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Introduction 

In an attempt to identify individual contributory genes, various 
types of genetic variants are being examined. Genome-wide association 
with many single nucleotide polymorphisms (SNPs) suggest that 
commonly found variants confer a 1.2-3 fold increase in risk for ASD 
[7]. Additionally, rare and genetically identifiable cases of ASD or 
syndromic ASDs are being explored. They include mutations of single 
genes and copy number variations (CNVs). While it remains unclear 
if rare variants and common variants seen in ASD share alterations in 
similar or overlapping molecular cascades and networks, rare variants 
are often associated with substantially increased risk for ASD than 
common variants, and thus study of rare variants is the best currently 
available approach towards identification of ASD mechanisms.

22q11.2 CNV represents a Syndromic ASD
Our group has focused on human chromosome 22q11.2 as a 

reliable genetic risk factor for ASD. Deficits in social behavior, skills and 
cognition have long been noted in 22q11.2 hemizygous children [8-15]. 
Fourteen to 50% of individuals with 22q11.2 hemizygosity examined 
for ASD are reported to meet diagnostic criteria [12,16-21]. Patients 
with 22q11.2 duplication meet criteria for ASD when evaluated using 
the Autism Diagnostic Observation Scale (ADOS), Autism Behavior 
Checklist (ABC), and Childhood Autism Rating Scale (CARS) [22-
25]. However, patients with 22q11.2 CNV are often referred for formal 
psychiatric evaluation only after they exhibit cognitive, social and 
behavioral problems (i.e., ascertainment bias). Moreover, the number 
of duplication cases so far identified is not large enough to permit 
computation of the true rate of ASD. Nevertheless, when screened from 
the general ASD population, 22q11.2 hemizygosity and duplications 
have been identified as rare variants in many studies [26-34].

22q11.2 CNV and other Neuropsychiatric Disorders
Individuals with 22q11.2 hemizygosity exhibit other 

neuropsychiatric disorders, including severe, mild and borderline 
mental retardation (50-90%) [12,13,35-39], attention-deficit/
hyperactivity disorder (35-55%) [12,38,40-44], obsessive compulsive 
disorder (8-33%) [41-45], schizophrenia (~25%) [35,43,45-52], 
generalized anxiety disorders (10-28.6%) [12,42,43], schizoaffective 
disorder (2-8%) [41,44,45,48], and other behavioral problems as well as 
phobias and anxiety disorders [12,40-45].

Karayiorgou and colleagues [53] pointed out that ASD and most 
diagnoses noted above, except schizophrenia, might not be genuinely 
associated with 22q11.2 hemizygosity. It is true that high rates (~25%) 
[50] of schizophrenia are associated with 22q11.2 hemizygosity [35,43,
45,47,48,54]. Clearly, more evidence is needed to associate 22q11.2
hemizygosity with additional diagnoses. However, ASD diagnosis
was made by experienced raters and psychiatrists based on validated
and reliable scales, such as the Autism Diagnostic Interview—Revised
(ADI-R) and Diagnostic and Statistical Manual of Mental Disorders-IV
(DSM-IV), in studies that reported higher than expected rates of ASD
[16-20]. It is premature to dismiss the notion that heightened rates of
ASD also are associated with 22q11.2 CNV.
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Abstract
Copy number variation (CNV) of human chromosome 22q11.2 is associated with an elevated rate of autism 

spectrum disorder (ASD) and represents one of syndromic ASDs with rare genetic variants. However, the precise 
genetic basis of this association remains unclear due to its relatively large hemizygous and duplication region, 
including more than 30 genes. Previous studies using genetic mouse models suggested that although not all 22q11.2 
genes contribute to ASD symptomatology, more than one 22q11.2 genes have distinct phenotypic targets for ASD 
symptoms. Our data show that deficiency of the two 22q11.2 genes Tbx1 and Sept5 causes distinct phenotypic sets 
of ASD symptoms.

Genes are currently the best available entry point for the studies 
aimed at understanding the brain mechanisms underlying autism 
spectrum disorders (ASD). Early twin studies of ASD indicated the 
proportion attributable to genetic factors at about 90% [1-5]. Although 
a more recent, large-scale study with recent ASD criteria has estimated 
a lower rate of ASD heritability [6], it is still safe to conclude that genetic 
variation confers a considerable risk for ASD.
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While some subtle differences have been noted in symptomatic 
elements between a small sample of children with 22q11.2 hemizygosity 
and idiopathic autistic children [19], it is unclear if such subtle 
differences in a small sample size invalidate the ASD diagnosis given 
the generally variable nature of symptomatic presentation in idiopathic 
ASD. Similarly, Eliez [55] reported that children with 22q11.2 
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It has also been suggested that underlying processes (e.g., social 
motivation and social skills) may be different between 22q11.2 
associated and idiopathic ASDs. Although individuals with idiopathic 
ASD are impaired in both motivation for social interaction with others 
[61-63] and processing of social cues and understanding the mental 
state of others (known as theory of mind) [64,65], a high degree of 
heterogeneity is noted and in fact, some display genuine signs of social 
motivation but lack the skills [61]. Thus, these processes do not provide 
a clear-cut discriminating power to differentiate between idiopathic 
and 22q11.2-associated ASD.

Although most of 22q11.2-associated neuropsychiatric disorders 
are not found at a higher frequency among individuals with the 22q11.2 
microdeletion than in cohorts with other developmental disorders 
associated with learning disabilities [53], it should be noted that in 
the idiopathic ASD population, ASDs are associated with high rates of 
comorbidity with severe cognitive impairments [66-69] and intellectual 
disabilities [70]. Similarly, individuals with 22q11.2-associated ASD 
have high rates of developmental delays and cognitive impairments 
[12,13,35-39,71,72]. Given this comorbidity, it is not certain if there 
is a specific brain development and functional mechanism that is so 
selectively affected that only ASD is manifested without comorbidity.

It is true that a significant enrichment for 22q11.2 deletions was 
not found in ASD samples in some studies [53]. Ogilvie and colleagues 
reported no case with 22q11.2 deletion among 103 ASD patients 
from multiplex families [73], but this sample size is not sufficient for 
detection of a rare CNV. In another study of simplex and multiplex 
ASD cases, 22q11.2 duplications, but not hemizygosity, were enriched 
[74]. However, many other studies reported enrichment for 22q11.2 
duplications and hemizygosity in ASD samples [26-33], and a combined 
analysis of studies with stringent criteria demonstrated statistically 
significant enrichment of 22q11.2 CNV in 3,816 ASD samples [34]. 
Statistically significant enrichment of any rare CNV is generally difficult 
to achieve after correction for multiple comparisons, due to its very 
rare nature [34]. Detection of 22q11.2 hemizygosity in ASD samples in 
simplex and multiplex cases is additionally complicated by the relatively 
higher rates of de novo as opposed to inherited hemizygosity [75-78] 
and the opposite trend for duplications [79-82].

It was suggested that diagnoses of ASD might reflect misdiagnosis 
of social impairments actually associated with premorbidity in 
schizophrenia [53]. Eliez [55] reported that 56% of children with 
childhood-onset schizophrenia are first diagnosed with pervasive 
development disorder (PDD), while rates for diagnosis of autism during 
childhood and schizophrenia later in life are less than 5%. However, one 
retrospective analysis indicates that half of schizophrenic patients meet 

the genuine diagnostic criteria for ASD during childhood [83]. More 
work is needed to dismiss the possibility that 22q11.2 hemizygosity 
increases susceptibility to both schizophrenia and ASD.

Mouse Models of 22q11.2 CNV
It has not been feasible to ascertain the impact of dose alterations 

of individual 22q11.2 genes within the 1.5-6Mb CNV region on 
various phenotypes in humans. Association of single nucleotide 
polymorphisms (SNPs) on the remaining copy of 22q11.2 in individuals 
with ASD determines how such alleles modify phenotypes of 22q11.2 
hemizygosity, but does not identify genes whose hemizygosity 
causes phenotypes. Moreover, SNPs are not equivalent to deletions 
or duplications and do not consistently confer susceptibility to 
neuropsychiatric disorders [84].

Modeling genetic abnormalities of 22q11.2 CNVs is relatively 
straightforward due to conserved sequence homology between the 
mouse and human. The usefulness of a rodent model resides in its 
ability to precisely manipulate a specific gene in isolation and predict its 
outcome; this is not possible in humans because human studies are, in 
essence, observation of correlation. We and others have used genetically 
engineered mouse models to identify small segments and single 22q11.2 
genes responsible for ASD-related behavioral phenotypes (Figure 1).
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Figure 1: Genetic mouse models of 22q11.2 CNVs. Over-expression (left) 
and deletion (right) cases are indicated. Vertical bars indicate the extent of 
chromosomal segments over-expressed or deleted. Phenotypes consistent 
(red) and inconsistent (black) with those associated with ASD are shown. 
a) hyperactivity, sensitization, social behaviors and clozapine-response are 
measured [85]; b) social interaction, working memory, prepulse inhibition 
(PPI), and anxiety and motor behavior were measured [93]; c,d,e,f and g) 
auditory PPI was measured. c[97], d[98], e[99], f[100], and g[94].

It is inherently difficult to behaviorally model ASD symptoms in 
mice and any attempt to model symptoms in experimental animals is at 
best a proxy for the real behaviors/symptoms. While modeling overall 
symptomatology is difficult, ASD may be more reliably characterized 
when a link is sought between genetic risk factors and dimensions 
of a specific behavioral element of ASD. We have measured specific 
behavioral elements of ASD, including social interaction, social 

hemizygosity exhibit language impairment but catch up following 
surgical and therapeutic interventions of cleft palate and their verbal 
reasoning skills are stronger than those for nonverbal reasoning; 
idiopathic autism is associated with weaker verbal profiles compared 
to nonverbal profiles throughout development. Only 10 of 300 children 
exhibited impaired verbal abilities among Eliez’s sample with 22q11 
hemizygosity. However, language impairments are variable in 22q11.2 
hemizygous babies and children[55]; although a majority show lower 
performance IQ than verbal IQ, a sizable subpopulation shows the 
reverse pattern [56]. Moreover, as children with 22q11.2  grow, verbal 
IQ declines more rapidly than performance IQ and verbal IQ becomes 
lower than or comparable to performance IQ [54, 57]. Idiopathic 
ASD children also have varying degrees of language delays [58, 59] 
and importantly, many of those with language delays become fluent 
speakers by later school years [60].
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communication and repetitive behavior. Ultimate validation of the 
efficacy of mouse models will only be accepted when hypothetical 
mechanisms of ASD and therapeutic effectiveness in an animal model 
are consistent with observations in humans.

Taken together, these observations suggested that the 200 kb 
segment we identified (Figure 1a) [85] might contain a gene or genes 
that contribute to behavioral phenotypes related to ASD. The fact that 
over-expression of the 200 kb region alone was sufficient to induce 
behavioral phenotypes related to ASD is of considerable interest, as it 
implies that this genomic abnormality could act as a primary causative 
event rather than a susceptibility factor. Note that the phenotypic 
targets of individual 22q11.2 genes are not identical. Over-expression 
of the 200 kb region causes a number of behavioral phenotypes related 

to ASD, whereas that of the adjacent 190 kb region results in selectively 
impaired working memory.

Children with 22q11.2 hemizygosity exhibit defective auditory PPI 
[96]. The genetic origin of this behavioral phenotype was identified by 
a series of elegant mouse studies. Several groups examined the effects 
on PPI of 1.5 Mb or smaller, partly overlapping deletions of murine 
chromosome 16, a mouse ortholog of human 22q11.2 (Figure 1). 
Auditory PPI was defective only when large deletions encompassed the 
same 200 kb region; when large deletions occurred outside the 200 kb 
region, no PPI deficit was seen [97-100] (Figure 1c,d,e and f). These 
reports conclusively demonstrated that the same 200 kb region is also 
responsible for this behavioral phenotype in 22q11.2 hemizygosity.

Collectively, these mouse studies form a solid basis upon which 
to further study genetic mechanisms of 22q11.2-associated ASD. Our 
subsequent studies have focused on two genes encoded in the 200 kb 
region in mouse models.

Tbx1
A rare case of TBX1 mutation (not 22q11.2 hemizygosity) was 

associated with Asperger syndrome in one individual [97]. Tbx1 
is one of four genes encoded in the 200 kb region and belongs to a 
phylogenetically conserved family of genes that share a common DNA-
binding domain, the T-box. The human TBX1 protein and its mouse 
ortholog Tbx1 share a highly conserved amino acid sequence. Tbx1 
mRNA is present at low levels in the embryonic mouse brain and is 
expressed at increasingly higher levels in the postnatal and adult mouse 
brain [97].

Reverse transcription-polymerase chain reaction (RT-PCR) 
analysis showed Tbx1 mRNA expression in the prefrontal cortex, 
nucleus accumbens, caudate-putamen, amygdala, hippocampus, 
ventral tegmental area, and substantia nigra of C57BL/6J mice at 2 
months of age [101]. Immunofluorescent analysis similarly showed 
that low signal levels of Tbx1 were present in many brain regions of 2 
month-old C57BL/6J mice, but higher levels were found in the rostral 
migratory stream, the dentate gyrus, and the subventricular zone. These 
data are consistent with the reports that Tbx1 mRNA and protein are 
present in the whole adult mouse brain samples [97,102], and further 
reveal the presence of Tbx1 mRNA and protein in distinct brain regions. 
Interestingly, these brain regions are known to undergo postnatal 
and adult neurogenesis. In fact, higher Tbx1 protein levels have been 
reported during proliferation than differentiation in neural progenitor 
cell cultures derived from the hippocampal dentate gyrus [101].

Note that Tbx1 has been deposited as an alias of mouse 
lipopolysaccharide-induced TNF factor (Litaf) at one NCBI site 
(GenBank: AF171100.1; http://www.ncbi.nlm.nih.gov/nuccore/
AF171100) despite the fact that these two genes have different 
sequences and different chromosomal locations (Tbx1, Mus musculus 
chromosome 16, 18581713-18586969; Litaf, Mus musculus chromosome 
16, 10959273-10993121). This error has propagated other Tbx1 and 
Litaf listings on the NCBI, MGI and many other similar sites and might 
be a reason why one published comprehensive analysis of 22q11 gene 
expression used “Tbx1” primers that have no sequence homology with 
Tbx1 and reported that “Tbx1” mRNA signals, which are in reality litaf 
signals, were not detectable in any brain regions of adult mice.

Although, we noted sensitized hyperactivity in 200 kb transgenic 
mice (Figure 1a) [85], relevance of this behavior to ASD is also not 
clear. While clozapine attenuated hyperactivity is caused by over-
expression of the 200 kb [85] segment and it is known that this drug 

Stark and colleagues provided complementary evidence that over-
expression of chromosomal segments outside the 200 kb region does 
not induce PPI deficits [94]. Mice overexpressing a segment containing 
Prodh and Vpreb2 exhibited a higher level of PPI than WT mice 
(Figure 1g). It is not clear whether this mouse phenotype is consistent 
with that in humans, because, to date, PPI has not been examined in 
duplication cases. Moreover, given that both 22q11.2 duplication and 
hemizygosity are associated with ASD, it might be expected that high 
and low doses of 22q11.2 cause phenotypes in the same, not opposite, 
direction. A second mouse line had over-expression of a segment that 
included Zdhhc8, Ranbp1, Htf9c, T10, Arvcf and Comt (Figure 1g); this 
mouse was indistinguishable in PPI from WT mice. This was consistent 
with our own data showing that the 190 kb transgenic mouse over-
expressing COMT and two other genes showed normal PPI (Figure 
1b) [93]. Similarly, Weinberger’s group demonstrated that Comt 
over-expression or deletion does not affect PPI [95]. Given that Comt 
elevation nevertheless impairs working memory in these mice [93,95], 
elevated levels of this 22q11.2 gene seem to selectively impair working 
memory without impacting PPI [93,95] or social interaction [93].

What has emerged from these mouse studies is the knowledge that 
not all 22q11.2 genes contribute to ASD-related behavioral phenotypes. 
In 2005, our group reported that mice over-expressing a ~200 kb 
segment of human 22q11.2, containing Gnb1l, Tbx1, Gp1Bβ and Sept5, 
exhibit hyperactivity, spontaneous sensitization, lack of normal social 
interaction (Figure 1a; see also Supporting Information, Movie 2 in [85]). 
Spontaneous sensitization of hyperactivity was completely blocked after 
three weeks of treatment with the antipsychotic drug clozapine [85]; 
clozapine and related atypical antipsychotic drugs attenuate some ASD 
symptomatic elements [86]. These phenotypes were present as early 
as 5 weeks old and persisted up to 2-4 months of age. However, the 
level of hyperactivity in this mouse model was so high that it might 
have rendered mice physically unable to engage in reciprocal social 
interaction. It was not technically possible to analyze more detailed 
affective and cognitive behaviors due to the extraordinarily high levels 
of hyperactivity.

We subsequently demonstrated that over-expression of an adjacent 
~190 kb segment, containing Arvcf, Comt and Txnrd2, impaired 
working memory (consistent with deficits seen in 22q11.2 hemizygous 
patients [11,87-91] and idiopathic ASD patients [92]), but had no 
effect on reciprocal social interaction or prepulse inhibition (PPI) 
[93] (Figure 1b). However, working memory has not been examined 
in 22q11.2 duplication patients so far, and relevance of this mouse 
phenotype to duplication phenotypes remains unclear. The fact that 
this chromosomal segment dissociated working memory from PPI 
and social interaction suggests that these behavioral phenotypes are 
genetically dissociable.
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attenuates some symptoms of ASD [86], it is unclear whether sensitized 
hyperactivity in mice models the core symptoms of ASD.

While PPI is a reliable parameter for sensorimotor gating [103], its 
relevance to ASD has not been definitively established. Defective PPI 
is not consistently seen in individuals with ASD [104-107]. Moreover, 
evidence suggests that PPI, as an endophenotype, is genetically 
dissociable from symptomatic elements of ASD and schizophrenia. 
For example, in Sept5 KO mice, social interaction is reduced but PPI is 
potentiated [108-110].

We, thus, examined social interaction in a naturalistic social 
interaction paradigm in which an age-matched, male C57BL/6J 
inbred mouse was paired with either a congenic Tbx1 HT mouse or 
WT mouse; Tbx1 homozygous mice are not viable. As a pair of mice 
is placed in a cage that is novel to both, there is no ‘resident’ mouse in 
this task; aggressive social interaction is minimized and affiliative social 
interaction is maximally evaluated [93,108]. Unlike a “sociability” task 
in which one of the mice is confined in a small wire cage, reciprocal 
interaction can be evaluated in this naturalistic social interaction task 
[111]. Tbx1 HT mice exhibited significantly lower levels of active and 
passive affiliative social interaction (Figure 2A); no detectible aggressive 
social behavior was seen in this setup.

Mice have a natural tendency to alternate arms visited in a T-maze, 
a behavior that requires working memory to recall a previously arm 

Tbx1
of repeated visits to the same arm (Figure 2C). When HT mice showed 
working memory at 0 seconds delay, they had a higher degree of 
repetitive choices than WT mice; at a 60-sec delay, HT and WT mice 
were indistinguishable in repetitiveness and HT mice did not show 
increased repetitiveness beyond 50% (Figure 2C). These data suggest 
that the repetitive behavioral tendency is present in HT mice only 
when it depends on working memory, and is not indicative of simple 
motor repetitiveness. It is interesting to note that individuals with 
idiopathic ASD have difficulty in inhibiting context-inappropriate 
behavior based on working memory; this is thought to underlie 
actions and verbalizations that are inappropriate in terms of timing or 
appropriateness to the circumstances; they are not impaired in simple 

together, Tbx1 heterozygosity recapitulates symptomatic features of 
22q11.2-associated ASD.

Sept5

neuronal connection are seen in many mouse models of ASD, and 
our results showed that a gene dose alteration of the 200 kb region, 
including Sept5, impaired social interaction [85], we evaluated two 
issues regarding the functional role of Sept5 in ASD-related behavioral 
phenotypes.
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Figure 2: A) Active affiliative (affiliative), aggressive, and passive 
affiliative (pasasive) forms of social interaction in Tbx1 WT and HT mice. 
Time spent(mean ± SEM) in the three forms of social interaction in two 5-min 
sessions with an age-matched stimulus C57BL/6J mouse is shown. Asterisks 
indicate statistically significant differences between WT and HT mice at levels 
of 0.05(*) and 0.01(**), as determined by Newman-Keuls comparisons. B) 
Ultrasonic vocalization of pups during a 5-min separation from mothers at 
postnatal days 7-8. The average duration (mean±SEM) of each vocal call type 
is shown. Distinct catagories of calls, as defined by Scattoni and colleagues 
[138], are indicated as: cx, complex; ham, harmonics; ts, two syllable; u, 
upward; d, downward; h, hump(a.k.a., chevron); sh, shorts; c, composite; 
fs,frequency steps; f,flat. An asterisk indicates a statistically significant 
difference between WT and HT mice at levels of 0.05(*) and 0.01 (**) as 
determined by Newman-Keuls comparisions. C) Spontaneous alternation in 
T-maze. The percentage of repeated visits to the same am (mean ± SEM) 
is shown. Mice were tested with 0-, 30-, and 60-s delays between trails. An 
asterisk indicates a statistically significant difference between WT and HT 
mice at 0.01 (**) at each delay (solid line), as determined by Newman-Keuls 
comparisions. This figure is reproduced from [101] with permission of the 
Oxford Press.

Firstly, since not all individuals with 22q11.2 hemizygosity show 
ASD (i.e., incomplete penetrance) [12,16 21], we hypothesized that 
genetic background affects phenotypic expression of Sept5 deficiency. 
Second, while limbic region activation occurs when humans are 
exposed to social cues and this activation is altered in individuals 
with ASD, the genuine functional role of these alterations in ASD and 
the brain regions through which Sept5 functionally mediates social 
behavior are not known. We hypothesized that Sept5 levels in the two 
major limbic regions (hippocampus and amygdala) are a determinant 
of social interaction.

To address the first issue, we tested the impact of Sept5 deficiency 
on social interaction on three genetic backgrounds. Active affiliative 
social interaction was impaired in Sept5 homozygous (KO) mice with a 
mixed genetic background of CD1, 129X1/SvJ and 129S1/Sv-p+ Tyr+ Kitl SI-J/+ 
(Figure 3, Mixed) and with a congenic background with C57BL/6J (Figure 
3, Congenic C57BL/6J), but not with a 129S1-enriched genetic background 
(Figure 3, 129 Enriched) [108]. Sept5 KO mice were not impaired in 
other behavioral measures, including working memory and repetitive 
behavioral trait (spontaneous alternation), PPI, anxiety-related traits, 
and motor activity [108-110], underscoring a rather selective action of 
Sept5 deficiency on symptomatic elements of ASD. Given that Sept5 
deletion is included in 22q11.2 hemizygosity in humans, this gene is 
likely to contribute to one symptomatic element of ASD. A corollary of 
this observation is that as long as a gene deficiency causes at least one 
(not necessarily all) aspect of ASD in a mouse model, a gene should be 
considered to be a contributory one.
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dendrites [122,123]. Given that synaptic alterations in synaptic and 

Babies and children with 22q11.2 hemizygosity exhibit delayed 
development of vocal volume, vocalization, and language [112] 
and social communication deficits [8-21]. When mouse pups are 
separated from mothers, they typically emit ultrasonic vocalization. 
This vocalization elicits their retrieval by mothers, and thus is 
considered a form of social communication in rodents [113,137]. 
We examined ultrasonic vocalization at postnatal days 7-8. HT mice 
exhibited vocalization for shorter duration in harmonic, two-syllable, 
composite, and frequency steps, compared to WT littermates (Figure 
2B). Interestingly, these defective vocalization patterns in HT mice are 
fairly complex, but WT and HT vocalizations were indistinguishable in 
simple patterns (e.g., upward, downward, hump, and short).

visited and alternate visits [114].  HT mice showed higher levels 

response inhibition that is not dependent on memory [115,116]. Taken 

Sept5 is abundantly expressed in rodent and human brains 
[117,118], and is presynaptically located to regulate neurotransmitter 
release at synapses together with the SNARE complex [119-121]. This 
protein additionally contributes to the structural health of axons and 



Citation: Hiroi N, Hiramoto T, Harper KM, Suzuki G, Boku S (2012) Mouse Models of 22q11.2-Associated Autism Spectrum Disorder. Autism S1:001. 
doi:10.4172/2165-7890.S1-001

Page 5 of 9

Interestingly, Sept5 heterozygous mice were not impaired in 
affiliative social interaction, while 22q11.2 hemizygosity is sufficient 
to induce a high rate of ASD in humans. However, it is not known 
whether a gene-dose manifests itself similarly in mice and humans. 
Moreover, Sept5 heterozygosity is a single gene deficiency, but 22q11.2 
hemizygosity carries deficiencies of multiple genes and heterozygosity 
of other 22q11.2 genes might amplify the impact of Sept5 heterozygosity 
in humans.

Our finding offered a plausible explanation for incomplete 
penetrance, but it did not entirely rule out the possibility that the 
phenotypic difference between congenic Sept5 WT and KO mice is 
caused by allelic heterozygosity instead of –or possibly in addition 
to—Sept5 deficiency. A simple estimate based on the number of 
backcrossings is that our congenic WT and KO mice are homozygous 
with C57BL/6J alleles at up to 99.8% of loci and the remaining fraction 
is heterozygous for alleles. However, one often ignored caveat of this 
estimate is that allelic homozygosity greatly differs at loci linked 

generations of back-crossing, more alleles from 129 mice are expected 
to be present at loci near the Sept5 gene in KO mice than in WT mice. 
Thus, our observation still does not rule out the possibility that social 
interaction deficits in congenic KO mice reflect allelic differences rather 
than Sept5 deletion. Currently available breeding techniques do not 
offer a definitive technical option to entirely rule out this possibility 

background. Caution is needed in ascribing a phenotypic difference 
between mutant and wild type mice to the impact of the mutant gene 
rather than allelic differences in the genetic background. It would be 
interesting to observe how the phenotypic expression of other ASD-
related genes is modified by genetic background in other mouse models 
of ASD.

To address this interpretative caveat and identify brain regions 
in which Sept5 levels regulate social interaction, we expressed Sept5 
in selected brain regions at the time of behavioral testing in inbred 
C57BL/6J mice [109]. We constructed a lentiviral vector carrying Sept5 
and surgically infused it into the brains of C57BL/6J mice, thereby 
elevating only Sept5 in distinct brain regions in a congenic genetic 
background. Compared to control mice that received enhanced green 
fluorescent protein (EGFP) alone, C57BL/6J mice that received Sept5-
EGFP over expression in the hippocampus (Figure 4A) and amygdala 

(Figure 4B) showed increased active, affiliative social interaction. This 
phenotype was highly selective; Sept5 overexpression had no effect on 
reaction to a novel, non-mouse object, olfactory senses, anxiety-related 
behaviors or motor behavior [109]. Moreover, Sept5 over-expression in 
the somatosensory cortex had no effect on social interaction (Figure 
4C). Although synaptic alterations in the sensorimotor cortex have 
been observed in some mutant mouse models of ASD and cortical 
development has been suggested to be aberrant in ASD, Sept5 in this 
cortical region does not seem to have any effect on social interaction.

One interesting matter is that over-expression of Sept5 in the 
hippocampus and constitutive deletion of Sept5 increases and 
reduces social interaction, respectively. In an apparent contrast to 
this observation, clinical observations show that both duplication 
and hemizygosity induce similar behavioral phenotypes (e.g., social 
interaction deficits) in humans. However, while over-expression and 
hemizygosity of Tbx1 have been shown to induce similar cardiovascular 

follow the same pattern in behavioral phenotypes. Thus, one possible 
explanation of our finding is that the dose level of some 22q11.2 genes 
linearly determines social interaction, but others do so in an inverted U 
gene-response curve. The phenotypic outcome of 22q11.2 hemizygosity 
and duplication might reflect the net effect of these additive or opposing 
phenotypes of multiple genes.

Conclusion
Systematic searches for 22q11.2 genes that contribute to behavioral 

phenotypes have identified potential significance of a ~200 kb segment. 

Genetic background
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Figure 3: Impact of genetic background on active social interaction in Sept5 
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between mice is shown in two successive 5-min sessions. Asterisks indicate 
statistically significant differences from WT mice at 1% (**) levels, as 
determined by Newman-Keuls comparisions. This figure is reproduced from 
[108,109] with permission of the Oxford Press.
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compared to those not linked to the gene of interest [124]. Even after 10 

[125,126]. There are many mouse models of ASD with non-congenic Our observations indicate that Sept5 is indeed a determinant of 
social interaction, but alleles in the genetic background may modulate 
phenotypic expression of 22q11.2-associated syndromic ASD. Consistent 
with our mouse phenotype, one child has recently been identified 
with homozygous deletion of Sept5 and adjacent GP1BB. This child 
exhibited deficits in motor development, social and emotional function 
as well as language and speech development [132]. Both parents 
were heterozygous with no apparent neuropsychiatric phenotypes. 
Moreover, the impacts of Sept5 expression in the mouse brain are 
largely consistent with human studies that underscore the critical 
roles played by limbic structures in ASD. Structural abnormalities in 
the hippocampus have been noted in both idiopathic ASD [127,128] 
and 22q11.2 hemizygous patients [129]. In individuals with 22q11.2 
hemizygosity, amygdala activity is anomalous while performing tasks 
that require social perception [130]. A future challenge is to identify the 
precise network of structures through which Sept5 acts as a determinant 
for social cognition.

phenotypes [131], it is not known if all individual 22q11.2 genes 
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