggregation from any proteins 
they contact in solution to mobilize immune reactivity [54,95,113]. 
Notably, silica nanostructures can survive drying [94,118-120]. At the 
same time, most homeopathic manufacturers ultimately pour or spray 
and dry their final liquid potency onto lactose sugar pellets for longer-
term storage and administration. Lactose is a known reducing and 
capping agent for nanoparticle generation from precursor materials as 
well as carrier for other nanostructures [67,121-127]. 

Prior UV-vis spectroscopy tests on Gelsemium botanical extract at 
an extremely low potency such as 1C apparently reveals an absorption 
maximum around 210 nm, with absorption shoulders at 280 and 330 
nm [32]. However, even by a greater dilution factor of Gelsemium 
extract at 3C potency (still a low potency in homeopathy), the UV-vis 
absorbance signal becomes greatly attenuated. Of note, the Gelsemium 
botanical extract source materials began as an ethanolic herbal extract 
in the present study as compared with the lactose-triturated (milled) 
silver source materials in our previous study of HMs [69]. Thus, lactose 
was not involved in making the current verum samples.

Ethanol per se could be a factor in some of the UV-vis peak 
absorbance findings. The 95% ethanol solvent per se reportedly has an 
absorbance lower limit of 205; while water has an absorbance lower 
limit of 190 (http://www.chem.ucla.edu/~bacher/UV-vis/uv_vis_
tetracyclone.html.html). On the other hand, the unsuccussed control 
vials with silicone stoppers in this study, which contained the same 
ethanol-water solvent as other sample types, had significantly lower 
average UV-vis absorbance at wavelengths between 300-400 nm versus 
most other samples, including the unsuccussed controls with cork 
stoppers. Ethanol concentration can govern particle sizes of silica NPs 
formed in simple synthesis systems with sonication [93,128].

As plant material released by the corks [2,21,22,129,130], Quercus 
suber extract could also serve as a botanical reducing and capping agent 
[16,17] at more potencies than could the serially-diluted HM source 
botanical Gelsemium to generate silica nanoparticles from precursor 
materials such as silicates or silver NPs from any ionic silver released 
from the source verum Argentum Metallicum NPs in our previous 
study. As a result, we had added the set of unsuccussed controls with 
silicone stoppers to the present design to compare with the natural 
corked vials in the present study. 

However, as the verum source material Gelsemium sempervirens in 
the present study was, like the natural corks, also a plant-derived extract 
rather than a metal, we anticipated greater difficulty in distinguishing 
plant medicine verums from succussed controls with cork stoppers. 
Identifying a specific biological assay for activity of the different samples 
might help distinguish between Gelsemium versus Quercus suber-
related effects on recipient living systems [16,17,28,29,32,35,74,75]. 
Including silicone stoppered controls in future NP characterization 
studies of other HMs, including metal, animal, and other plant sources, 
would be helpful.

The present set of findings for the unsuccussed solvent controls 
with silicone stoppers is revealing. In the current study, the unsuccussed 
controls with silicone stoppers had the fewest (almost no) nanoparticles. 
Like the phenol-capped jug ethanol diluent, particle zeta potentials in 
the UC-silicone vial samples were closest to 0 on average (-5.63 mV), 
with the poorest stability of any type of sample vials in this study. 
The UV-vis spectroscopic absorbance magnitude for wavelengths in 
the 300-400 nm region and up to 900 nm was significantly lower for 

the UC-silicone vials than for most other types of samples, including 
the UC-CORK vials, suggesting the presence of different materials in 
solution for the UC-silicone controls versus the corked samples of 
verums, succussed and unsuccussed controls. 

The observation of greater UV-vis absorbance in the V30 (verum 
30C), versus both lower V6 (6C) and higher V200 (200C) verum 
potencies is notably similar to the more exaggerated pattern of greater 
absorbance in the SC30, succussed controls 30C, versus both lower SC6 
(6C) and higher SC200 (200C) succussed control potencies. These data 
suggest that there is a larger release of bulk and other sizes of materials 
from the glassware inner walls and corks when they have undergone 
more total succussions (i.e., 30C vs 6C) and/or are newer and earlier 
in the Korsakovian re-use of the same container and stopper materials 
(i.e., 30C vs 200C).

Overall, the current data indicate that homeopathic manufacturing 
methods (multiple succussions or intense agitation) and traditional 
materials (GELS plant extract, ethanolic solvent, glass vials, natural cork 
stoppers) can generate nanomaterials not seen in unsuccussed silicone-
stoppered glass vials of ethanolic solvent alone. Contrary to claims of 
skeptics, such findings indicate that HMs made with materials and 
methods described by Hahnemann, are not “just” the same as placebo, 
i.e., not just plain solvent (water or ethanol) in a bottle. 

Biotherapeutic implications

At the same time, do the findings have implications for 
biological effects and therapeutics of HMs? The present data create 
a nanotechnology context for the extensive prior research literature 
on biological and behavioral effects of homeopathic Gelsemium 
sempervirens [26-32]. In homeopathic clinical practice, choice of a 
specific HM such as GELS is based upon clinical pattern matching the 
integrative biopsychosocial symptom picture of the affected patient to 
the previously-documented effects of specific source materials on living 
systems [42]. The goal is to induce adaptive bioplasticity responses that 
reverse the direction of pre-existing acute or chronic disease processes 
[131-136]. Hahnemann also focused on eliciting the organism’s 
“counter-action” to the correctly-matched HM [43]. He explicitly tried 
to minimize the drug toxicity of his day by using low doses while still 
eliciting the counter-action responses, i.e., biological adaptation in 
contemporary scientific terms. The clinical approach of homeopathy 
relies upon the reaction of the organism or cell to the agent to evolve 
across the system, not upon the direct local actions or higher dose-
response effects typical of conventional pharmaceutical agents. 

For lower potency (less diluted, less succussed) HMs made from 
plants such as GELS or other botanical agents, multiple succussions 
could generate nanosized structures as small as 14 nm [50]. As noted 
above, nanosized plant exosomes might play a direct biological signaling 
role with associated adaptive responses. Exosomes can directly engage 
cell signaling mechanisms in the body [104,137-139]. However, higher 
homeopathic potencies such as 30C or 200C (i.e., more diluted and 
succussed forms) of GELS or other HMs may need to involve source-
derived electromagnetic or optical signaling by the homeopathic agent 
to the cell danger response pathways of the recipient to elicit adaptive 
responses [66,71,72,140]. 

In terms of possible biotherapeutic mechanisms for both lower 
and higher potencies, investigators have proposed low-dose models 
of nanoparticle-initiated hormesis, biological signaling, and other 
endogenous bioamplification phenomena in cells or organisms as 
complex adaptive systems [64,140-143]. Hormesis is a now widely-

http://www.chem.ucla.edu/~bacher/UV-vis/uv_vis_tetracyclone.html.html
http://www.chem.ucla.edu/~bacher/UV-vis/uv_vis_tetracyclone.html.html
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recognized low-dose elicited phenomenon that includes low dose 
stimulation and high dose inhibition, i.e., a marker of biological 
plasticity [144-148]. Nanoparticles of many different types are capable 
of initiating hormesis [132-134, 149]. 

Moreover, others have demonstrated thermal changes [70,100,150], 
as well as optical [72,73,151] and electromagnetic [70,71,100,152] signal 
emissions from HMs. Such HM-related information could provide its 
own unique signal to set endogenous adaptive events into motion. Still 
others propose quantum macro-entanglement [153,154] or aqueous 
nanodomains [155] to account for effects of the higher homeopathic 
potencies in HMs. 

Similar properties are consistent with well-known emergent 
properties of nanomaterials of various sources, sizes, shapes, and 
surface chemistries, including thermal, electromagnetic, optical, 
and even quantum mechanical properties for certain very small NPs 
(<10nm in size) [156-161]. Furthermore, small NPs (e.g., 10-150 
nm size range of viruses) [162] can serve as virus-like particles and 
individually-salient cell danger signals to activate immune system and 
other biological responses of the endogenous cell defense response 
network [66,163,164].

Conclusions
The current data support the conclusion that (a) homeopathic 

manufacturing materials and methods generate nanoparticles; (b) the 
verum Gelsemium HMs contained NPs different for specific particle 
characteristics from those in control samples (e.g., largest size NPs were 
in verum Gelsemium 30C; most stable negative zeta potential value was 
in verum Gelsemium 200C); (c) compared with silicone-stoppered 
unsuccussed controls, the natural cork stoppers may have added 
varying amounts of organic plant material (presumably unfiltered bulk 
Quercus suber extract) into solutions of the verums, succussed controls, 
and unsuccussed controls-CORK. Succussions per se generated the 
largest number of nanoparticles in the succussed controls within this 
study, possibly related to release of not only cork extract, but also 
silicates from the glass container inside walls. Unsuccussed solvent in 
glass vials with silicone stoppers differed from most of the other types 
of samples with the findings of fewer NPs and poorer zeta potential-
assessed stability of particles that were present. 

The present study requires replication and extension to additional 
HM source materials [165]. Nonetheless, these data represent further 
evidence for the presence of relatively stable nanostructures in HMs 
prepared in borosilicate glassware with succussions and traditional 
cork stoppers, as compared with unsucussed diluent controls with 
silicone stoppers [69]. Future studies should further examine from a 
nanotechnology perspective the relative contributions of each of the 
(a) reagents (source material, lactose when used for mechanical milling 
and mixing, ethanol, water), (b) processing/packaging materials 
(container sizes, shapes, materials (borosilicate glass, soda-lime glass, 
plastic) [53], stopper materials (natural cork [69], silicone, rubber)), 
and (c) methods (trituration/milling and serial dilutions followed by 
succussions) involved in traditional homeopathic manufacturing and 
their impact on the biological activity [38,65,88,141,166-168]. 

Variability in particle surface properties and materials involved in 
NP stabilization might contribute to previous findings of variability over 
time in UV-vis findings on HMs versus controls [85,169,170]. Finally, 
subsequent research should also evaluate the nanostructure and surface 
stability characteristics of HMs as correlates of their biological activity 
[26,27,31,32,132,133,171-174] in comparison with succussed and 

unsuccussed controls [65,78,141,175]. Prior research has demonstrated 
low-dose hormetic effects triggered in recipient organisms by NPs of 
various source materials [132-134,149,171]. Consequently, examining 
NPs in various HMs, especially at higher homeopathic potencies such 
as 30C and 200C (i.e., low conventional doses), for these types of low-
dose-dependent, nonlinear dose-response patterns, rather than direct 
pharmacological ligand-receptor effects, merits further investigation 
[31,131,142,176]. 
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