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Abstract

Background: Innate immunity is the first line of defence offered by host cells to infections. Macrophage cells
involved in innate immunity are stimulated by lipopolysaccharide (LPS), found on bacterial cell surface, to express a
complex array of gene products. Persistent LPS stimulation makes a macrophage tolerant to LPS with down
regulation of inflammatory genes (“pro-inflammatory”) while continually expressing genes to fight the bacterial
infection (“antibacterial”). Interactions of transcription factors (TF) at their cognate TF binding sites (TFBS) on the
expressed genes are important in transcriptional regulatory networks that control these pro-inflammatory and
antibacterial expression paradigms involved in LPS stimulation.

Results: We used differential expression patterns in a public domain microarray data set from LPS-stimulated
macrophages to identify 228 pro-inflammatory and 18 antibacterial genes. Employing three different motif search
tools, we predicted respectively four and one statistically significant TF-TFBS interactions from the pro-inflammatory
and antibacterial gene sets. The biological literature was utilized to identify target genes for the four pro-
inflammatory profile TFs predicted from the three tools, and 18 of these target genes were observed to follow the
pro-inflammatory expression pattern in the original microarray data.

Conclusions: Our analysis distinguished pro-inflammatory vs. antibacterial transcriptomic signatures that classified
their respective gene expression patterns and the corresponding TF-TFBS interactions in LPS-stimulated
macrophages. By doing so, this study has attempted to characterize the temporal differences in gene expression
associated with LPS tolerance, a major immune phenomenon implicated in various pathological disorders.

Background
Innate immunity, one of the two arms of the immune
system, provides the first line of defence against patho-
gens in mammals and nearly all other living things. Ani-
mals in the lower evolutionary scale, such as insects,
fight off infections solely employing innate immune
mechanisms. The innate immune system quickly alerts
the host of the presence of microbial pathogens and this
response is mediated through the expression of a limited
number of receptors called pattern recognition receptors
(PRRs) to identify pathogen associated molecular pat-
terns (PAMPs) expressed by invading pathogens. Infec-
tions trigger PRRs, such as toll-like receptor (TLR)
genes [1], to recognize PAMPs of invading pathogens

and prompt an intracellular signalling cascade which
ends in induction of pro-inflammatory cytokines, che-
mokines, type I interferons, and antimicrobial effectors
that are essential for providing continuous protection
from infection. In highly evolved organisms (starting
from jawed vertebrates) innate immunity is required for
priming adaptive immunity, the second arm of the
immune system with long-term and specific immune
response [2]. Macrophages are immune cells highly
involved in conducting innate immune responsibilities
and also play a role as an antigen-presenting cell (APC)
to T lymphocytes (in adaptive immunity); they express
various TLR genes to mediate the pro-inflammatory and
antimicrobial responses.
LPS, a major component of gram-negative bacterial

cell surface, is a potent stimulator of macrophages. LPS
acts via the TLR4 receptor to trigger downstream
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signalling and expression of pro-inflammatory and anti-
bacterial genes [1]. This induction needs to be under
tight control since dysregulated inflammation can cause
a number of pathological disorders such as septic shock,
autoimmunity, atherosclerosis and cancer [3]. Various
mechanisms of negative regulation of TLR-induced gene
expression have been proposed to dampen uncontrolla-
ble inflammation [4] and these collectively lead to the
phenomenon of “LPS tolerance” [5] wherein there is
decreased expression of pro-inflammatory genes when
there is prolonged LPS administration. Foster et al [6]
have characterized the gene expression profiles of
macrophages differentially treated with LPS to classify
the genes into various phenotypic states including a tol-
erant state obtained by an initial LPS treatment. Their
analysis of the genes expressed in the tolerant pheno-
type categorized the genes as belonging to “tolerizable”
or “non-tolerizable” sets depending on no induction or
further induction respectively during a second LPS
treatment compared to the first one. Although LPS tol-
erance could prevent pathological inflammatory condi-
tions in chronic bacterial infections, there is a strong
need for a persistent antibacterial response to keep the
infections under control. The set of genes that exhibit
the tolerizable phenotype can be considered “pro-
inflammatory” while those belonging to the non-toleriz-
able phenotype as “anti-bacterial”.
Transcriptional regulation is a crucial biological

mechanism controlling gene regulation in the tolerant
phenotype vs. the basal state that corresponds to no LPS
stimulation. A number of studies have looked at the
transcriptional programs in LPS-mediated macrophage
stimulation including the roles of TFs in prolonged LPS
treatment [4,7-9]. Roach et al [7] carried out a holistic
approach to identify 92 TFs in human macrophages sti-
mulated with LPS; however, this study did not distin-
guish between the tolerant and basal states since there
was no re-stimulation with LPS in this study. A recent
study characterized the Cebpd TF as a potential regula-
tor of a switch between the basal and tolerant state [9].
A microarray analysis performed by Mages et al [10]
similar to the Foster et al [6] experiment employed in
our study, observed diminished gene expression of a
vast majority of LPS-induced genes upon a second LPS
treatment (tolerizable). However, these authors did not
characterize any of the TF-target interactions responsi-
ble for the various phenotypes distinguished in their
analysis. In order to achieve a global perspective on the
transcriptional regulatory mechanisms inherent in LPS
tolerance, we examined the Foster et al microarray data
[6] for the control of pro-inflammatory vs. antibacterial
gene expression. Using bioinformatics approaches, we
characterized TF-TFBS interactions that differentiate
LPS-stimulated pro-inflammatory vs. antibacterial gene

expression depending on the well-accepted premise of
coordinate expression corresponding to appropriate TF-
TFBS interactions. Further, we show that some of these
TF-TFBS interactions predicted from our analysis have
been biologically validated as transcriptional targets in
the literature with evidence of roles in LPS tolerance.

Results
Classification of antibacterial and pro-inflammatory
macrophage genes
In order to distinguish macrophage genes responsible for
antibacterial versus pro-inflammatory phenotypes upon
induction of LPS tolerance, we filtered the differentially
expressed genes reported in Foster et al [6] as shown in
the top part of Figure 1. These authors have performed
two replicates of microarray hybridizations for each of the
following experimental conditions: The naïve (N) state
that corresponds to no LPS treatment, a 4-hour treatment
of LPS to naïve cells (labelled N+L) and a 24-hour LPS
treatment of naïve cells followed by an additional 4-hour
treatment (labelled T+L). Upon the first LPS treatment for
24 hours, the macrophages in the naïve state become tol-
erant and a second treatment for an additional 4 hours
should reduce inflammatory gene expression but sustain
or increase antibacterial gene expression. We employed a
novel filtering approach to distinguish the Foster et al
microarray genes into the pro-inflammatory and antibac-
terial classes. Essentially if a gene’s expression level is X in
N, for it to be a pro-inflammatory gene its expression in N
+L, Y should be greater than X (Y > X) but expression in
T+L, Z should be less than Y (Z < Y). On the other hand
if a gene is expressed higher in N+L compared to N (i.e., Y
> X) and is same or increased in T+L compared to N+L,
(i.e., Z≥Y although we filtered only when Z > Y), then it
was classified as antibacterial. This filtering paradigm is
based on the rationale that while pro-inflammatory genes
are down regulated in the tolerant state, antibacterial
genes are required for infection control. We obtained 228
pro-inflammatory and 18 antibacterial genes (p < 0.05 sig-
nificance) from an annotated set of 45,101 probes in the
microarray indicating the stringency in our phenotypic
restrictions (Additional file 1, Table S1). This categoriza-
tion is further confirmed when we clustered the original
gene expression data of a mixture of these genes (228 + 18
= 246) using the MeV software [11]. As expected, the two
classes of genes clearly separated into two clusters (Figure
2) with the pro-inflammatory set showing down regulation
and antibacterial set showing up-regulation compared to
the tolerant state (T+L/N+L avg).

Gene ontology (GO) analysis of the two gene sets
The pro-inflammatory genes could be classified into 13
categories of GO terms while the smaller antibacterial
gene set mapped only to two GO categories. Figure 3
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Figure 1 Workflow of experimental analysis to distinguish transcriptomic signatures of pro-inflammatory vs. antibacterial genes.
Average gene expression values in untreated macrophages, (N)avg, 4 hrs LPS-treated macrophages, (N+L)avg, and 24 hrs LPS-treated followed by
4 hrs re-treated macrophages, (T+L)avg were calculated. Two sets of genes were classified by the conditions mentioned in Methods.
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shows a subset of GO terms from the pro-inflammatory
gene set showing significant enrichment (p < 0.01) in a
number of biologically relevant categories such as
immune response, cytokine and chemokine mediated
signalling pathway, and DNA-dependent regulation of
transcription.

Characterization of TFBS in the two data sets
In order to correlate gene expression with transcrip-
tional regulation, we set out to identify characteristic
TF-TFBS interactions unique to the two classes of
genes. We approached this by employing three indepen-
dent TFBS motif detection tools with different algorith-
mic paradigms and to arrive at a list of predicted TFBS
common to the three tools viz., MEME, MotifModeler
and PASTAA (Middle part of Figure 1). MEME is an

expectation-maximization tool that fits a two-compo-
nent finite mixture model to the input sequences for
motif prediction [12]. MotifModeler uses a model selec-
tion approach that best fits a set of motifs to gene
expression values (both up and down regulated) in co-
ordinately expressed genes [13]. PASTAA detects TFBS
based on the prediction of binding affinities of a TF to
promoters and their association with tissue specific
expression of corresponding genes [14]. To reduce false
positives, we considered only the top 70% predicted
TFBS from each tool. MEME, MotifModeler and PAS-
TAA individually identified 17, 301 and 350 motifs
respectively from the pro-inflammatory genes while four
motifs were found to be common to all three tools (Fig-
ure 4A). Figure 4B lists the TFBS common to all tools
found in the pro-inflammatory gene set and the

Figure 2 Heat map showing the differential expression patterns of LPS-stimulated genes. Navg, (N+L) avg and (T+L) avg are as described in
Figure 1. Nabs was introduced to distinguish the patterns clearly and it is equal to one. The rationale was that the fold change is >1 for both
classes of genes in the N+L phenotype, and <1 for pro-inflammatory and >1 for the antibacterial class genes in the T+L phenotype. Only a
subset of the pro-inflammatory genes is shown.
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corresponding profile TFs from TRANSFAC [15]. We
compared scores from the three TFBS prediction tools
for the four motifs identified in our pro-inflammatory
data set, and similarly predicted from a random set of
228 genes. As shown in Table 1, the scores of MotifMo-
deler and PASTAA from the pro-inflammatory gene set
are significantly higher than the scores from the random
gene data indicating genuine enrichment of these motifs
in our genes with a potential for transcriptional control
of pro-inflammatory specific gene expression. MEME
did not predict any of these four motifs in the random
gene set. The two motifs predicted from PASTAA and
MotifModeler when a similar analysis as described
above was performed on the random gene set showed
reciprocal higher (PASTAA) or relatively similar (Motif-
Modeler) scores for the random genes compared to the

pro-inflammatory genes (Table 2) stressing the specifi-
city of the four motifs (Figure 4B, and Tables 1 &2) for
regulating pro-inflammatory gene expression.
In the antibacterial gene set, the tools found 22, 7, and

178 motifs respectively with the intersection containing
only one motif (Prrx2 as the profile TF). Due to the lim-
ited size of this latter data set, we did not compare pre-
diction scores for this data with a random data set, as
we did for the pro-inflammatory data. However, we per-
formed target identification for Prrx2 using literature
sources (next section).

Validation of TF-TFBS interactions controlling the pro-
inflammatory genes
We approached the validation of the various predicted
TFBS in the pro-inflammatory class primarily by (1)

Figure 3 GO analysis of the pro-inflammatory genes. GO analysis of the pro-inflammatory genes based on annotated biological process GO
terms was done using GOstat [37]. Enrichment of the pro-inflammatory gene set compared to a Mouse Genome Informatics (MGI) murine
genome background d for each GO term is shown with significant p-values (< 0.01).
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relating the profile TFs corresponding to the predicted
motifs with experimentally identified target genes for
those TFs, and then (2) checking the expression patterns
of a subset of these transcriptional target genes in our
microarray data (Bottom part of Figure 1). We manually
characterized the target genes that various TFs act on
by using the TRANSFAC database [15] and the Ingenu-
ity Pathway Analysis tool [16]. Table 3 lists the pro-
inflammatory profile TFs identified from the three TFBS
prediction tools and their corresponding biologically
validated target genes. A significant number of these
genes have been implicated in the inflammatory
response including Irf1, Irf2, Ifnb1, Tlr3, Stat1, Stat3,
and Nfkb1 with a number of them regulated in LPS-sti-
mulated macrophage activation [8]. To check for the

expression patterns of these identified target genes
within our data set, we filtered the microarray data by
looking for two-fold induction in the N+L set compared
to the N samples plus two-fold repression in the T+L
samples compared to the N+L set. This filtering is simi-
lar to what is done earlier (Figure 1) except for the cut-
offs being two-fold with no p-value threshold here; it
resulted in an expression signature of 2283 genes corre-
sponding to the pro-inflammatory phenotype.
Interestingly, there were 18 genes from this larger pro-

inflammatory gene set that overlapped with the target
genes in Table 3 (highlighted). From the original pro-
inflammatory gene set (of 228 genes), there were only
four that overlapped with the target genes mainly due to
the more stringent p-value filter that was imposed

Figure 4 Comparison of predicted TFBS from MEME, MotifModeler, and PASTAA. A. Venn diagram showing numbers of predicted motifs
from the three tools for the pro-inflammatory genes. The numbers next to the prediction tool names are the total numbers of top 70%
predicted TFBS for each tool. B. List of common predicted motifs and the corresponding profile TFs. Profile TFs corresponding to these four
common TFBS were obtained from TRANSFAC [15].

Table 1 Comparison of TFBS prediction scores between test vs. random gene sets

Matrix Accession Number TF name MEME MEME Motif Modeler Motif Modeler PASTAA PASTAA

E-value* E-value** TCS score* TCS score** P-value* P-value**

M01014 SOX 1.60E+07 - 1.49E-02 7.06E-03 2.99E-01 7.38E-01

M00699 IRF-8 6.90E-01 - 1.50E-02 - 3.50E-05 9.51E-01

M00233 MEF-2 1.60E+07 - 1.54E-02 6.91E-03 5.75E-01 7.68E-01

M00062 IRF-1 2.60E-07 - 1.55E-02 6.86E-03 7.40E-05 -

* Score from the test gene set

** Score from random gene set

Blank cells represent TFBS that were not identified by the respective tool in the test or random set. For MotifModeler, higher the TCS score better the prediction
whereas for PASTAA, lower the P-value better the prediction.
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earlier. Next, we investigated the expression patterns of
these 18 target genes in our microarray data. As
expected, all 18 genes showed the pro-inflammatory
phenotype (Figure 5) (p = 2.94 × 10-4). We also sampled
10 random sets of 18 genes each (generated using the
RSAT tool [17]) for the pro-inflammatory pattern of
expression in our microarray data (Additional file 2,
Table S2) and found either no or very few genes (0, 1 or
2 out of 18) showing the pattern (p = 0.897). This target
gene analysis clearly establishes our predictions as
potentially genuine, biologically meaningful TF-TFBS
interactions for the pro-inflammatory phenotype. A
similar analysis on the two motifs (and the correspond-
ing profile TFs, Maz and Foxj2, Table 2) from the origi-
nal 228 random genes used in the TFBS prediction
algorithms, identified a different set of 18 target genes
(Additional file 3, Table S3) none of which had the pro-
inflammatory expression pattern. As a further step to
verify the role of these validated TF-TFBS interactions
in establishing the pro-inflammatory phenotype upon

LPS re-stimulation, we analyzed the expression levels of
our 18 target genes in the Mages et al [10] data available
in the public domain. Although these authors have
added the tolerant (T) stage to their analysis (compared
to the Foster et al data in our analysis), we could still
look for gene expression patterns specific to the pro-
inflammatory phenotype similar to our study. Essen-
tially, we compared the fold change between the N and
N+L stages [(N+L)/N] in their data with that between
the T and T+L stages [(T+L)/T] with the former condi-
tion setting up the tolerant (T) phenotype and the latter
showing differential gene expression of ‘tolerizable’ and
‘non-tolerizable’ genes. Almost all of our 18 transcrip-
tional targets (17/18 with Isl1 being the exception)
showed the pro-inflammatory expression pattern of
being repressed (tolerizable) upon the second LPS treat-
ment (Additional file 4, Table S4).
When we checked Prrx2, the only TF profile that was

identified in our TFBS prediction from the antibacterial
genes, it detected two genes (Ifi204, Pdgfra) as potential

Table 2 Reciprocal comparison of TFBS prediction scores between random vs. test gene sets

Matrix Accession Number TF name MEME MEME Motif Modeler Motif Modeler PASTAA PASTAA

E-value* E-value** TCS score* TCS score** P-value* P-value**

M00649 MAZ - 4.10E+05 1.73E-02 8.28E-03 2.49E-02 6.92E-03

M00423 Foxj2 - 1.80E+07 1.45E-02 7.25E-03 6.00E-01 5.05E-01

* Score from the test gene set

** Score from random gene set

Blank cells represent TFBS that were not identified by the respective tool in the test or random set. For MotifModeler, higher the TCS score better the prediction
whereas for PASTAA, lower the P-value better the prediction.

Table 3 Biologically validated target genes of profile TFs predicted from the pro-inflammatory gene set

Matrix Accession
Number

TF Target Genes

M01014 Sox5 Smad5, Smad1, Smad7, Sox6, Sox5, Mir125b2, Mir34a, Mir224, Mir15a, Mir125b1, Lipe, Sry

M01014 SRY Slc9a3r2, Wt1, Akr1b10, Zfp748, Hdac3, Smad3, Ar, Importin beta, Ep300, Kpnb1, Kpna, Znf208, Sry, Amh, Ptgds

M00699 IRF-8 Spi1, Irf1, Trim21, Cops2, Irf2, Il12b, Il1b, Cybb, B2 m, Cbl, Irf4, Nfatc1, Ttraf6, Stat1, Etv6, beta2-mg, Cdkn2b, Il-12
p40, H-2Dd, H-2Kb, H-2Ld

M01014 Sox13 Smad7, Fgf3

M01014 Sox4 Mir199a1, Mir27b, Mir199a2, Mir206, Mir29c, Mir107, Mir34a, Mir95, Mir17, Mir199b, Mirn292, Mirn101b, Cebpa, Sdcbp,
Tcf4

M01014 Sox2 Pou5f1, Pou2f1, Pax6, Lbx1, Pdx1, Meis1, Asc, Golga6, Nkx2-3, Otp, Dlx5, Otx1, Dlx4, Isl1, Zfhx3, Fbxo15, Fgf4, Hrc,
Nanog, Spp1, Zscan10

M01014 Sox9 Ep300, Nr5a1, Kpnb1, Crebbp, Smad3, Smad2, Amh, Mia, Med12, Maf, Importin beta, Calmodulin, Ppargc1a,
Ncadherin, Col2a1

M01014 Sox15 Fhl3, Pou5f1

M00233 Mef-2 Smarca4, Hdac4, Hdac9, Hdac7, Hdac5, Nfat, Mapk14, Thra, Ep300, Ckm, Myog, Mef2 d, Jun, Slc2a4, Srf, Mck

M00062 IRF-1 Agtr2, C2ta, Nos2, H-2kb, Ptgs2, Tlr3, H2-Dd, IL-12, IL-7R, Stat1, Ciita, Nfkb1, Rela, Stat5, Tap1, Vcam1, Psmb9, Ifnb1,
Stat3, Irf8, Crebbp, Smarca4, Cybb

M01014 Sox6 Cenpk, Sox5, Dazap2, Hdac1, Ctnnb1, Pdx1, Ctbp2, Mir29a, Mir221, Mir222, Mir29c, Mir126, Ccnd1, Fgf3, Hbb-y

M01014 Sox18 Mef2c, Vcam1

* Highlighted genes showed expression pattern as in Figure 5.

Profile TFs corresponding to the predicted motifs are searched against the TRANSFAC [14] and IPA [15] databases and the various target genes known to be
associated with these profile TFs are listed. All profile TFs for each motif (Matrix Accession Number) in the databases are shown.
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targets in the literature. Neither of these genes showed
the antibacterial expression pattern in the Foster et al
microarray data.

Discussion
As a basis for characterizing transcriptomic signatures
in LPS tolerance, we differentiated pro-inflammatory
and antibacterial gene expression in LPS-stimulated
macrophages. The genes in the Foster et al [6] micro-
array data were classified into pro-inflammatory and
antibacterial sets using biologically relevant filters
(Figures 1 and 2). Authors of that study had performed
similar categorization to identify “tolerizable” and
“non-tolerizable” classes corresponding to our pro-

inflammatory and antibacterial classes respectively.
Basically, Foster et al and we hypothesize that during
tolerance although pro-inflammatory genes are down
regulated, antibacterial genes need to be continually
expressed. The two classes in their study were shown
to have differences in chromatin modifications indicat-
ing transient silencing of some pro-inflammatory genes
while priming of antibacterial gene expression [6].
However, they did not attempt to identify any global
TF-TFBS interactions that can attest to transcriptional
signatures responsible for the distinction between the
two classes and hence to LPS tolerance. We have iden-
tified and characterized such distinctive interactions
employing pattern search algorithms combined with

Figure 5 Expression patterns pro-inflammatory target gene. Target genes highlighted in Table 3 were checked to look for inflammatory
gene expression pattern that is two-fold up regulation in N+L phenotype (compared to N) and further two-fold down regulation in T+L
phenotype. The relative expression patterns of 18 target genes found in our microarray data are shown.
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literature-based validation of the target genes in the
microarray data.
Our filtering approach deducted only a small number

(18) of antibacterial genes since the cut-off of even one-
fold step-wise increase from the N to N+L to T+L
stages along with the p-value threshold seems to be
highly stringent and this may indicate a highly specific
antibacterial phenotype for these genes. Due to the
small size of this data set, subsequent analyses of motif
search, and target identification and validation for this
class of genes did not merit much attention. However,
genes such as Lcn2 [18] and Tirap [19] in this list
(Table S1) have shown antimicrobial activity. Interest-
ingly Lcn2 suppressed LPS-induced inflammatory cyto-
kines in macrophages [20] indicating an additional anti-
inflammatory role for this gene. It is likely that a num-
ber of antibacterial genes in our microarray data main-
tain the same level of expression at both the N+L and T
+L stages to provide persistent bacterial protection and
hence it would be worthwhile to analyze a larger set of
these genes by filtering with a less stringent condition.
Based on the concept of coordinate gene expression

being controlled by same or similar TFs binding to their
cognate binding motifs, we identified respectively four
and one TFBS motifs in the upstream regulatory regions
of the pro-inflammatory and antibacterial genes (Figure
4). The essence of the specificity of these TF-TFBS
interactions was provided by the intersection of the pre-
dictions from three tools of differing algorithmic
approaches. Additionally, when compared to a random
gene background the prediction scores for the four pro-
inflammatory motifs were significantly higher in the test
data set (Tables 1 &2). Our predictions identified inter-
feron regulatory factors 1 and 8 (IRF-1 and IRF-8) as
pro-inflammatory TFs (Figure 4, Table 1) and these pro-
teins have been clearly implicated in macrophage-asso-
ciated innate immunity [21-23].
We validated the TF-TFBS predictions in the pro-

inflammatory class of genes by manually identifying the
corresponding target genes implicated to be under con-
trol of the predicted TFs. This analysis produced a sig-
nificant number of target genes and a small proportion
of them (18 out of 141) showed the pro-inflammatory
specific pattern of gene expression (Table 3, Figure 5).
A similar gene expression pattern of the 18 genes identi-
fied in our analysis with data from the Mages et al [10]
microarray analysis (Table S4) confirms the genuine
pro-inflammatory phenotype of these transcriptional tar-
gets in macrophage tolerance induction, and indicates
that the four predicted TFs most likely control the tran-
scriptional regulation of these genes to establish the
phenotype. A number of genes in this list have been
experimentally associated with LPS-mediated macro-
phage activation including some important TFs such as

IRF1, IRF2, Stat1, Stat3 and Nfkb1 [8] that are essential
members of presumptive transcriptional regulatory net-
works. Nfkb1 has been identified as a major player in
the downstream signalling pathways of LPS-stimulated
macrophages [24] with a crucial role in the transcrip-
tional regulation of a number of target genes [9,25].
More importantly, some of these target genes, such as
Trim21, Ptgs2 and Nos2 (Figure 5) that show the shar-
pest drop in gene expression upon prolonged LPS treat-
ment have been implicated in tolerance [26-28]. Nfkb1
acts as the controlling TF in LPS-induced expression of
Ptgs2 and Nos2 [29] while acting downstream of
Trim21 [26]. Here, since the microarray data represents
a static view of gene expression, we cannot determine
whether the Nfkb1 gene acts up or downstream of these
genes as they all (Nfkb1, Trim21, Ptgs2 and Nos2) show
the prototypical pro-inflammatory phenotype of down
regulation (Figure 5) in induction of tolerance. A caveat
to this classification may be the case of Nos2 that shows
up in the pro-inflammatory category in our analysis.
This gene has a direct role in killing intracellular patho-
gens [30-32] even though it shows down regulation in
the tolerant state. A reason for the presence of such
genes in our classification maybe due to the non-linear-
ity of TF-TFBS interactions in that the dynamic modula-
tion of transcriptional target gene expression does not
always correlate with the corresponding TF binding to
its site.
A limitation to this study is the lack of the tolerant

(T) stage in the Foster et al [6] data set unlike the
Mages et al [10] data. By employing the N+L stage
instead of T (Figures 1, 2 and 5) we are likely to miss
some genes (false negatives) that are tolerizable. How-
ever, the filtering approach that we employed is logically
sound and did result in a significant number (228) of
pro-inflammatory genes. Our motif prediction tools con-
verged on 4 TF binding motifs that could co-ordinately
regulate these genes (Figure 4). From a biological per-
spective, the 18 genes that are validated from the litera-
ture regards to being transcriptional targets of the four
predicted profile TFs are most likely to be genuine can-
didates for establishing and/or maintaining the pro-
inflammatory phenotype.
It is interesting to note that although the exhaustive

work of Ramsey et al [8] looked at the dynamics of
transcriptional programs in LPS-stimulated macro-
phages, they did not characterize the differential expres-
sion of the two categories of tolerant genes as belonging
to the pro-inflammatory and antibacterial classes. We
observed a number of common genes between our 228
pro-inflammatory set and their list of 1960 differentially
expressed genes probably indicating a mixture of both
classes of genes in their data. Litvak et al [9] have impli-
cated one such gene, Cebpd, a TF, in a regulatory circuit
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discriminating between transient and persistent TLR4-
stimulated signals. A search for the Cebpd binding
motif in the regulatory regions of our two classes of
genes (similar to their analysis) is likely to shed more
light on the varying gene expression patterns in LPS tol-
erance induction.

Conclusions
By combining distinct gene expression array data with
motif scanning and literature-based biological validation,
we have identified and characterized transcriptomic sig-
natures categorizing pro-inflammatory and antibacterial
classes of genes in LPS tolerant macrophages. We iden-
tified 228 pro-inflammatory and 18 antibacterial genes
likely to be transcriptionally regulated by four and one
TFs respectively. Further, employing literature resources,
we observed a number of target genes corresponding to
the predicted profile TFs in the pro-inflammatory set
and a subset of these targets clearly showed the pro-
inflammatory gene expression pattern corresponding to
LPS tolerance.

Methods
Differentially expressed genes
The Foster et al microarray dataset (GSE7348) was down-
loaded from the NCBI-GEO database [33]via FTP proto-
col. This data set was derived from murine (C57BL/6
strain) bone marrow macrophages left untreated (N), sti-
mulated with LPS for 24 hours and then re-stimulated for
4 hours (T+L) or treated only with the second stimulation
for 4 hours (N+L). RNAs from these 3 conditions were
hybridized to the Affymetrix Mouse Genome 430 2.0
arrays (in duplicates) to get raw gene expression values for
45101 probe sets [6]. Differentially expressed genes were
selected based on their expression level differences in var-
ious experimental conditions. For gene selection, in addi-
tion to fold change, we also performed Student’s two-
tailed t-test by assuming heteroscedasticity between the
naïve and tolerant macrophages to prove significant differ-
ences in expression between the two conditions. For a
pro-inflammatory gene, the ratio of average gene expres-
sion values in N+L to N and T+L to N+L should be > one
and < one respectively, and have the t-test p-value of <
0.05. On the other hand, for an antibacterial gene, the
ratio of average gene expression values in both N+L to N
and T+L to N+L should be > one, and have the t-test p-
value of <0.05. In this study, we utilized random mouse
genes as background and they were selected using the
RSAT tool [17]. The Mages et al [10] data was down-
loaded from GEO (GSE8621) and appropriate differential
gene expression filters (based on fold change) were applied
to compare with the pro-inflammatory transcriptional tar-
gets identified in our analysis of the Foster et al data.

Sequence retrieval
Regulator modules are generally located in the upstream
and near the promoter regions of a gene. We considered
this as our basis to retrieve the 1000 to +300 region,
with respect to TSS, of all selected test and random
genes. Gene sequences were retrieved from NCBI using
a local tool [34] and repeats were masked using Repeat-
Masker [35].

Identification of TFBS
We used three TFBS prediction tools viz., MEME [12],
MotifModeler [13], and PASTAA [14]. We performed
this analysis to both our test and random sets of genes.
Description and parameters used for these tools are as
follows:
MEME
It works by searching for repeated, ungapped sequence
patterns in the input DNA with statistical significance.
The non-default parameters used for this analysis com-
prised of number of motifs (30), maximum width (15),
and mode of motif distribution (zero or one per
sequence, zoops). Additionally the revcomp parameter
was used to search for TFBS in both strands. MEME
identifies motifs without any concern to biological
validation.
MotifModeler
Gene UIDs and corresponding expression values of a
co-regulated set of genes were given as input and this
software works by taking a set of random motifs of
fixed size and mapping them onto putative regulatory
regions of genes of interest. A linear model was estab-
lished by considering the expression values and the effi-
cacy of selected motifs. In this model each motif was
evaluated based on its contribution to transcriptional
regulation. This was iterated many times to calculate a
cumulative transcription contribution score (TCS) that
was used for motif selection. Least square method was
used to dictate inhibitory and stimulatory effects of the
predicted motifs. For the analysis of random gene data,
we used random expression values, generated by a PERL
script, within the range of the maximum and minimum
expression values of test genes.
PASTAA
This software takes ENSEMBL gene ids as input and
ranks them based on the annotated binding affinities of
549 vertebrate TRANSFAC TFs to their promoter
regions. Simultaneously, it also ranks them based on
their tissue specificities derived from expression data.
These two lists are compared for high ranked common
genes and an iterated hypergeometric test is performed
to deduce the relationships between TFs and the list of
genes and corresponding p-values calculated. Lower the
p-value better the prediction.
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Motif selection and their corresponding profile TFs
Top 70% of the predicted motifs were selected and com-
pared in all tools. MEME predicts the consensus
sequences of all possible hits in the promoter region of
a given set of genes but does not provide any annotated
information about the predictions. Hence, we took the
position weight matrices (PWM) of the predicted con-
sensus sequences and searched in TRANSFAC [15] for
the motif accession numbers using the TOMTOM tool
[36]. MotifModeler and PASTAA provide motif acces-
sion numbers for the predicted motifs. We used
TRANSFAC to manually map these motifs to TFs.

Literature-based validation for target genes
We collected a list of genes (from TRANSFAC and IPA)
that have been biologically identified as targets to the
profile TFs that were discovered in motif prediction. We
compared this list with the list of genes in the microar-
ray that passed through a two-fold filter for the pro-
inflammatory expression pattern. By normalizing the
highest expression value in the N condition of the raw
microarray data (45101 probe values) to 1, we calculated
relative expression values for the filtered target genes
corresponding to the N, N+L and T+L conditions (Fig-
ure 5).
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