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Commentary

‘9+2’ cilia/flagella
The eukaryotic cilia/flagella have a ‘9+2' structure that is highly

conserved in structure with 9 pair of outer microtubule doublets; one
of these filaments is complete, and is known as the A microtubule;
while the other microtubule is incomplete and is known as the B
microtubule. These are present in the periphery and surround the two
centrally placed microtubule singlets known as the central pair
apparatus. These hair-like extracellular organelles can propel cells
through an aqueous environment or also circulate the fluid
surrounding them. This biological nano-machine without the
membranous covering is known as the axoneme. With heterogeneity in
their sizes (few μmm to few mm), these flexible extensions are
conserved across evolution. A cross-section of the flagellum/cilium
reveals the following sub-ciliary structures, the Outer Dynein Arms
(ODA), Inner Dynein Arms (IDA), Dynein Regulatory Complex
(DRC), Radial Spokes (RS) and the Central Pair (CP) apparatus that
harbor several proteinaceous projections. These and other less evident
structures are essentially protein complexes within the axoneme that
operate in synchrony to generate the periodic beating that is typical of
the flagella waves.

It is known that the second messenger, cyclic adenosine
monophosphate (cAMP) regulates flagellar movement. Further, the use
of pharmacological inhibitors on isolated axonemes of various flagellar
mutants that have been mutated in the ODA, IDA, DRC, RS and CP
have implicated cAMP-dependent protein kinase (PKA) and other
phosphoenzymes in the dynein-driven microtubule sliding [1-6]. The
PKA holoenzyme is made up of two regulatory (R) and two catalytic
(C) subunits. Inside the cell, it is always found anchored to a scaffold
protein; namely, the A-Kinase Anchoring Protein (AKAP) via its R
subunit. The high-affinity binding partners of the R subunit of PKA [7]
that were first discovered in 1982 are now known to be present in
several organisms. With the RII subunit as bait, AKAPs are
conveniently identified using the classical overlay assay [8].

A-Kinase Anchoring Proteins
All known AKAPs share little sequence homology; however, their

common features include - a region for targeting it to a particular
cellular location, an Amphipathic helix (AH) that binds to the
Dimerization/Docking domain (D/D; or, R2D2 domain) of the PKA R
subunit, and motifs other than these two for the recruitment of an
array of molecules involved in signaling [9]. It is this AH that offers as
one of the most important parameters for a protein to be designated as
an AKAP. In fact, a recently conducted study used an in silico

approach to determine AH-containing proteins that led to the
identification of candidate AKAPs [10]. And, when RII overlays were
performed in ciliated cells, a number of AKAPs were revealed; at least
7 were present in the fibrous sheath surrounding the mammalian
sperm axonemes [11], one was found in the human respiratory tract
cilia [12] and two (AKAP97 and AKAP240) in the Chlamydomonas
flagellar axonemes [13]. The analysis of flagellar mutants lacking
specific axonemal complexes revealed that AKAP97 is the radial spoke
protein, RSP3; whereas, AKAP240 is localized in the CP. This finding
indicates that both the RS and CP have a role in regulating dynein
motors. Nevertheless, of the 23 proteins found to be present in the RS
of the Chlamydomonas flagella, there is no resemblance whatsoever to
the PKA C subunits [14]. And, the entire RS protein complex harbors
features that are related to the PKA-AKAP signaling module. For
example, (i) the N-terminus of RSP3 functions to anchor the entire RS
to specific sites in the axoneme; (ii) RSP3 is known to form
homodimer [15], and each of these monomers contains an AH for
interacting with RSP7 or RSP11 [16], both containing the RII domain.
Both these proteins lack any features required for cAMP signaling
[17,18]. Therefore, it is believed that the Chlamydomonas flagella RS
utilizes the AKAP-PKA signaling module to tether different molecules
for its functioning; but, may not utilize cAMP in its transduction.
Figure 1 describes this basic signaling module.

Figure 1: The basic signaling module (AKAP-R2D2 proteins). This
module is found all over cells, including the cilia and flagella of
eukaryotes. Note that protein kinase A consists of 2 Regulatory and
2 catalytic subunits (R2D2). Domains on AKAP for tethering
signaling molecules other than R2D2 exist. This entire module is
normally anchored on to some organelle inside the cell.
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R2D2-like proteins
There is accumulating evidence for the presence of a number of

proteins (ropporin, ropporin-1-like, CABYR and SPA17) that bind to
AKAPs harboring the R2D2 domain have been discovered in
mammalian cells harboring cilia or flagella [18,19]. In addition, several
RII proteins have been discovered that invariably harbor the D/D
domain. In fact, the flagellar proteins from Chlamydomonas, viz. the
two RS proteins (RSP7 and RSP11) contain the R2D2 domain (RII
fold) -what is also known as the DPY30 domain. These proteins share a
similar secondary and tertiary structure like other R2D2 proteins and
also bind to amphipathic helices of AKAPs [16,20,21]. In yet another
study, an AKAP interactor, MYC-binding protein-1 (MYCBP-1) was
found to bind to the AH of AKAPs. c-MYC is a transcription factor
and when complexed with MYCBP-1 it forms and regulates
transcription, thereby enhancing the transcription of genes controlled
by the E-Box element and leading to erythrocyte differentiation
[22,23]. MYCBP-1 was found to be present in the nucleus and also the
membranous networks surrounding the nucleus. This probably assists
c-MYC trafficking between both the compartments. Additionally, it
forms a ternary complex with AKAPs and MYCBPAP in the nucleus. It
probably uses its RII-like domain to bind to the AKAPs and its coiled-
coil region to bind to other partners such as c-MYC and MYCBPAP
[24]. The same group proposed that MYCBP-1, PKA and AKAP95
form a ternary complex in the nucleus to negatively regulate the kinase

activity [25]. When outside the nucleus and especially during the
interphase, MYCBP-1 interacts with other AKAPs, such as AKAP149
in the sperm mitochondria and its splice variant S-AKAP84 [26,27];
with BIG2, an AKAP in the trans-Golgi network [28].

A MYCBP-1 orthologue from the Chlamydomonas flagella was
found to be a Flagella Associated Protein 174 (FAP174). When an in
silico approach, was undertaken, FAP174 was compared with
MYCBP-1 from several species of animals, fungi, plants, and
protozoans. We found a significant sequence identity at the protein
level; the N-terminal region was observed to be 43-87% similar; this
region also spans the helix-turn-helix fold that is typical of all the RII
clan of proteins (i.e. R2D2-like proteins such as RII and DPY-30).
When a phylogenetic analysis was conducted with all these sequences,
we found that FAP174 formed a cluster with those from Volvox and
protozoans; it seemed to have branched from the mammalian lineage
of MYCBP-1. When the secondary structure was predicted, the C-
terminus helix exhibited a strong propensity to form a coiled-coil
motif, the latter being known for protein-protein interaction.
Therefore, it was speculated that FAP174 harbors two molecular
modules, one for binding to the AH of an AKAP and the other for
partnering with proteins [29]. One of these modules was tested for
interaction with a flagellar protein containing AH, viz. AKAP240 and
RSP3.

No. Name of the protein Sub-cellular location Source Reference

 Type I: AKAP    

1 S-AKAP84 cytoplasm Human HeLa cell line [25]

2 AKAP95 nucleus Human HeLa cell line [25]

3 AKAP97 (RSP3) flagella Chlamydomonas reinhardtii [13,15]

4 AKAP189 sperm mitochondria Mus musculus [26,27]

5 AKAP240 flagella Chlamydomonas reinhardtii [13]

6 BIG2 trans-Golgi network Mus musculus [28]

 Type II: R2D2 domain-containing    

1 RII various locations All organism [7]

2 DPY30 domain flagella Chlamydomonas reinhardtii [21]

3 Ropporin sperm flagella Mus musculus [18,19]

4 Ropporin-like sperm flagella Mus musculus [18,19]

5 CABYR sperm flagella Mus musculus [18,19]

6 SPA17 sperm flagella Mus musculus [18,19]

7 MYCBP-1 (AMY-1) sperm mitochondria Human HeLa cell line [22-26]

8 FAP174 flagella Chlamydomonas reinhardtii [29]

Table 1: List of AKAPs and R2D2 domain-containing proteins mentioned in this text. This work emphasizes on the AKAPs and the R2D2
domain-containing proteins, both known to interact with each other.

Using conventional protein-protein interaction experiments, it was
shown that FAP174 indeed interacts strongly with the CP AKAP240
and very mildly with RSP3. This indicated that FAP174 harbors an RII-
like domain at the N-terminus and its dimerization property was

tested. FAP174 dimerizes via a cysteine disulphide bridge and is being
added to the growing list of R2D2 proteins. The findings essentially
bring to light the roles of all those proteins that harbor the RII-like
domain and form complex assemblies’ partnering with AKAP and

Citation: D’Souza JS (2017) MYC-Binding Protein-1 is an R2D2 Protein. J Cell Signal 2: 161. 

Page 2 of 3

Volume 2 • Issue 3 • 1000161J Cell Signal, an open access journal
ISSN:2576-1471

doi: 10.4172/2576-1471.1000161



other signaling molecules, thereby revealing a new insight in the
composition as well as functioning of the CP apparatus. Our group
found independently that FAP174 is a conserved structural part in a
novel molecular complex present in the C2 microtubule of CP
apparatus. We surmise that FAP174 is definitely not a physiological
interactor of RSP3 [29]. Its presence in the CP, basal body or TZ,
nucleus and cytoplasm could indicate that it is trafficking between the
various locations of the Chlamydomonas vegetative cell after synthesis.
In these locations, it might be binding to additional AKAPs and the
same has not yet been determined. Circumstantially, AKAP450 was
found to be present in the proteome of the human and fly centrosome
[30,31]. Taken together, FAP174 is a versatile molecule and might be
involved in the assembly of several protein molecular complexes in
distinct cellular compartments (Table 1).

Conclusions
Emerging classes of proteins that harbor the D/D domain and

possess an RII fold have been identified in sperms, flagella and several
other cell types as well. These appear to be like RII but do not
participate in cAMP signaling or phosphorylation. Currently, sperm
proteins such as ropporin, ropporin-1-like, CABYR and SPA17 have
been identified with the R2D2-like domains. We now add FAP174 as a
new protein to this list.
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