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Nanotechnology in biomedical research has emerged as an 
interdisciplinary science that has quickly found its own niche in clinical 
methodologies including imaging, diagnostic, and therapeutics. The 
nano-based technology is expected to expand multi-directionally 
to provide unmet needs in medicine and has potential to generate 
unprecedented innovations that will bring breakthrough treatments 
to various human diseases, including cancer. Broadly accepted but 
generalized definition of cancer nanotechnology is that man-made 
particles that are size about 100 nm in a dimension. According to the 
size based definition, many different nano-scale delivery platforms 
fall into this category and various materials have been used for the 
construction, including liposomes [1], polymer-based platforms [2,3], 
dendrimers [4] [5], metal nanoparticle [6,7], nanocrystal [8], silicon- 
and silica-based nanoparticle [9-11] and others. The major advantage 
of nanomedicine is multifunctionality that allows for delivery of large 
amounts of payload such as therapeutics or imaging contrast, active 
targeting, timed release, and stealth effect for avoidance of uptake from 
phagocytes. Consequently, a single nanoparticle can be implicated 
under multiple methods to perform multi-task and can be utilized to 
serve multiple functions. 

Therapeutic efficacy of nanotechnology based particles has been 
evaluated in clinical trials worldwide, and approximately 90 clinical 
trials for cancer treatments are currently underway. (clinicaltrial.gov). 
An excellent example of multifunctionality of nanotechnology has 
been achieved by encapsulating doxorubicin in PEGylated liposome 
to significantly prolong circulation half-life (Doxil® marketed and 
distributed in the U.S. by Ortho Biotech Products, L.P., Bridgewater, 
NJ, and Caelyx® distributed outside the U.S. by Schering-Plough 
Corporation; Kenilworth, NJ). Long-circulation time of liposomes 
by the STEALTH® principle is taken for granted today as one of 
the functionality that nanoparticles can acquire for drug delivery. 
Doxorubicin and other anthracyclines are one of the most commonly 
used anti-cancer therapeutics for multiple cancer types. However, 
antracyclines causes an irreversible cardiac toxicity (congestive heart 
failure) perhaps due to redox formation, and antracycline associated 
cardiac toxicity is cumulative over the life-time across all antracyclines. 
The efficacies of Doxil containing regimen are similar to that of 
conventional doxorubicin treatment, but the nanoparticle-mediated 
deliveries have superior post-treatment clinical data profiles for cardic 
toxicity [12,13]. Currently, this regimen is most widely used for breast 
and ovarian cancer treatments as a single agent or in combination with 
other agents. The most notable advantage of the PEGylated liposome-
mediated delivery method is in the serum half-life since the PEGylated-
liposomal formulation extends the half-life to longer than 50 hours, 
consequently improving a quality of life on patients undergoing the 
therapy [1]. Furthermore, Doxil significantly reduces the total uptake 
by mononuclear phagocytes, in turn increases the plasma half-life 
when compared with conventional drug delivery methods or that of 
non-PEGylated liposomal doxorubicin. Albumin-bound paclitaxel 
(Abraxane®) is another example of an application of nanotechnology. 
Albumin-bound paclitaxel was developed to overcome this challenge 
by reducing toxicity profile of conventional paclitaxel that is used with 
cremophor that causes hypersensitivity reaction and neurotoxicity [14]. 
For imaging, iron oxide nanoparticles (combidex®) in a conjunction 
with magnetic resonance imaging (MRI) provides important staging 
information. 

While the field of nanomedicine is expected to bring the major 
breakthrough for cancer therapy and imaging, the FDA approved 
nanoplatforms have not reached to a comprehensive multi-functionality 
yet and still lacking ability to target tumor, which compromises the 
efficacy and leads to adverse effect. While active targeting has been 
the major asset for multifunctional nanoparticles, the vast majority 
of FDA approved nano delivery systems relies on passive targeting 
(i.e., enhanced permeation and retention (EPR) effect) through leaky 
vessels, which is a hallmark of tumor vasculature. However, increased 
interstitial fluid pressure (IFP) contributes to decreased transcapillary 
transport as well as retention of the nanoparticles in the tumors. 
It is well established that the IFP is increased in most solid tumors 
due to blood vessel leakiness, lack of lymphangiogenesis, interstitial 
fibrosis and a contraction of the interstitial space mediated by stromal 
fibroblasts [15,16] [17]. While IFP is fairly uniform throughout the 
necrotic core of solid tumors, IFP is significantly less near the periphery 
of the tumor mass [18-20]. For this reason, nanoparticles accumulate 
within the periphery. The IFP is about 0 mmHg in most normal tissues 
but it increases to 14 to 30 mmHg in tumor [21]. Therefore, it presents 
an obstacle to treatment as it leads to a decrease in the uptake of drugs 
or therapeutic molecules into a tumor. 

A possible solution for aforementioned challenges might be 
an active targeting strategy, which can be achieved via grafting 
target-specific ligand on the surface of the nanoparticles for specific 
recognition of the surface receptor of the target cells at the diseased 
site. This strategy is similar to an antibody based biological therapies 
in attempt to target the surface receptor that is differentially expressed 
on the surface of the cancer cell or tumor components. To address 
this, many attempts have been made to increase the effectiveness 
of active targeting of nanoparticles to target cancer cells or tumor 
microenvironment. For example, nanoparticles were conjugated with 
Her2 antibody to target HER2+ cancer cells and increase internalization 
into the cells for superior delivery of payload [22,23]. Despite these 
efforts, these delivery strategies still primarily require extravasation of 
delivery carriers from discontinuous vessels where the size of openings 
varies depending on the stage and location of the tumor [24,25]. 
Furthermore, given the importance of tumor stroma in tumor survival 
and metastasis, successful delivery of anti-neoplastic agent to the tumor 
is unlikely to be lethal enough since the vast majority of tumor stroma 
component are terminally differentiated and resistant to this class of 
agent. Therefore, development of nanoparticles conjugated with ligand 
that selectively targets stromal component and loaded with payload 
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that exerts cells killing effect specifically to the stromal cells are equally 
important. Another unique attempt of active targeting is a cell based 
delivery of non-cytotoxic nanoparticles. This strategy uses immune 
cells or stem cells that have ability to recognize and move toward the 
tumor environment against high IFP. Since the most of immune cells 
are highly phagocytic, nanoparticles are likely to be internalized into 
the cells without killing a host cell. It is critical to develop a protocol 
to control the degree of nanoparticle internalization to remain the cell 
motility high. 

In this article, we want to emphasize an urgent necessity in the 
development of active targeting strategies for the enhancement 
of therapeutic efficacy with minimal toxicity. In the field of 
nanotechnology, a number of nano- micro-particles made by variety 
of materials have been developed for the delivery of drug and contrast 
agents. For successful active targeting, the field urgently needs novel 
ligands for unique surface receptor that allows for conjugation to 
the nanoparticles in a highly controlled fashion. While humanized 
monoclonal antibodies is the mainstay for the development of 
active targeting nanoparticles today, the cost for manufacturing the 
humanized monoclonal antibody conjugated nanoparticles maybe the 
major bottleneck for the clinical translation. As alternative of antibody, 
a variety of new class of ligands have been developed to date including 
aptamer, peptide, chemically synthesized ligands. Chemical synthesis 
can be cost ineffective procedures if multiple synthesis and purification 
are required. Peptide ligand that is short enough to escape from 
antigen presentation is also great alternative for easy and cost-effective 
synthesis and conjugation. In fact, RGD cyclic peptide has shown 
excellent targeting effect when conjugated with nanoparticles [26-
29], though the conjugation of such to the nanoparticles accelerates 
the clearance and shorten the serum half-life of nanopartcles [30]. 
Aptamers are emerging class of ligands and structurally distinct RNA 
and DNA oligonucleotides that can form tertialy structure and can 
bind proteins at high (nM) affinity. They have been extensively studied 
as therapeutics, diagnostics, and more recently as biosensors [31-34]. 
The major disadvantage of aptamer is the serum stability, and many 
attempts have been made to stabilize the oligonucleotide against 
nucleases. Thiophosphate oligonucleotide aptamers (thioaptamers) 
are suitable candidate ligands for active targeting due to their unique 
chemical properties including high affinity binding, nuclease resistance, 
ease of synthesis and chemical modification, cost-effective synthesis, 
and lack of immunogenicity. For example, rencently developed 
methods for combinatorial selection of thioaptamers from random 
or high-sequence-diversity libraries are based on tight binding to the 
target protein. Through a collaborative effort, we have successfully 
indentified high affinity thioaptamers to E-selectin and CD44 for 
the targeted delivery to the inflamed tumor vasculature and cancer 
cells [35,36]. Our previous works have demonstrated that E-selectin 
thioaptamer (ESTA) conjugated liposomes result in effective targeting 
to the tumor vasculature without shortening the serum half-life [37]. 
Furthermore, a conjugation of ESTA to porous silicon particles also 
improved the targeting effect to the bone marrow where E-selectin 
expresses constitutively [38]. The field of nanomedicine has proved a 
feasibility of active targeting using different types of ligand as well as 
nanoparticles. To this end, we emphasize a need of novel ligand beyond 
antibodies that targets different tumor component including those 
in the tumor microenvironment to achieve comprehensive cancer 
treatment.
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